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ABSTRACT

In this paper, we develop a new Decomposition-Based Pricing (DBP) procedure to filter
the unnecessary decision ingredients from large scale mixed integer programming (MIP)
problem, where the variables are in huge number will be abated and the complicacy of
restrictions will be straightforward. We then develop a generalized computer technique
corresponding to our new DBP method by using the programming language A
Mathematical Programming Language (AMPL). A number of examples have been
illustrated to demonstrate our method.

Keywords: Lagrangian Dual, Sub-problem, Master-problem, Decomposition, DBP, Dual
Pricing, MIP, AMPL

1. Introduction

Management Science (MS), big Group of Companies and Industries or Government
Policies (GP) are affiliated with a huge number of decision ingredients and complicated
restrictions. Every factor in MS, every product in Industries and every decision in GP are
not always bankable in practice. After formulating these models there arises large-scale
LP. Thus more complication arises when some variables are bound to be integer which
brings forth MIP problems. Thus, in decision science: production planning, refinery
optimization, resource allocation, assignment, transportation, networking, TSP, game
theory, after converting them into LPs and MIP, have computational bottleneck if for big
companies do by such complicated situations.

Almost five decades have passed since Ford and Fulkerson[5] suggested dealing only
implicitly with the variables of a multi commodity flow problem. George Dantzig and
Phil Wolfe[2] pioneered this fundamental idea, developing a strategy to extend a linear
program column wise as needed in the solution process. This technique was first put to
actual use by Gilmore and Gomory[9] as part of an efficient heuristic algorithm for
solving the cutting-stock problem. Thus Dantzig-Wolf Decomposition (DWD) is
nowadays a prominent method to cope with a huge number of variables but it has
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computational defects along with delayed column generation. It cannot be applied to
solve structural dual inequalities, primal and dual stabilization strategies. Lagrangian was
used by Held and Karp[13] based on minimum spanning trees for the traveling salesman
problem, by Fisher[4] for scheduling problems and by Shapiro[21] for the general IP
problem. Experience after Marshall L. Fisher[20], it is rare in practice that the Lagrangian
solution will be feasible in the original problem. In the last decade, the new interior-
point[6] algorithms and advanced implementations of simplex methods have been
developed with impressive advances computer technology. Using it, we can now solve
LPs with more than one million variables and thousands of constraints. It's not as
intuitively satisfying because, these methods don't visit vertices. They wander through the
interior region, converging on a solution when successful and take more time.

In 2011, Md. Istiaq Hossain and M Babul Hasan[15] developed an Improved
Decomposition Algorithm for solving large scale LPs depending on DWD principle.
Also, in 2013 H. K. Das and Hasan[10] developed a primal dual approach of Linear
fractional programming (LFP) and LP problem depending on DWD principle. But they
did not mention the behavior of their algorithm in case of Large-Scale MIP. Actually
large-scale problems are not easily partitioned in this way. The optimal solution is very
sensitive to the overall variable interactions as working with a huge numbers of decision
variables. The large-scale system approach is to treat the problem as a unit, devising
specialized algorithms to exploit the structure of the problem. This alternative will be
explored in this paper with the most important large-scale programming procedures by
our new DBP. Mamer and McBride[16] developed DBP for multi-commodity flow
problems earlier.

In this paper, we propose an iterative partial pricing scheme for solving large-scale LPs
and MIPs using the Simplex method. The approach solves a relaxed sub-problem to
identify the nontrivial variables to be considered during the pricing step of the Simplex
method. The goal of the procedure is to find an efficient set of candidate to enter the basis
without incurring the cost of pricing of all the non-basic columns in the problem at the
each iteration. Thus the trivial ingredients are filtered and constraints become simpler.
Our scheme is motivated by the column-generation approach of DWD. The rest of the
paper is organized as follows. In Section 2, we present some necessary definitions. In
Section 3, we present some existing approaches to solve large-scale LPs. In Section 3, we
present our new Decomposition-Based Pricing (DBP) technique with numerical examples
and develop computer technique. Section 5 shows the comparative effectiveness of new
DBP. The main objective of this work, the implementation of DBP procedure on MIP has
been demonstrated in Section 6.

2. Preliminaries

In this Section, we present some necessary definitions relevant to our purpose.
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2.1. Polytope

In elementary geometry, a polytope is a geometric object with flat sides, which exists in
any general number of dimensions. A polygon is a polytope in two dimensions, a
polyhedron in three dimensions, and so on in higher dimensions. A convex polytope may
be defined as the convex hull of a finite set of points. An n-dimensional polytope may be
specified as the set of solutions to a system of linear inequalities, Ax  b. Where A is a
real s  n matrix and b is a real vector of dimension s.

Fig. 1: Polytop in various dimension

2.2. Lagrangian Dual concept

To define Lagrangian Relaxation, we consider one combinatorial linear programming
problem, P: Max{cx | Ax  b, Bx   X}. There are two types of constraint according to
their structure. Now if, in case, we relax the first constraint then feasible region gets
enhanced or remains the same. So, we define a conformable Lagrange Multiplier   0
and relax Ax  b. Then we get, PR: Max{cx +  (b – Ax) || Bx  d, x  X}. Here   0
and b – Ax  0 give (b – Ax)  0. Then obviously feasible region (fs) for the problem
(PR) is greater than or equal to that of (P). That is

1. fs(P)  fs(PR)

2. xX, cx +  (b – Ax)  cx

Therefore the value of (PR) is greater or equal to the value of (P) for all   0. Then the
problem (PR) is called the relaxation of the problem (P). And this Lagrangian function is
defined as the Lagrangian Relaxation. Hence the optimal value of (PR) is an upper
bound on the optimal value of (P). Getting the tightest, i.e., the smallest, Lagrangian
upper bound is than an optimization problem over  The problem LD: Min  0 (PR) is
called the Lagrangian dual of (P) relative to the constraint Ax  b.

1.3. Decomposition, Sub-Problem, Master-Problem

As we mention in Section 2.2, for a large-scale LP, by relaxing some particular
constraints, if the overall problem can be split into more than one independent problem,
then this process is called decomposition and these independent problems are called sub-
problems. Now we consider a large-scale LP as the following block angular structure:
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(P)

Maximize : c1x1 + c2x2 + ... + cnxn

Subject to: A1x
1 + A2x

2 + ... + Anx
n  b (2.3.1)

B1x
1  b1 (2.3.2)

B2x
2  b2 (2.3.3)

... ...

Bnx
n  bn (2.3.4)

xi  X (a non-empty set)

Now applying Lagrangian relaxation to the coupling constraints (2.3.1), permits a
decomposition of the problem (P) into n independent sub-problems. Consider a vector of
nonnegative Lagrangian multipliers . Then the corresponding sub-problems are defined
as:

Maximize: (ci – Ai)x
i + Tb

subject to : Bjx
j  dj;

xi  X
j = 1 ... n (2.1.1)

We define the restricted master-problem as the original problem (P), but restricted to a
smaller set of variables xi  X*  X. Set X* is the set of positive variables in the master-
problem.

2.4 Shadow Price and Dual Price

For maximization problems the constraints can often be thought of as restrictions on the
amount of resources available, and the objective can be thought of as profit. The shadow
price associated with a particular constraint tells how much the optimal value of the
objective would increase per unit increase in the amount of resources available.
Elementarily another name of Shadow Price is Dual Price (See section 4.3) In the next
section, we briefly discuss some existing methods for solving Large-Scale LPs problems.

2. Chronicles of Solving Large-Scale LP

In the current section, we briefly discuss DWD, Lagrangian Relaxation, Interior-Point
Method and Improved Decomposition method with their computational bottleneck to
solve Large-Scale LP.

3.1. Dantzig-Wolfe Decomposition and Column Generation

In this section, we briefly discuss most relevant existing DWD method which can
potentially solve many problems from different fields such as production planning,
refinery optimization and resource allocation.

1. DWD consists of reformulating a problem into a master-problem and a sub-problem
for improving the tractability of large-scale problems.

2. The pricing problem generates columns, which potentially improve the current solution.
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3. In order to allow DWD problem, the constraint matrix should take on a certain
structure and consist of a number of independent constraints and a number of
connecting constraints.

4. But for very hard problems, the best algorithmic choice may not be obvious as
delayed column generation.

3.2. Lagrangian Relaxation Approach

In this section, we describe the basic idea of Lagrangian relaxation approach to solve LP,
based upon the observation that many difficult LP problems can be reformulated into a
relatively easier problem in which the complicating constraints are replaced with a
penalty term in the objective function involving the amount of violation of the constraints
and their dual variables.

1. Experience after Marshall L. Fisher[20], it is rare in practice that the Lagrangian
solution will be feasible in the original problem.

2. Lagrangian solution will be nearly feasible and can be made exactly feasible with
some modification.

2.3. Interior-Point Method [6]

In this section, we describe about Interior-point method that moves through the interior of
the region, directly toward the optimal point instead Simplex method gets to the solution
of a linear program by moving from vertex to vertex along edges of the feasible region.

1. This method shows an alternative beyond Simplex method but still it is laborious.

2. As for an LP with m  n system of inequality constraints we have to solve an (m +
2n)  (m + 2n) system of linear equations.

3. For large-scale LP, to initialize the initial feasible solution from a Polytope is arduous
job.

4. No practical way has been found, however, to compute steps based only on the
reduced costs that tend to move through the center of the polyhedron toward the
optimum.

2.4. Improved Decomposition (ID) Algorithm

Due to the delayed column generation for solving large scale LPs by DWD principle, in
2011 Istiaq and Hasan[15] presented an Improved Decomposition (ID) algorithm
depending on DWD principle for solving LPs. This method is composed of three sub
problems (which can be generalized for n sub problems) of an original problem and the
master problem with the help of Lagrangian relaxation. Optimality holds when the value
of the sum of the sub-problem will be equal to the master problem.

V(S1) + V(S2) + V(S3) = V(M) (3.4.1)

Picking up an initial value of the dual variables randomly the sub problem(s) is solved
from which current solution of the sub problem is imported to create the master problem.
Then master problem is solved and tested the optimality condition. If the optimality
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condition does not hold, then the current dual value from the master problem is taken and
imported this to update the sub problem(s) and continue the same process unless it meets
the optimality condition. Following is the numerical Steelco problem[15]. By AMPL
coding the result can be shown by the following table:

Table 1: Result of Stelco Problem

Iteration V(S) V(M) Solution

1 800 0 (0,0,0,0)

2 1080 981.818 (0,10,4,0)

3 1045.45 1000 (0,10,0,0)

4 1040 1040 (0,10,0,4)

The above method is so far the latest one to solve large-scale LPs which is relatively
easier approach to carry on and has the simple algorithm and computational strategy to
find the optimal solution. Although these methods are described to be successful in some
special area but there are no mention about what will be the deportment of these method
when solving an IP as well as a large-scale MIP. Also the optimality condition described
by the equation (3.4.1) does not hold always for IP (the reason has been described in
section 6). So in the next section, we developed a successful and relatively time
consuming method to solve both large-scale LP and MIP.

3. Decomposition-Based Pricing (DBP)

The idea of taking computational advantage of the special structure of a specific problem
to develop an efficient algorithm is not new. Certain structural forms of large-scale
problems reappear frequently in applications, and large-scale systems theory concentrates
on the analysis of these problems. In this section, we first accentuate a real life large-scale
LP and adopt a portion of it to explain the development of DBP technique. Second, we
develop a general computer technique to solve the whole problem. In further later section,
we discuss about the implementation of DBP to solve MIP.

4.1. Our Model of DBP approach to solve general LP

To solve an IP or MIP; the first step is to solve the problem by relaxing the integer
restrictions. So we concentrate on solving the corresponding LP with continuous variable
and then we develop a real life model of DBP approach to solve general LP which is
indicated by Example 1, usually arises in business area of Marin Service (Shipping Line
Business).

Example 1: International Marin Service, a group of company has several business sites.
One of them is Mocca Shipping Line has its business site for bargaining commodities
from home and abroad by maritime course and trading them in local market. The
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company uses their ships to purchases goods from other available companies and then
stores these in their own storehouse. Goods purchased by each ship are independent. Thus
budget for purchasing cost on each ship is also independent. The company has
transportation cost, labour cost and holding cost in storehouse and has maximum budget
behind each cost section. But this budget is made with combination for all goods.
Revenue comes after selling these commodities in local market at a local average fixed
rate. Now the manager has to decide how much of each item should be purchased so that
the revenue gained after business becomes maximized. A flow-chart of the above model
is presented as follows:

Fig. 2: Flow chart of Example 1

Solution by Our Model: The decomposition based technique is applied to break a
problem down into a set of smaller problems by relaxing some constraints and by solving
the smaller problems, obtain a solution to the original problem. To apply it, there are two
major steps: The manager of the company uses a master model to generate amount for
raw commodities. These amounts are passed to the captains of the ships who propose the
amounts to bargain from suppliers for their own ship by using corresponding sub-
problem. Again their proposals are passed to the company manager, who uses the master
model to find the best mix of proposals and new amounts for raw commodities. The
procedure terminates when no new proposals come from captains. Then the optimal value
for both master problem and sub-problem will be identical. Here the Lagrangian
multiplier  has optimal contribution on the sub-problem value. By duality theorem the
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company manager will provide the value of  as a dual variable for the master problem in
each proposal to the ship captain.

4.2. General Formulation of Mixed IP Model Decomposition

In this section, we show the formulation of decomposition based IP or MIP model. A real
life large-scale model can be generally formulated as an LPs with the following block
angular structure:

(P)

Maximize : c1x1 + c2x2 + ... + cnxn

Subject to: A1x
1 + A2x

2 + ... + Anx
n  b (4.3.1)

B1x
1  b1 (4.3.2)

B2x
2  b2 (4.3.3)

... ...

Bnx
n  bl (4.3.4)

xp integer, xp  0 where p + q = n (4.3.5)

Here ci and xi are ni component vectors, Ai is an m  ni matrix, Bi is an l  ni matrix, b is a
column matrix of dimension m, and that di is of li. Constraints (4.1.1) is referred to as
coupling or combinatory constraints and constraints (4.1.2), (4.1.3), (4.1.4), (4.1.5)are
subunit or subordinate constraints. Now comparing this LP model with Example 1 we can
describe as follows:

 Vectors c1, c2, ..., cn denote revenue per unit commodity sell from ship-1, ship-2, ...,
ship-n.

 Matrixes A1, A2, ..., An denote the transportation cost, labour cost, holding cost and so
on per unit commodity to be purchased by ship-1, ship-2,…, ship-n respectively.

 Matrixes B1, B2, ..., Bl denote the cost per unit commodity proposed by available
suppliers respectively.

 Matrix b denotes the maximum budget for transportation, labor and holding cost and
so on.

 Matrixes di denote maximum budget for ship-i.

 Decision variable x1, x2, ..., xn are the amount of commodity to be bargained by ship-
1, ship-2,…, ship-n respectively.

Now applying Lagrangian relaxation to coupling constraints permits a decomposition of
the problem (P) into n independent sub-problems. Consider a vector of nonnegative
Lagrangian multipliers . Then the corresponding sub-problems are defined as:

Maximize: (ci – Ai) xi + Tb

SP() Subject to: Bjx
j  dj, j = 1 ... n (4.1.6)

xp integer, xp  0 were p + q = n
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A choice of  = 0 in  forces us to ignore the coupling constraints in the problem (P). Then
a solution to SP() is an upper bound on the optimal solution to (P) .To find an effective
solution method we developed an effective decomposition-based pricing (DBP) method.

4.3.A New Decomposition-Based Pricing procedure

In the current section, we present our decomposition based pricing procedure. In our
method, we use Lagrangian relaxation to relax the inventory cost constraints (4.1.1)
which forms associated sub-problem where  be the simplex multipliers for the restricted
master associated with the inventory cost constraints (4.1.1). We define the restricted
master as the original problem (P) but restricted to a smaller set of variables Xk. Set Xk is
the set of positive variables in the master at kth iteration. Set Xk increases in size with each
iteration because these iterations of solving the sub-problems add new variables to Xk. By
duality property restricted master provides the updated value of . The value of  has a
special significance on the solution to be optimum, described in Section 4.3. But first we
have to initialize . Heuristic method is applicable here. But for time consumption we like
to propose as follows:

If cj –iaij < 0, the corresponding variable xj cannot enter into Xk although being basic. So
select  such that, Maxj{cj} – iaij < 0. Then the variable xj and all other variables have
the chance to enter into Xk satisfying the simplex criterion. Computationally, we found (as
did Mamer and McBride[16] that the number of variables in Xk at any iteration is less than
the number of variables in the original problem (P). The restricted master problem is
defined by:

Maximize: c1x1 + c2x2 + ... + cnxn

(RM)* subject to: Constraint (4.1.1) to (4.1.5) (4.1.7)

x1, x2, ..., xn  Xk

Here Xk is the index set of all positive variables x1, x2, ..., xn. Finally, Our decomposition
based pricing procedure is summarized as follows:

Step 1 Initialization: Set iteration k = 1. We use three alternative methods to pick an initial
set of prices k

i. Start with 1 > 0. Or,

ii. Start with 1 > 0 as the dual prices from the relaxed constraints of the LP relaxation.
Or,

iii. Start with 1 > 0 such that Maxj{cj} – iaij > 0.

Step 2 Solve the sub-problem SP() for each x1
i, x2

i, ..., xn
i >  0, add the variable to Xk.

Thus, Xk = {x1
i, x2

i, ... xn
i > 0 from SP()k and dual prices k from for any iteration.

Step 3 Solve the restricted master (RM)k and dual prices k.

Step 4 For stopping criterion, we use two alternate method.
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i. Stop when the objective value of sub-problem and restricted master are equal,
(SP()k) = (Mk). Or,

ii. Stop when no new variables come into the restricted master problem.

iii. Else go to step 2.

Step 5 After the LP optimum is found, solve the final restricted master problem.

4.4.Optimality of DBP procedure

The DBP method starts with a sub-problem obtained by unstraining the feasible region of
the original problem and the relaxed sub-problem becomes an upper bound to the master-
problem as well as the original problem. This section will discuss how the upper bound is
reduced and coincided with the optimal solution. Since both the sub-problem and master-
problem are solved maintaining the simplex criteria, it is exactly the optimal value of 
which accomplishes the stopping criteria of the DBP algorithm. Now consider the primal
problem with x  0 and its corresponding dual:

(P)

MAx : CTx

(D)

Min: bTy + dTz

subject to: Ax  b Subject: ATy + BTz  c

Bx  d y, z  0

x  0

Let the corresponding Lagrangian function for any vector , called the Lagrangian
Multiplier; is:

LR() = Max{cx + T (b – Ax) | Bx  d, x  0}

Then the optimal value L* = Min LR() of the Lagrangian dual of (P) coincides with the
optimal value P* of (P). Before embarking upon the proof, we like mention that since b –
Ax is positive, then LR() > P. Hence we have to ascertain an optimal value of  for the
problem LR() to be equal to the optimum value of the problem P. For any convenience,
we choose the first constraint to be relaxed in LR() and the corresponding dual variable
in the dual problem D is y which is called a dual price or shadow price for the primal
problem (P). Let x* be a vector achieving the optimal value p* of the primal problem (P)
and let (y*, z*) be an optimal solution of the dual problem (D). Now by the complimentary
slackness conditions,
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Set  = y*, we have

LR(y*) The corresponding dual problem

Max: cx + (y*)T (b – Ax) Min: dT + bTy*

= (c – (y*)T A)x + (y*)T b Subject to: BTz  cT AT and y*, z*  0

Subject to: Bx  d, x  0

If there is a feasible solution x̂ to LR(y*) and a feasible solution ẑ to the corresponding
dual, we have,

zddzxBzzBxyAcx TTTTTTTTT ˆˆˆˆˆˆ)(ˆ *  and xAyby TT ˆ)()( ** 

Now by Strong Duality theory both x̂ and ẑ are optimal to their respective problem if

and only if *** ˆ)(ˆ))(( ybzdbyxAyc TTTT  and thus the complementary slackness
condition stands

0ˆ)ˆ*(  xczByA TTT (4.1.10)

0)ˆ(ˆ  xBdz (4.1.11)

Since y* is already an optimum then xAyy TT ˆ)()( **  or )ˆ(* xAby  . Since setting *ˆ xx 

and *ˆ zz  satisfies the complementary slackness conditions (4.1.10) and (4.1.11). Hence
x* is an optimal solution to (P). Thus

L* = LR(y*) = Cx* + (y*)T (b – Ax*) = cx* + 0 = cx* = P*.

This completes the proof. It is complimentary that it is only when  deserves the dual
value of the original problem that the sub-problem attains a set Xk of non-trivial variables.
Thus  is called the dual price or the shadow price of the given LP which is main
significance of .

4.5.Numerical Example

In this section, we have tried to implement our new DBP for solving a convenient LP
relevant with our Example 1 containing twelve variables and fourteen restrictions.

Example 2: The objective function is to maximize the company’s total revenue. The first
two constraints indicate the holding and labour cost with maximum budget respectively.
The other three independent sets of constraints bespeak the bargaining conditions
provided by available supplier for three ships commodity respectively

Max z: 38x1 + 78x2 + 72x2 + 100x4 + 8x5 + 73x6 + 52x7 + 29x8 + 24x9 + 55x10 + 40x11 +
56x12

sub to: 2x1 + 9x2 + 7x2 + 20x4 + 7x5 + 10x6 + x7 + 3x8 + 4x10 + 8x11  80

8x1 + 15x2 + 15x2 + 20x4 + 5x5 + 8x6 + 8x7 + 10x8 + 10x10 + 12x11 + 6x12  150
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System A
















63

37899

376366

377332

43

4321

4321

4321

xx

xxxx

xxxx

xxxx

System B
















3503233855

183428

643872

98854

8765

8765

8765

865

xxxx

xxxx

xxxx

xxx

System C
















40057433897

18076386586

2009138286

100100428322

1211109

1211109

1211109

1211109

xxxx

xxxx

xxxx

xxxx

xi  0, i = 1, 2, ..., 12.

Solution: Applying the Lagrange relaxation by relaxing the first two complicated
constraints we obtain the following sub-problem.

Sub-problem(SP):

Max z: 38x1 + 78x2 + 72x3 + 100x4 + 8x5 + 73x6 + 52x7 + 29x8 + 24x9 + 55x10 + 40x11 +
56x12 – 1 (2x1 + 9x2 + 7x3 + 20x4 + 7x5 + 10x6 + x7 + 3x8 + 4x10 + 8x11 – 40) – 2(8x1 +
15x2 + 15x3 + 20x4 + 5x5 + 8x6 + 8x7 + 10x8 + 10x10 + 12x11 + 6x12 – 150)

sub to: System (A), (B), (C) and xi  0

Iteration-1:

It is assumed that 1 = 100, 2 = 100. Solving the sub-problem by AMPL we obtain that
this sub-problem has optimal value of 23050.2, with xi > 0 for i = 9. So we add only
variable x9 to the master.

Master problem (MP):

Max z = 24x9

subject to 22x9  200, 86x9  200 86x9  180, 97x, 97x9  400

Solving by AMPL gives an optimal value of 50.2326 and gives dual prices on the
complicating constraints of 1 = 0 and 2 = 0 these are used as the penalties on the
corresponding relaxed constraints in the next sub-problem. We shall continue this process
until the optimal value of the sub-problem and the optimal value of the master become
equal. The whole process can be shown in the following table.
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Table 1: Result of each iteration for solving Example 2 by DBP procedure

Iteration xi > 0 1 2 (SP) (MP)

1 x9 100 100 23050.2 50.2326

2 x2, x3, x4, x6, x22 0 0 1385.05 729.333

3 x1, x3, x7, x9, x12 7.3 0 1043.54 939.702

4 x1, x3, x7, x9, x12 4.38961 1.32468 939.702 939.702

Whatever the method we choose to initialize , the DBP algorithm converges to the
optimal solution uniformly. At the 4th iteration we find that no new nontrivial variables
come into the restricted master problem:

x1 = 0.521532, x2 = 3.8118, x3 = 2, x4 = 0, x5 = 0, x6 = 2.75271, x7 = 3.12365, x8 = 0,
x9 = 0.27281, x10 = 0, x11 = 0, x12 = 1.93998.

Optimal value = 939.702

4.6. Programming Codes in AMPL

In this section, we develop a computer technique incorporated with (A) MODEL FILE IN
AMPL, (B) DATA FILE IN AMPL and (C) RUN FILE IN AMPL which are not
presented for the page limitation. But, if the referees are interest to observe the reliability
of our developed code then please contact with authors via editor.

5. Comparison

In this section, we give a graphical comparison shows the efficiency of our algorithm with
the latest ID algorithm which has been described to be easy to understand, user friendly
technique, easier approach to carry on and in many cases allow large LPs that had been
previously considered intractable. For Example 2, it hits the optimal value at third
iteration in DBP technique (for any initial approximation of ) whereas in ID technique
that occurs after seventh iteration. The reason we already described before that the DBP
algorithm filters the nontrivial variables at the iterations and in case the number of
variables reduce and the constraints become simpler. Thus it takes less time in DBP
technique comparatively.

Fig. 3: Comparison of number of iterations between new DBP method and ID method
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To illustrate the comparison, the table below shows the sum of the CPU seconds and user
seconds used by the AMPL process itself to get output for various problems solved by ID
discussed before.

Table 2: Time comparison in second between ID method and DBP method

Example ID DBP

Steelco problem [15.] 0.202801 0.0156

Example 1 0.280802 0.04680

Example 4 1.107607 0.12480

Example 2 [15.] 0.078000 0.06240

Example 3 [15.] 0.093601 0.07800

Observing the output table we see that each example takes lesser time by DBP technique
than that of ID technique. The presented comparison shows the efficacy of the DBP
methods for solving LP. And this idea can be extended for any large-scale LP. Total of
system CPU seconds and user seconds have been found of our implementation code, we
use "_ampl_time” command. We use the following computer configuration: Processor:
Intel(R) Core(TM) 2Due CPU E7200 @ 2.53GHz, RAM:1.00 GB, System type: 32-bit
operating system}. Now after solving the LP with continuous variable it is another step
away to solve the same with integer restriction on a few or all variable applying Branch &
Bound, Cutting Plane etc methods. In the next section, we will discourse the
implementation of DBP procedure to solve MIP.

6. New DBP for MIP

The existing methods described in Section 3, have no remark about their behavior in case
of the variables with integer restriction. Actually these methods are used to solve directly
the general LP. But our DBP procedure has different significance since it considers the
example Example 2 where the company does not allow any fractional unit of Rice,
Wheat, Sugar and Pea then the corresponding variables will be integer restricted. During
running DBP procedure, the two main differences between LP and MIP are:

 Associated variables are declared as integer.

 Objective values of sub-problem need not necessarily be equal to that of the restricted
master to reach the optimal value.

To explain the argument, let the area of ABCDE be the feasible region with optimal
solution at C of any original maximization problem which satisfies the complicated
restriction b – Ax = 0. Now if we impose integer restriction on some variables then the
region reduces to ABFDE with optimal solution at F and certainly b – Ax  0.
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Fig. 1: Feasible region of LP and IP for same objective

Thus, (SP(k)) = x  Xk : cx + k (b – Ax)  x  Xk : cx = (Mk)

Let us see the result of the Example 2 declaring the variables x1, x2, x3, x4 as integer. Also
when after certain iteration, the master-problem value reaches the original optimal value
then it repeats. Thus a little change comes in AMPL coding. (Feel free to contact with
author for AMPL coding)

Table 3: Result of Example 2 as Mixed IP

Iteration xi > 0 1 2 (SP) (MP)

1 x4, x6, x11 0 0 134.47 584

2 x1, x3, x7, x9, x12 7.3 0 1619.74 909.871

3 x2, x3, x6, x9, x10, x12 4.94737 0 1327.33 931.545

4 x2, x3, x6, x9, x10, x12 4.94737 1.32468 1327.33 931.545

At the 4th iteration we found that no new nontrivial variables come into the restricted
master problem and objective value of master-problem repeats. Hence the solution of the
MIP is:

x1 = 0, x2 = 4, x3 = 2, x4 = 0, x5 = 0, x6 = 2.63579, x7 = 3.18211, x8 = 0, x9 = 0.40097,
x10 = 0.115001, x11 = 0, x12 = 1.81634. Optimal value = 931.545

7. Conclusion

In this paper, we developed a sophisticated technique for solving large-scale LP problems
and large-Scale Mixed IP. We then introduced a computer oriented technique which
accelerated each computational step.We also presented the comparative effectiveness of
some existing algorithms and highlighted the limitations of the existing methods. Thus
our technique leads to interesting economic interpretations and the method has had an
important influence upon MS. It also has provided a theoretical basis for discussing the
coordination of decentralized organization units for addressing the issue of transfer prices
among the decision makers by position and help in improved decision making and
reduces the risk of making erroneous decisions.
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