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ABSTRACT

This article defines k-endomorphism and anti-k-endomorphism on I'y-rings, and uses
the concept of k-derivation of I'y-rings. Considering M as a semiprime I'y-ring and d
as a k-derivation of M, it aims to prove that (i) if d acts as a k-endomorphism on M
such that MI'M=M and xk(a)x=0 for all xe M and a T, then d=0; and (ii) if d is
acting as an anti-k-endomorphism on M such that MI'M=M, xk(o)x=0 and
k(o)xa=axk(a) for all xe M and a e T, then d=0.
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1. Introduction

First, we excerpt the definition of a I'-ring introduced by W. E. Barnes [3] which is the
generalized form of the original definition given by N. Nobusawa [7].

Definition 1.1 Let M and T" be additive abelian groups. If there exists a mapping
(a,a,b) > aab of M xI'x M — M such that

(@) (a+b)ac=aac+bac, a(a+p)b=acb+apb, aa(b+c)=aab+aac,

and (b) (aab)fc =aa(bpc)
are satisfied for all a,b,ce M and o,B €T, then M is called a I'-ring.

From definition it is obvious that every ring is a I'-ring, but the converse is in general not
true. For instance, we have

Example 1.1 Suppose R is a ring with identity 1 and M, ,(R) is the set of all mxn
matrices over R. Then M is a I'-ring under the usual addition and multiplication of
matrices if we choose M =M, ((R) and I' = M, (R) .

Now we quote below the introductory definition of gamma ring given by its inventor N.
Nobusawa [7] that has been producing an innovative new dimension to generalize the
theory of classical rings remarkably.
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Definition 1.2 Let M be a TI'-ring. Additionally, if there exists another mapping
(o,a,B) > aap of 'xM xI' - T such that

(@) (a+P)ay=o0ay+Pay, a(a+b)p=caap+abp, ca+vy)=aap+aay,

(b*) (aab)pc =a(abp)c =aca(bpc), and

(c*) aocb =0 implies a. =0
hold for all a,b,ceM and o,B,yeI", then Mis called a Ty -ring.

Example 1.2 Let Dy, be the set of all rectangular mxn matrices over a division ring
D. If we consider M =Dp,, and I' = D, o, , then M is a Ty -ring under the usual addition
and multiplication of matrices.

Evidently, since the Nobusawa condition (c*) does not hold in a I'-ring necessarily, we
get the following result.

Remark 1.1 M is a I-ring does not imply in general that I' is an M -ring, but Mis a Ty -
ring forces I to be an M -ring.

Considering M as a I'-ring, we recall some useful fundamental preliminary definitions in
gamma ring theory as follows.

(i) An additive subgroup U of M is called a left (or, right) ideal of M if and only if
MI'U cU (or, UI'M cU ), whereas U is called a (two-sided) ideal of M if and only if U
is a left as well as a right ideal of M. (ii) M is said to be commutative if and only if
xyy = yyx holds for all x,yeM and yeI . (iii) M is called semiprime if and only if

al’'MI'a=0 implies a=0 for all ae M . (iv) The set C, ={ceM :cam=mac for all
me M} is said to be the a-center of M, where o eT" is an arbitrary but fixed element.
(v) The set Crr ={ceM :cam=moc for all aeT and me M} is called the center of
M, whence it follows that M is commutative if and only if C- =M . (vi) If a,be M and
aeT, then [ab], is called the commutator of a and b with respect to a, which is
defined as [a,b], =aab —baa (whence it also follows that M is commutative if and only
if [a,b], =0 forall a,beM and ael).

The following is the definition of k-derivation of T’y -rings introduced by H. Kandamar in
[6] that plays a pivotal role in this article.

Definition 1.3 Let M be a I'y-ring, and let d:M —M and k:T'—>T be additive
mappings. Then d is called a k-derivation of M if and only if d(aab) =d(a)ab +ak(a)b
+aad(b) holdsforall a,beM and a eI .

Note that the notions of k-isomorphism and anti-k-isomorphism of Ty -rings are

explained in our paper [5]. Based on the nature of endomorphism of rings, we now
develop the concepts of k-endomorphism and anti-k-endomorphism of Ty -rings

significantly in the following way.
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Definition 1.4 Let M and N be T -rings, and let :M — N and k:T'—T be additive
surjective mappings. Then ¢ is called (i) a k-homomorphism of M onto N if and only if
o(aab) =p(a)k(a)e(b) is satisfied for all a,beM and a el ; and (ii) an anti-k-
homomorphism of M onto N if and only if ¢(aab)=¢(b)k(a)p(a) holds for all a,be M
and ael.

Definition 1.5 Suppose M and N are I'y -rings. Then (i) a k-homomorphism ¢:M — N

is called a k-endomorphism on M if and only if N=M; and (ii) an anti-k-
homomorphism ¢:M — N is called an anti-k-endomorphism on M if and only if

N=M.
To be more specific, we conclude that

Remark 1.2 A k-endomorphism (respectively, an anti-k-endomorphism) on a 'y -ring M
is a k-homomorphism (respectively, an anti-k-homomorphism) of M onto itself.

In classical ring theory, H. E. Bell and L. C. Kappe [4] proved that if d is a derivation of a
semiprime ring R which is either an endomorphism or an anti-endomorphism on R, then
d =0; whereas, the behavior of d is somewhat restricted in case of prime rings in the
way that if d is a derivation of a prime ring R acting as a homomorphism or an anti-
homomorphism on a nonzero right ideal U of R, then d =0 onR.

Afterwards, M. S. Yenigiil and N. Argag, [9] generalized these results with a-derivations
and M. Ashraf et. al. [2] obtained the similar results with (o, 7)-derivations. Analogously,
N. Rehman [8] extended the result for generalized derivations acting on nonzero ideals in
case of prime rings. Recently, A. Ali and D. Kumar [1] established the aforementioned
result for generalized (0, @ )-derivations in prime rings.

Here, we extend the above mentioned results following [1, 2, 4, 8, 9] in classical ring
theory to those in gamma ring theory with k-derivation acting as a k-endomorphism or an
anti-k-endomorphism on semiprime T'y -rings. Our objective is to prove that (i) if d is a

k-derivation of a semiprime T"y -ring M which acts as a k-endomorphism on M such that
MI'M =M and xk(a)x=0 hold for all xeM and a.eI", then d =0; and (ii) if d is a
k-derivation of a semiprime T'y -ring M acting as an anti-k-endomorphism on M such that
MI'M =M, xk(a)x=0 and k(a)xo =axk(a) hold for all xeM and ael’, then
d =0. In doing so, we go forward as follows.

2. k-derivation acting as a k-endomorphism

Definition 2.1 Let M be a 'y -ring and k:T" — " an additive surjective mapping. Then a
k-derivation d:M — M is said to act as a k-homomorphism on M (meaning that d is
acting as a k-homomorphism of M onto itself) if and only if it satisfies d(aab) =d(a)ob
+ak(a)b +acd(b) =d(a)k(a)d(b) holds forall a,beM and a eI .

Lemma 2.1 Let U be a subring of a 'y, -ring M, and let d be a k-derivation of M acting
as a k-homomorphism on U such that xk(a)x =0 for every xeU and a eI". Then, for
all x,yeU and o,Bel:
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(@) d(x)B(xay —xk(a)d(y))=0;(b) (xay —d(x)k(a)y)Bd(y)=0.
Proof. (a) Since d acts as a k-homomorphism on U, for all x,yeU and a,Bel’, we
have

d(xary) = d(x)ay + xk(a)y + xad(y) = d(x)k(a)d(y) 1)
Putting xpx for x in (1), we get
d(xpx)ay + xBxk(a)y + xBxad (y) = d (xBx)k (a)d(y) ;
= d(x)Bxay + xk(B)xay + xBd (X)oy + XBxk(a)y + xBxad (y)
=d(x)Bxk(a)d(y) + xk(B)xk(a)d (y) + xBd (x)k (a)d (y) ;
= d(X)Bxay + xB(d (X)ay + xk(a) y + xad (y))
=d(x)Bxk (a)d (y) + xB(d (x)k(c)d(y)) ;
= d(x)Bxay + xpd (xay) = d (X)Bxk (a)d (y) + xBd (xay) ;
= d(x)Bxay =d(x)Bxk(a)d(y);
= d(x)B(xay — xk(a)d(y))=0.
(b) Replace y by yBy in (1) to get
d (x)oryBy + xk (o) yBy + xad (yBy) = d (x)k(c)d (YBy)
= d(x)ayBy + xk(a)yBy + xad (y)By + xayk(B)y + xaypd(y)
=d()k(a)d(y)By +d()k(a) yk(B)y +d (x)k(c) yBd(y);
= (d(ay + xk(a)y + xad(y))By + xaypd(y)
= (d()k(c)d(y)By +d(x)k(a) ypd(y);
= d(xay)By + xayBd(y) = d(xay)By +d (x)k(a) yBd(y) ;
= xaypd(y) =d(x)k(a)ypd(y);
= (xay —d(x)k(a)y)Bd(y)=0.

Lemma 2.2 Let M be a semiprime Ty -ring, and let d be a k-derivation of M such that
the associated mapping k:I'—>T is onto (= surjective), and MI'M =M . If (a)

Xk(a)x=0, (b) d(x)k(c)d(x)=0 and (c) d(x)ax=0 hold for every xeM and a eI,
then d =0.
Proof. Linearizing (b) on x, we get (for all X,yeM and a.eI'):
d(x+ y)k(a)d(x+y)=0;
= d(x)k(a)d(x) +d(x)k(a)d(y) + d(y)k(a)d (x) + d(y)k(a)d(y) =0;
= d(x)k(a)d(y)+d(y)k(a)d(x)=0. @
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And, linearizing (c) on x, we have (for all x,yeM and aeI'):
d(x+ y)a(x+y)=0;
= d(X)ox+d(X)ay +d(y)ax +d(y)ay=0;
= d(X)ay +d(y)ax=0;
= d(X)ay =-d(y)ox. (3)

Let meM and Bel. By putting mpx for y in (2), and then using equation (3) and the
hypothesis (b) there, we obtain

d(x)k(a)d(mBx) +d(mpx)k(o)d(x)=0;
= d(x)k(a)d(m)Bx + d(x)k(a)mk(B)x + d (x)k(c)mpd (x)
+d(m)Bxk(a)d(x) + mk(B)xk(c)d (x) + mpd (x)k(a)d(x)=0;
= —d(x)k(o)d(x)Bm + d (x)k (c)mk (B)x + d (x)k (cr)mBd (X)
—d(x)Bmk(o)d (x) + mk(B)xk (a)d(x) =0;
= d(X)k(a)mk(B)x +d (x)k(c)mpd(x)
—d(x)Bmk(o)d (x) + mk(B)xk (a)d(x) =0.
Again, let 5§ eT". Then we replace xox for m to get
d (X)k () xXk(B)x +d (X)k (a)xoxBd (x)
—d(x) Bxoxk (a)d (x) + xoxk (B)xk()d (x) =0.

Hence, by hypothesis, d(x)k(c)xoxpd(x)=0. Since we assumed that k:I" — I" is onto,
it produces d(x)TMI'MI'd(x) =0. But, since MI'M =M , this yields d(x)I'MI'd(x)=0.
Therefore, by the semiprimeness of M, it gives d(x) =0 for all xe M , and we are done.

Theorem 2.1 Let M be a semiprime Ty -ring. If d is a k-derivation of M acting as a k-
endomorphism on M such that MI'M =M and xk(a)x=0 hold for all xeM and
ael,thend=0.

Proof. First, suppose d is a k-endomorphism on M. Applying Lemma 2.1(a) with U =M ,
it gives d(x)B(xay — xk(a)d(y))=0 forall x,yeM and o,Bel.

Putting y by yom (for arbitrary me M and 6 €T), this yields
d (x) B(xarydm — xk (ar)d (ysm)) =0
= d(x)B(xayom —xk(a)d (y)om—xk(a)yk(6)m—xk(a) ysd (m)) =0;
= d(x)B(xay — xk(ar)d(y))sm
—d(x) Bxk () yk(8)m —d (x) Sxk () ysd (m) =0 ;
= —d(x)Bxk(a)yk(6)m—d(x)fxk(a)ysd (m) =0
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= d(x)pxk(a)(yk(d)m+ysd(m))=0.
Let ueT and replace mum for m in the last equation to get
d (x)Bxk (o) (yk (8)mum + ydd (mum)) =0;
= d(xX)Bxk(o)(yk(d)mum + ydd (m)um + ydmk (u)m+ ydmud (m)) =0 ;
= d(X)Bxk(o)(yk(d)m+ ydd (m))um+d (X)Bxk(a) ydmud(m) =0;
= d(x)Bxk(o)ydmud(m)=0.
Therefore, it follows that d(x)Bxk(a)ydMud (M) =0.
In particular, we have d(x)Bxk (o) ydMud(x)=0.
This implies, d(x)Bxk(o)ydMud (x)Bx=0.
By definition, since k:T" — T is onto, (d(X)Bx)IMI'MI(d(x)Bx)=0.
Since MI'M =M , it gives (d(x)Bx)I'MI"(d (x)Bx)=0.
Hence, by the semiprimeness of M, we obtain (for all xe M and Bel")
d(x)Bx=0. (4)
Now, by taking Lemma 2.1(b) in the similar way, we have
(xay —d(x)k(c)y)Bd(y)=0 forall x,yeM and a,fel.
Putting méx for x (for arbitrary me M and 6eT'), it gives
(mdxay —d(mdx)k(a)y)Bd(y) =0;
= (mdxoy —d(m)dxk (o) y —mk(8)xk (o) y —mad (x)k (o) y)Bd (y)=0;
= md(xay —d(x)k(a)y)Bd(y)
—d(m)dxk (o) yBd (y) —mk(8)xk (a) yBd(y) =0;
= —d(m)dxk(o) yBd(y) —mk(8)xk(a)ypd(y) =0;
= (d(m)ox+ mk(3)x)k(a)ypd(y) =0.
Then by replacing mum for m (where neI'), we get
(d (mpm)dx + mumk () x)k (o) yBd(y) =0;
= (d(m)umadx + mk ()max + mud (m)ox + mumk (8)X)k (o) ypd(y) =0;
= d(m)umdxk (o) ypd(y)+ mu(d(m)dx + mk(8)x)k (o) ypd(y)=0;
= d(m)umdxk(a)ypd(y)=0.
Hence, this yields d (M )uMaxk (o) ypd(y)=0.
In particular, we have d(y)uMoxk(o)ypd(y)=0.
Then we get ypd (y)uMadxk(a)ypd(y)=0.
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Thus, we have ypd(y)ITMI'MI'yBd(y)=0 (since k:I" — T is onto here).
But, since MI'M =M , it gives (ypd(y))I'MI'(ypd(y))=0.
So, by the semiprimeness of M, we obtain (for all yeM and Bel’)
ypd(y)=0. ©)
Finally, we have d(xay)=d(X)ay +Xxk(a)y + xad(y) .
Putting y =x here, we get d(xax) = d(x)ax + xk(o) X + Xad (X) .
Hence, by using (4), (5) and (a), we obtain d(xax)=0; thatis, forall xeM and aeT,
we get
d(x)k(o)d(x)=0. (6)

Thus, all the conditions in the hypothesis of Lemma 2.2 are satisfied, and therefore, we
obtain d =0. The proof is thus completed.

3. k-derivation acting as an anti-k-endomorphism

Definition 3.1 Let M be a 'y -ring, and let k:T" — T" be an additive surjective mapping.

Then a k-derivation d:M — M is said to be acting as an anti-k-homomorphism on M
(which means, d acts as an anti-k-homomorphism of M onto M) if and only if d(acb)

=d(@)ab +ak(a)b +aad(b) =d(b)k(a)d(a) holds forall a,beM and a eI .

Lemma 3.1 Let | be a right ideal of a 'y -ring M , and let d be a k-derivation of M
acting as an anti-k-homomorphism on | such that xk(a)x=0 for every xel and ael .
Then, forall x,yel, meM and ael:

d(x)axk (o) yk(o)[m, d (X)]k (o) =0 -

Proof. Since d acts as an anti-k-homomorphism on |, therefore, for all x,y<l and
o,Bel’, we have

d(xay) =d(X)ay + xk (o) y + xaud (y) =d (y)k(a)d (X) . (7)

Let ze M sothat xaz el (since | is a right ideal of M). Then, by putting xaz fory in
(7), we get

d(x)axaz + Xk (a)xaz + xod (Xaz) = d (xaz)k (a)d (X) ;
= d(x)axaz + xad(z)k(o)d (x) = d (x)azk (a)d (x)
= +Xxk(a)zk(a)d (x) + xad (z)k(c)d (X) ;
= d(x)oxaz =d(x)ozk(o)d (x) + xk (o) zk (o)d () . (8)
Next, replacing z by xk(a)y in (8), we obtain
d (x)oxaxk (o) y = d (x)oxk (o) yk (o) d (x) + xk (o) xk (o) yk (@) d (X) ;
= d(x)oxaxk(o)y =d(x)oxk (o) yk(o)d (X) . 9)
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Again, let me M for which yk(o)mel, since | is a right ideal of M. Then, by putting
yk(a)m fory in (9), we get

d (x)axaxk (o) yk (a)m = d (x)oxk (o) yk (o) mk (o)d (X) . (10)
Now, from (9), we have
d (x)oxaxk (o) yk (o)m = d (x)oxk (o) yk (o )d (X)k (o)m . (11)

Comparing (10) and (11), for all x,yel, meM and o eI", we get
d (x)axk (o) yk (a)mk (o) d (x) = d (x)oxk (o) yk (or)d (x)k (o) m;
= d(x)axk(a) yk(a)(mk(a)d (x) —d (x)k (cc)m) =0;
= d(x)axk(a) yk(e)[m,d(X)]k() =0-

Theorem 3.1 Let M be a semiprime Ty -ring. If d is a k-derivation of M acting as an
anti-k-endomorphism on M such that MM =M , xk(a)x=0 and k(a)xo =oaxk(c)
hold for all xeM and aeT", then d =0.

Proof. According to the hypothesis, by taking | =M in Lemma 3.1, for all x,y,meM
and a I", we have

d (x)axk (c) yk (o)[m, d (X)]k () =0 (12)
Replacing y by mk(a)y in (12), we get
d (x)axk (c)mk (a) yk ()[m, d (X)]k () =0 - (13)
Now, linearizing xk(a)x =0 on x, we have
(x+y)k(a)(x+y)=0;
= xk(a)x+xk(a)y + yk(a)x+ yk(a)y =0;
= xk(a)y+ yk(a)x=0;
= xk(a)y=-yk(a)X . (14)
Then, by using the hypothesis along with (12), (13) and (14), we get
[m, d ()] (o) ok () yk (@)[m, d (X)]k (o) »
= (mk(a)d(x) —d (x)k (oc)m)ouxk (o) yk (a)[m, d (X)]k (o) ;
= mk (a)d (x)oxk (o) yk (a)[m, d (X)]k (a)
—d(x)k(o)maxk (o) yk (a)[m, d (X)]k (a) ;
= mk (a)(d (x)ouxk (o) yk (a)[m, d (X)]k (o))
—d(x)amk (o) xk (o) yk (a)[m, d (X)]k (ay »
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=0+d(x)axk(o)mk(a)yk(a)[m,d (x)]k(a) =0.
Here, since k:I" — I is to be considered as onto, this yields
[m, d ()] () TMIMIm, d (X)]k () =0

As MI'M =M , it gives [m,d (X)]x(a) TMIIM, d(X)]k(o) =0 . But, since M is semiprime,
we get [m,d(X)]k(,) =0 forall xmeM and a eI". Hence, it follows that mk(c)d(x)
=d(x)k(a)m, and therefore, d(x)eCy(y) for all xeM and ael'. So, we obtain
d(x)eCr (since k:I" > T is onto).

Hence, we get d(xay)=d(y)k(c)d(x)=d(x)k(o)d(y) for all x,yeM and a eI . So,
by definition, d is then a k-endomorphism on M. Therefore, by Theorem 2.1, it follows
that d =0 . This completes the proof.
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