ENDOMORPHISM RINGS ARE CENTRALIZER NEAR-RINGS

Md. Rezaul Islam¹ and Satrajit Kumar Saha²

¹Dhaka Cantonment Girls' Public School and College, Dhaka. ²Department of Mathematics, Jahangirnagar University, Savar, Dhaka. ¹E-mail: rezaadhimoni@gmail.com

Received 05.05.2014

Accepted 06.01.2015

ABSTRACT

For a finite ring *R* with identity and a finite unital *R*-module *V* the set $C(R; V) = \{f : V \to V : f(\alpha v) = \alpha f(v) \text{ for all } \alpha \in R, v \in V\}$ is the centralizer near-ring determined by *R* and *V*. Rings *R* for witch C(R; V) is a ring for every *R*-module *V*, are characterized. Conditions are given under which C(R; V) is a semisimple centralizer near ring. Its shown that C(R; V) is a semisimple centralizer near ring.

Keywords: Centralizer Near-ring, Semisimple Centralizer Near-ring, C(R, V) invariant

1. Introduction.

Let G be a group and T a semigroup of endomorphisms of G. Then

 $C(T;G) = \{f : G \to G : f(0) = 0 \text{ and } f(x_a) = \} f(a) \text{ for all } \} \in T, a \in G\}$ is a near-ring under the operations of addition and composition of functions, and is called the centralizer near-ring determined by *T* and *G*. It has been shown by Betsch [1] that *N* is a finite simple near-ring with identity if and only if there exists a finite group *G* and a fixed point free group of automorphism *T* of *G* such that $N \cong C(T;G)$. The structure of C(T;G) for various *G* and *T* has been investigated by Maxson and Smith [3], [4], [5].

Throughout this paper *R* will denote a finite ring with 1 and *V* a finite unital *R*-module. The corresponding centralizer near-ring is $C(R;V) = \{f : V \to V : f(rv) = rf(v) \text{ for all } r \in R, v \in V\}$. In dealing with C(R; V) we may assume, without loss of generality, that *V* is a faithful *R*-module, because *V* is a faithful \overline{R} -module where $\overline{R} = R/\text{Ann}(V)$, and we have $C(R;V) = C(\overline{R};V)$.

It is the goal of this paper to consider the following questions which arise naturally from the above remarks.

- A. Which finite rings *R* have the property that C(R; V) is a ring for every *R*-module *V*?
- B. If C(R; V) is a semisimple ring when is $C(R; V) = \text{End}_R(V)$?
- C. Which semisimple near-rings have the form C(R; V) for some pair (R, V)?

Subsequently we will answer question A. We also show that if C(R; V) is a semisimple ring then one always has $C(R; V) = \text{End}_R(V)$. Moreover if C(R; V) is semisimple then information about the structure of the simple components is obtained, giving a partial

answer to question C. Subsequently we will show that if C(R; V) is a semisimple ring then $End_R(V) = C(R; V)$.

2. Semisimple Centralizer Near-ring

At first we will define semisimple centralizer near-ring. Then some characteristics or properties of semisimple centralizer near-ring will be established.

Definition 2.1. Semisimple Centralizer Near-rings [2] Let C(R; V) be semisimple. Then the center of C(R; V) cannot contain nonzero nilpotent elements. Hence the center of Rcannot contain nilpotent elements so the center of R is a direct sum of fields. Thus if n is the characteristic of R, we have $n = p_1 p_2 \dots p_s$ where p_i 's are distinct primes. But this implies that $R = R_1 \oplus \dots \oplus R_s$ where R_i has characteristic p_i . Because it has characteristic p_i , R_i is an algebra over the field $GF(p_i)$ and so the Wedderburn principal theorem [7, p. 164] holds for R_i . Consequently $R = \sum_{ij} S_{ij} + N$ where each S_{ij} is a simple ring and N is

a nilpotent ideal of R.

Proposition 2.1. [2]. Let R be a finite semisimple ring and let V be a finite R-module. Then C(R; V) is a semisimple near-ring.

Proof: We have $R = S_1 \oplus ... \oplus S_t$, where each S_i is a simple ring. Let e_i denote the identity of S_i . If $V_i = \{v \in V : e_i v = v\}$ then $V = V_1 \oplus ... \oplus V_t$, and $f(V_i) \subseteq V_i$ for each $f \in C(R;V)$. Further, if f_i denotes the restriction of f to V_i then the map $W: C(R;V) \rightarrow C(S_1;V_1) \oplus ... \oplus C(S_t;V_t)$ given by $W(f) = \langle f_1, ..., f_t \rangle$ is a near-ring homomorphism. The map is onto, for if $\langle f_1, ..., f_t \rangle$ is in $C(S_1;V_1) \oplus ... \oplus C(S_t;V_t)$ extend each f_i to all of V by $\overline{f_i}(v_1 + ... + v_t) = f_i(v_i)$. Then $f = \sum \overline{f_i}$ is an element of C(R; V) such that $W(f) = \langle f_1, ..., f_t \rangle$. To show that W is one-to-one we note that $e_i f(v_1 + ... + v_t) = f(e_i v_i) = f(v_i), i = 1, ..., t$ implies $f(v_1 + ... + v_t) = f(v_1) + ... + f(v_t)$ $= f_1(v_1) + ... + f_t(v_t)$. Hence if W(f) = 0 then f = 0. Therefore W is an isomorphism and

from Theorem 1 of [6] each $C(S_i;V_i)$ is a simple near-ring.

Proposition 2.2. If C(R; V) is a semisimple near-ring for every *R*-module *V* then in particular C(R; R) is semisimple. But C(R; R) is anti-isomorphic to *R* so *R* is a semisimple ring.

Proof: If $R = S_1 \oplus ... \oplus S_t$, S_i simple and not a field, or S_i is a field and $\dim_{S_i}(V_i) = 1$, we have C(R; V) is a semisimple ring. Moreover, in this setting, $C(R;V) = End_R(V)$.

Theorem 2.1. C(R; V) is a semisimple ring which is not a ring.

Proof: We will prove this theorem with the help of an example. Let $R = \overline{R} \oplus F$ where F = GF(2) and \overline{R} is the simple ring of 2 x 2 matrices over GF(2). Let

Endomorphism rings are centralizer Near-rings

$$V_i = \left\{ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in F \right\}, i = 1, 2, \text{ and let } R \text{ act on } V = V_1 \oplus V_2 \text{ componentwise. Then} \right\}$$

 $C(R;V) \cong C(\overline{R};V_1) \oplus C(F;V_2)$ where $C(\overline{R};V_1)$ is a simple ring while $C(F;V_2)$ is a simple near-ring which is not a ring. Hence C(R; V) is semisimple and not a ring.

Theorem 2.2. When C(R; V) is semisimple centralizer near-ring then $End_R(V) = C(R;V)$.

Proof: As we have seen $R = S_1 \oplus ... \oplus S_t + N$ where each S_i is simple and N is a nilpotent ideal of R. We may assume $N \neq (0)$; otherwise R is semisimple and the previous result applies.

Assume t = 1, i.e. $R = S_1 + N$. From the proof of Lemma 1 of [6] it follows that C(R; V) contains a function f such that $g_1 f g_2 f = 0$ for all $g_1, g_2 \in C(R; V)$. Hence C(R; V) contains a nilpotent C(R; F)-subgroup and is not semisimple. So we may assume t > 1.

Let e_i denote the identity for S_i . Then $V = V_1 \oplus ... \oplus V_t$ where $V_i = \{v \in V : e_i v = v\}$. Also for i,j = 1, 2,..., t let $N_{ij} = e_i N e_j$. Then $N = \sum N_{ij}$. For i = 1,..., t let $B_i = \{w_i \in V_i : w_i = n_{ij}v_j \text{ for some } j \neq i, n_{ij} \in N_{ij}, v_j \in V_j\}$, and let W denote the subgroup of V generated by $B_1 \cup B_2 \cup ... \cup B_t$. Finally let $W_L = \{w \in V : f(w+v) = f(w) + f(v) \text{ for}$ all $v \in V, f \in C(R;V)\}$. Therefore it is clear that $End_R(V) = C(R;V)$.

Corollary 2.1. If *R* is not semisimple then at least one A_i must be a ring.

Proof: Since C(R; V) is semisimple then $R = S_1 \oplus ... \oplus S_k + N$ where N = rad R and each S_i is simple with identity e_i . As before let $N_{ij} = e_i N e_j$ and let W be the R-submodule of V as in Lemma1. If W = (0) then $N_{ij}V_j = (0)$ for each $i \neq j$ where V_j is the 1-space for e_j . This means each V_i is an R-module as well as C(R; V)-invariant. Hence

$$C(R;V) \cong C(R_1;V_1) \oplus \dots \oplus C(R_k;V_k)$$

where $R_i = S_i + N_{ii}$. Since C(R; V) is semisimple each $C(R_i; V_i)$ is semisimple [8,p. 146]. We show now that if $N_{ii} \neq (0)$ then $C(R_i; V_i)$ cannot be semisimple.

Suppose $N_{ii}^{l} = (0)$ but $N_{ii}^{l-1} \neq (0)$. Let $W = \ker N_{ii}^{l-1} = \{v \in V_i : nv = 0 \text{ for all } n \in N_{ii}^{l-1}\}$, a proper subgroup of V_i , an S_i -submodule, and $C(R_i;V_i)$ -invariant. As S_i – module V_i is completely reducible so $V_i = W_1 \oplus W_2$, an S_i -module direct sum. As constructed in the proof of Lemma 1 of [6] there exists a nonzero $f \in C(R_i;V_i)$ such that $f(V_i) \subseteq W_1$ and $f(W_1) = \{0\}$. Let $I = \{f \in C(R_i;V_i) : f(V_i) \subseteq W_1$ and $f(W_1) = \{0\}$. Then I is a nilpotent $C(R_i;V_i)$ -subgroup $(I^2 = (0))$ and hence $C(R_i;V_i)$ is not semisimple. So each $N_{ii} = (0)$ and since $N_{ij}V = (0)$, $N_{ij} = (0)$ if $i \neq j$. Thus *R* is semisimple.

So we may assume $W \neq (0)$. Since W is C(R; V)-invariant the map $f \to f'_W$ is a homomorphism of C(R; V) into the ring $End_R(W)$. Hence a non-trivial homomorphic image of C(R; V) is a ring and this implies at least one simple component of C(R; V) is a ring [8, p. 55].

3. Simple Centralizer Near-ring

In this section we will discuss simple centralizer near-ring and ring with their characteristics or properties.

Theorem 3.1. C(R; V) is a ring when $End_R(V) \neq C(R;V)$.

Proof: We will prove this theorem with the help of an example. Let R is the ring consisting of the 3 x 3 matrices of the form

$$\begin{bmatrix} a & b & c \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}, \quad a,b,c \in GF(2).$$

Let

$$V = \begin{cases} \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in GF(2). \end{cases}$$

A calculation shows that $End_R(V) = R$. Another calculation gives $f(Rv) \subseteq Rv$ for each $f \in C(R;V)$ and for each $v \in V$. From this it follows that C(R; V) is a ring since if $v \in V$ then

$$f(g+h)v = f(gv+hv) = f(r_1v+r_2v) = (r_1+r_2)f(v) = (fg+fh)v.$$

Let $\{e_1, e_2, e_3\}$ be the standard basis for the vector space V over GF(2). Then $V = R(e_1 + e_2 + e_3) \cup \operatorname{Re}_2 \cup \operatorname{Re}_3$ and the relation $f(e_1 + e_2 + e_3) = f(e_2) = f(e_3) = e_1$ determines a function in C(R; V). But f is not in $End_R(V)$ since $f(e_2 + e_3) \neq f(e_2) + f(e_3)$. Hence $End_R(V) \neq C(R;V)$.

Lemma 3.1. [2]. *W* is an *R*-submodule of *V*, W_L is a subgroup of *V* and $W \subseteq W_L$, where $W_L = \{w \in V : f(w+v) = f(w) + f(v) \text{ for all } v \in V, f \in C(R;V)\}.$

Proof: An element of *W* has the form $w = \sum n_{ij}v_j$ with $i \neq j$. For $n_{kl} \in N_{kl}$ and $n_{ij}v_j \in B_j$ we have $n_{kl}n_{ij}v_j \in B_k$ if $k \neq j$ and $n_{kl}n_{ij}v_j = n_{kl}(n_{ij}v_j) \in B_k$ if k = j. In this manner it is Endomorphism rings are centralizer Near-rings

seen that $NW \subseteq W$. Also if $s \in S_1 \oplus ... \oplus S_t$ then $sn_{ij}v_j = (sn_{ij})v_j \in B_i$ since $sn_{ij} \in N_{ij}$. Hence $SW \subseteq W$ and W is an R-submodule of V.

The second part of the lemma is straight forward and is not discussed. To prove the last part it suffices to show that $B_i \subseteq W_L$ for each *i*. To this end let $v_i = n_{ij}v_j \in B_i$, $f \in C(R;V)$. For $k \neq i$ we have $f(v_i + v_k) = f(v_i) + f(v_k)$. For $v'_i \in V_i$,

For
$$k \neq l$$
 we have $\int (v_i + v_k) - \int (v_i) + \int (v_k)$. For $v_i \in I$

$$f(v_i + v'_i) = f(n_{ij}v_i + v'_i) = f((n_{ij} + e_j)(v_j + v'_i))$$

$$= (n_{ij} + e_j)f(v_j + v'_i) = (n_{ij} + e_j)[f(v_j) + f(v_i)] = f(v_i) + f(v'_i).$$

With this it is easy to see that $f(v_i + v) = f(v_i) + f(v)$ for all $v \in V$, as desired.

Lemma 3.2. C(R; V) would not be simple but it is a ring.

Proof: From Lemma 3.1, every $f \in C(R;V)$ is linear on W and moreover $f(W) \subseteq W$. Suppose now that C(R; V) is simple. Then the map $f \to f'_W$ is an imbedding of C(R; V) into $End_R(W)$. Also $W \neq (0)$, for otherwise $N_{ij}V_j = (0)$ for each $i \neq j$ and so each V_i is an R-module and C(R; V)-invariant. Hence C(R; V) would not be simple. Thus $W \neq 0$ and C(R; V) is a ring.

4. Conclusion

Starting with the definition of centralizer near-ring throughout the paper we have discussed semisimple and simple centralizer near-rings with their various characteristics or properties. We have established Proposition 2.2, Theorem 2.1, Theorem 2.2, Corollary 2.1, Theorem 3.1 and Lemma 3.2.

REFERENCES

- Betsch, Some structure theorems on 1-primitive near-rings, Rings, Modules and Radicals, Colloq. Math. Soc. János Bolyai, Vol. 6, North-Holland, Amsterdam, (1973), pp. 73-102.
- [2] Carlton, J. Maxson and Kirby C. Smith, Centralizer Near-rings that are Endomorphism Rings, Proceedings of the American Mathematical Society, Vol. 80 (2), (1980).
- [3] Maxson, C. J. and Smith, K. C., The centralizer of a group automorphism, J. Algebra, 54(1978), 27-41.
- [4] Maxson, C. J. and Smith, K. C., The centralizer of a group automorphism, J. Algebra, 57 (1979), 441-448.
- [5] Maxson, C. J. and Smith, K. C., The centralizer of a group automorphism, *Comm. Algebra* 8 (1980), 211-230.
- [6] Maxson, C. J. and Smith, K. C., The centralizer of a group automorphism, Proc. Amer. Math. Soc. 75 (1979), 8-12.
- [7] McDonald, B. R., Finite rings with identity, Dekker, New York, 1974.
- [8] Pilz, G., Near-rings, The Theory and its Applications, North-Holland Math. Studies, No. 23, North-Holland, Amsterdam, New York and Oxford, 1977.