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ABSTRACT

Let M be a -ring and let D: M  M  M be a symmetric bi-derivation with the trace d:
M  M denoted by d(x) = D(x, x) for all xM. The objective of this paper is to prove
some results concerning symmetric bi-derivation on prime and semiprime -rings. If M is
a 2-torsion free prime -ring and D ≠ 0 be a symmetric bi-derivation with the trace d
having the property d(x)x  xd(x) = 0 for all xM and , then M is commutative.
We also prove another result in -rings setting analogous to that of Posner for prime
rings.
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1. Introduction and Preliminaries

The concept of a -ring was first introduced by Nobuswa [5], and afterwards it was
generalized by Barnes [1] in more natural sense. Maksa [14] worked on the trace of
symmetric bi-derivation on classical rings theories and developed some fruitful results
concerning bi-derivations. Vukman [10] proved some results relating symmetric bi-
derivations on prime and semiprime rings. Ozturk, Sapanci, Soyturk and Kim [7] worked
on the trace of symmetric bi-derivations in -rings and extended some results of Vukman
[10] to ideals of prime and semipime -rings.

In this paper, we extend some results of Vukman [10] to prime and semiprime -rings.
Our results are quiet different from the results obtained in [9].

Let M and  be additive abelian groups. If there exists a mapping (x, , y)  xy of
M    M M which satisfies the conditions:

(i) xy  M,
(ii) (x + y)z = xz + yz, x( + )y = xy + xy, x(y + z) = xy + xz,
(iii) (xy)z = x(yz) for all x, y, zM and , ,

then M is called a -ring in the sense of Barnes [1]. Throughout this paper M denotes a
-ring with center Z(M). For any x, y  M,   , the symbol [x, y] (resp. x, y) will
denote the commutator xy - yx (resp. the anti-commutator xy + yx). A -ring M is
called commutative if [x, y] = 0 for all x, y  M,   . We know that

[xy, z] = [x, z]y + x[y, z]+ x[, ]zy
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and
[x, yz] = y[x, z] + [x, y]z + y[, ]xz.

We make the assumption (*) xzy = xzy for all x, y, z  M, , . Using this
assumption the basic commutator identities reduce to

[xy, z] = [x, z]y + x[y, z]
[x, yz] = y[x, z] + [x, y]z.

Recall that a -ring M is prime if xMy = 0 implies that x = 0 or y = 0, and is semiprime
if xMx = 0 implies x = 0. An additive mapping d: M  M is called a derivation if
d(xy) = d(x)y + xd(y) holds for all x, yM, . A derivation d is inner if there exists
aM such that d(x) = [a, x] holds for all xM, . The mapping B: M  MM is said
to by symmetric if B(x, y) = B(y, x) holds for all x, yM. A mapping f : M  M defined
by f(x) = B(x, x), where B: M  M M is a symmetric mapping, is called the trace of B.
In case B: M  M M is a symmetric mapping which is also bi-additive (i.e. additive in
both arguments), the trace of B satisfies the relation f(x + y) = f(x) + f(y) + 2B(x, y), for all
x, yM. We shall use also the fact that the trace of a symmetric bi-additive mapping is an
even function. A symmetric bi-additive mapping D: M  M M is called a symmetric bi-
derivation if D(xy, z) = D(x, z)y + xD(y, z) is fulfilled for all x, y, z  M,   .
Obviously, in this case also the relation D(x, yz) = D(x, y)z + yD(x, z) for all x, y,
zM, , holds. A mapping f : M  M is said to be commuting on M if [f(x), x] = 0
holds for all xM,   . A mapping f : M M is centralizing on M if [f(x), x] Z(M)
holds for all xM,   .

2. Bi-derivations on -rings

We shall need the following well-known and frequently used lemmas.

Lemma 2.1. ([2, Lemma 3.2]) Let d: M M be a derivation, where M is a prime -ring.
Suppose that either (i) ad(x) = 0, for all x  M or (ii) d(x)a = 0, for all x  M holds.
Then we have (i) a = 0 or (ii) d = 0.

Lemma 2.2. ([7, Lemma 3]) Let M be a 2-torsion free prime -ring and let a, bM be fixed
elements. If axb + bxa = 0 is fulfilled for all x M, ,   , then a = 0 or b= 0.

We start our investigation of symmetric bi-derivations with the following results.

Theorem 2.3. Let M be a 2-torsion free prime -ring satisfying the condition (*). Let
D: M × M  M and d be a symmetric bi-derivation and the trace of D, respectively.
Suppose that d is commuting on M, then M is commutative or D = 0.

Proof. We have
[d(x), x] = 0, for all x  M,   . (l)

The linearization of (1) gives us [d(x) + d(y) + 2D(x, y), x + y] = 0,

which leads to

[d(x), y] + [d(y), x] + 2[D(x, y), x] + 2[D(x, y), y] = 0 for all x, y  M,   . (2)
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Substituting -x for x in the relation above, we arrive at

[d(x), y] – [d(y), x] + 2[D(x, y), x] – 2[D(x, y), y] = 0 for all x, y  M,   . (3)

From (2) and (3) we obtain

[d(x), y] + 2[D(x, y), x] = 0 for all x, y  M,   . (4)

Replacing y in (4) by xy. Then by using the condition (*),

0 = [d(x), xy] + 2[d(x)y + xD(x, y), x]

= x[d(x), y] + 2d(x)[y, x] + 2x[D(x, y), x]

which, according to (4), implies

d(x)[x, y] = 0 for all x, y  M, ,   . (5)

From the relation (5) and Lemma 2.1 one can conclude that d(x) = 0 or [x, y] = 0 for all
x, y  M,   . If [x, y] = 0, then M is commutative. On the other hand, for any
xZ(M), we have [x, y] ≠ 0. Therefore d(x) = 0 (note that for any fixed x  M,   , a
mapping y  [x, y] is a derivation). Let x  Z(M), y  Z(M). Then x + y  Z(M) and
x  y  Z(M). Thus 0 = d(x + y) = d(x) + 2D(x, y) and 0 = d(x)  2D(x, y). From these two
relations, we have 4D(x, y) = 0. By the 2-torsion freeness of M, we have

D(x, y) = 0 for all x, y  M. The proof of the theorem is complete.

Theorem 2.4. Let M be a 2 and 3-torsion free prime -ring satisfying the condition (*).
Let D: M  M  M and d be a symmetric bi-derivation and the trace of D, respectively.
Suppose that d is centralizing on M, then M is commutative or D = 0.

Proof We have

[d(x), x] Z(M) for all x M,   . (6)

By linearization we obtain

[d(x) + d(y) + 2D(x, y), x + y] Z(M)

 [d(y), x] + [d(x), y] + 2[D(x, y), y] + 2[D(x, y), x] Z(M) for all x, yM,   . (7)

since (6) holds. Replacing x in the relation (7) by – x, we obtain

[d(y), x] + [d(x), y]  2[D(x, y), y] + 2[D(x, y), x] Z(M) for all x, y  M,   . (8)

Now (7) and (8) give us

[d(x), y] + 2[D(x, y), x] Z(M) for all x, y  M,   . (9)

Replacing y in (9) by xx, we get

[d(x), xx] + 2[d(x)x + xd(x), x] Z(M)

 [d(x), x]x + x[d(x), x] + 2[d(x), x]x + 2x[d(x), x] Z(M)

 6[d(x), x]x  Z(M) for all x, y  M, ,   . (10)
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Using (10), (6) and the assumptions that M is 2 and 3-torsion free, we obtain

[d(x), x][x, y] = 0 for all x, y  M, ,   .

Now, the relation above makes it possible to conclude, using the same arguments as in the
proof of Theorem 2.3, that for any x  Z(M) we have [d(x), x] = 0.

In view of Theorem 2.3, the proof is complete.

Theorem 2.5. Let M be a 2-torsion free prime -ring satisfying the condition (*).
Suppose there exist symmetric bi-derivations D1: M  M M and D2: M  M M, such
that Dl(d2(x), x) = 0 holds for all x  M, where d2 denotes the trace of D2.

Then Dl = 0 or D2 = 0.

Proof. By linearization of the relation

Dl(d2(x), x) = 0 for all x M. (11)

we obtain according to (11),

Dl(d2(x) + d2(y) + 2D2(x, y), x + y) = 0

 Dl(d2(y), x) + 2D1(D2(x, y), x) + D1(d2(x), y) + 2D1(D2(x, y), y) = 0 for all x, yM.

Replacing x by -x and comparing this new equation with the preceding equation we get

D1(d2(x), y) + 2D1(D2(x, y), x) = 0 for all x, y  M. (12)

Let us replace y by xy in (12). Then

0 = D1(d2(x), xy) + 2Dl(D2(x , xy), x)

= Dl(d2(x), x)y + xDl(d2(x), y) + 2Dl(d2(x)y + xD2(x, y), x)

= xD1(d2(x), y) + 2D1(d2(x), x)y + 2d2(x)Dl(y, x) + 2dl(x)D2(x, y) + 2xDl(D2(x, y), x)

= xDl(d2(x), y) + 2xDl(D2(x, y), x) + 2d2(x)D1(x, y) + 2dl(x)D2(x, y)

= 2d2(x)D1(x, y) + 2dl(x)D2(x, y).

In the above calculation we used (11) and (12). Thus we have

d2(x)Dl(x, y) + d1(x)D2(x, y) = 0 for all x, y  M,   . (13)

Let us replace y in (13) by yx. We get

0 = d2(x)Dl(yx, x) + dl(x)D2(yx, x)

= d2(x)(Dl(y, x)x + yd1(x)) + dl(x)(D2(y, x)x + yd2(x))

= (d2(x)D1(x, y) + d1(x)D2(x, y))x + d1(x)yd2(x) + d2(x)yd1(x)

= d1(x)yd2(x) + d2(x)yd1(x).

Thus, we have

d1(x)yd2(x) + d2(x)yd2(x) = 0 for all x, y  M, ,   . (14)
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Let us assume that d1 and d2 are both different from zero. In other words there exist
elements x1, x2M such that d1(x1) ≠ 0 and d2(x2) ≠ 0. From (14) and Lemma 2.2, it
follows that dl(x2) = d2(x2) = 0. Since d1(x2) = 0, the relation (13) reduces to d2(x2)D1(x2,
y) = 0. Using this relation and Lemma 2.1, we obtain that D1(x2, y) = 0 holds for all y  M
since d2(x2) ≠ 0 (recall that a mapping y Dl(x2, y) is a derivation). In particular we have
D1(x2, xl) = 0. Similarly, we obtain D2(xl, x2) = 0 holds as well. Let us write y for x1 + x2.
Then d1(y) = dl(xl + x2) = dl(xl) + dl(x2) + 2Dl(xl, x2) = dl(xl) ≠ 0. Similarly, we obtain d2(y)
≠ 0. But dl(y) and d2(y) cannot be both different from zero according to (14) and Lemma
2.2. Therefore we have proved that d1 = 0 or d2 = 0 which is the assertion of the theorem.

In case D1 = D2 Theorem 2.5 can be proved for semiprime -rings.

Theorem 2.6. Let M be a 2-torsion free semiprime -ring. Suppose there exists such a
symmetric bi-derivation D: M  M  M that D(d(x), x) = 0 holds for all xM, where d
denotes the trace of D. Then D = 0.

Proof. In this case (14) reduces to d(x)yd(x) = 0 for x, yM, , , which implies
that d(x) = 0 for all xM, by semiprimeness of Posner [10] has proved a result which
states that in case M is a 2-torsion free prime -ring and D1, D2 are nonzero derivations on
M, then the mapping x D1(D2(x)) cannot be a derivation.

The result below was motivated by Posner's result mentioned above.

Theorem 2.7. Let M be a 2 and 3-torsion free prime -ring satisfying the condition (*).
Let Dl: M  M  M and D2: M  M  M be symmetric bi-derivations. Suppose further
that there exists a symmetric bi-additive mapping B: M  M M such that dl(d2(x)) = f(x)
holds for all xM, where dl and d2 are the traces of D1 and D2, respectively, and f is the
trace of B. Then D1 = 0 or D2 = 0.

Proof. The linearization of the relation

d1(d2(x)) = f(x)  for all x M. (15)

gives us

dl(d2(x) + d2(y) + 2D1(x, y)) = f(x) + f(y) + 2B(x, y)

and

dl(d2(x)) + dl(d2(y)) + 4dl(D2(x, y)) + 2D1(d2(x), d2(y)) + 4D1(d2(x), D2(x, y)) + 4D1(d2(y),
D2(x, y)) = f(x) + f(y) + 2B(x, y).

Using (15) we arrive at

2dl(D2(x, y)) + D1(d1(x), d1(y)) + 2D1(d2(x), D2(x, y))+2D1(d2(y), D2(x, y)) = B(x, y).

Substituting in the equation above x by -x we obtain by comparing this new equation with
the equation above that

2Dl(d2(x), D2(x, y)) + 2D1(d2(y), D2(x, y)) = B(x, y) for all x, y M. (16)

Let us replace in (16) x by 2x. We have

8D1(d2(x), D2(x, y)) + 2D1(d2(y), D2(x, y)) = B(x, y) for all x, y M. (17)
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By comparing (16) and (17) we obtain

6Dl(d2(x), D2(x, y)) = 0

 D1(d2(x), D2(x, y)) = 0 for all x, y M. (18)

since M is 2 and 3-torsion free. From (18) it follows that both terms on the left side of the
relation (16) are zero, which means that B = 0. Hence (15) reduces to

d1(d2(x)) = 0 for all x  M. (19)

Let in (18) y be yx. We have

0 = D1(d2(x), D2(x, yx))

= D1(d2(x), D2(x, y)x + yd2(x))

= Dl(d2(x), D2(x, y)x) + Dl(d2(x), yd2(x))

= D1(d2(x), D2(x, y))x + D2(x, y)D1(d2(x), x) + D1(d2(x), y)d2(x) + yd1(d2(x))

for all x, y M,  .

This implies

Dl(d2(x), y)d2(x) + D2(x, y)D1(d2(x), x) = 0 for all x, y M,  . (20)

according to (18) and (19). Let us replace in (20) y by xy. We have

0 = D1(d2(x), xy)d2(x) + D2(x, xy)D1(d2(x), x)

= Dl(d2(x), x)yd2(x) + xD1(d2(x), y)d2(x) + d2(x)yD1(d2(x), x)

+ xD2(x, y)Dl(d2(x), x)

= D1(d2(x), x)yd2(x) + d2(x)yD1(d2(x), x) + x(D1(d2(x), y)d2(x)

+ D2(x, y)D1(d2(x), x)) for all x, y M, ,  .

Now, by (20), we arrive finally at

D1(d2(x), x)yd2(x) + d2(x)yD1(d2(x), x) = 0 for all x, y  M, ,   . (21)

From the relation above one can conclude that D1(d2(x), x) = 0 is fulfilled for all xM.
Namely, if Dl(d2(x), x) ≠ 0 for some xM, then d2(x) = 0 according to (21) and Lemma 2.2,
contrary to the assumption D1(d2(x), x) ≠ 0. Therefore, since D1(d2(x), x) = 0 for all xM,
the proof of the theorem is complete since all the requirements of Theorem 2.5 are fulfilled.

In case D1 = D2 Theorem 2.7 can be proved for semi-prime -rings.

Theorem 2.8. Let M be a 2, 3-torsion free semiprime -ring satisfying the condition (*).
Let D: M  M M and B: M  M M be a symmetric bi-derivation and a symmetric
bi-additive mapping, respectively. Suppose that d(d(x)) = f(x) holds for all x  M, where d
is the trace of D and f is the trace of B. Then D = 0.
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Proof. Obviously, we can use the beginning of the proof of Theorem 2.5. In this case
relations (18) and (19) can be written in the form

D(d(x), D(x, y)) = 0 for all x, y  M. (22)

and

d(d(x)) = 0 for all x  M. (23)

Let us write in (22) yz instead of y. We have

0 = D(d(x), D(x, yz))

= D(d(x), D(x, y)z + yD(x, z))

= D(d(x), D(x, y)z) + D(d(x), yD(x, z))

= D(d(x), D(x, y))z + D(x, y)D(d(x), z) + D(d(x), y)D(x, z) + yD(d(x), D(x, z)) for
all x, y, z M,  .

Hence by (22) we have

D(x, y)D(d(x), z) + D(d(x), y)D(x, z) = 0

and, in particular, for z = d(x) we obtain

D(d(x), y)D(x, d(x)) = 0 for all x, y  M,   . (24)

according to (23). Replace in (24) y by xy. We have 0 = D(d(x), xy)D(x, d(x)) =
D(d(x), x)yD(x, d(x)) + xD(d(x), y)D(x, d(x)) which leads to

D(d(x), x)yD(d(x), x) = 0; x, y  M, ,   ; and we obtain D(d(x), x) = 0 for all
x  M by the semiprimeness of M. Thus by Theorem 2.6 the proof is complete.
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