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ABSTRACT 

Let M be a prime -ring satisfying a certain assumption abc = abc for all a, b, 
cM and , , and let I be an ideal of M. Assume that (D, d) is a generalized 
derivation of M and aM. If D([x, a]) = 0 or [D(x), a] = 0 for all xI, , then 
we prove that d(x) = p[x, a] for all xI, ,  or aZ(M) (the centre of M), 
where p belongs C(M) (the extended centroid of M). 
Mathematics Subject Classification: 16N60, 16W25. 
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1. Introduction 
The notion of a -ring was first introduced by Nobusawa [9]. Barnes [5] weakened 
slightly the conditions in the definition of -ring in the sense of Nabosawa [9]. Ceven and 
Ozturk [6] studied on Jordan generalized derivations in -rings and they proved that 
every Jordan generalized derivation on some -rings is a generalized derivation and an 
example of a generalized derivation and  a Jordan generalized derivation for -rings are 
given. Hvala [8] first introduced the generalized derivations in rings and obtained some 
remarkable results in classical rings. Generalized derivations of semiprime rings has been 
worked by Ali and Chaudhry [1]. They proved that d(x)[y, z] = 0 for all x, y, zR and the 
associate derivation d is central. They characterized a decomposition of R relative to the 
generalized derivations.  Atteya [4] obtained some results on generalized derivations of 
semiprime rings. He proved that the ring R contains a nonzero central ideal. Rehman [12] 
studied on generalized derivations acting as homomorphisms and anti-homomorphisms. 
He investigated the commutativity of R by means if generalized derivations acting as 
homomorphisms and anti-homomorphisms.  Aydin [3] studied on generalized derivations 
of prime rings. Assuming F([x, a]) = 0 or [F(x), a] = 0 for all xI, he proved that d(x) = 
[x, a] for all xI or aZ, (F, d) is a generalized derivation of R, I is an ideal of R, aR 
and C(R) (the extended centroid of R). 
In this paper, we obtain the analogous results of Aydin [3] in -rings. If M is a prime -
ring satisfying a certain assumption (*) abc = abc for all a, b, cM and , , and 
I is an ideal of M, then we prove that d(x) = p[x, a] for all xI, ,  or aZ(M) (the 
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centre of M), pC(M) (the extended centroid of M) by assuming that D([x, a]) = 0 or 
[D(x), a] = 0 for all xI, , where aM. 

2. Preliminaries  
Let M and  be additive abelian groups. M is called a -ring if for all a, b, cM, , , 
the following conditions are satisfied:  

(i) abM,  
(ii) (a + b)c = ac + bc,  a( + )b = ab + ab,   

a(b + c) = ab + ac,  
(iii) (ab)c = a(bc). 

This definition of a -ring is given by Barnes [5]. We represent Z(M) as the centre of a -
ring M. Let M be a -ring. A subring I of M is an additive subgroup which is also a -
ring. A right ideal of M is a subring I such that IM  I. Similarly a left ideal can be 
defined. If I is both a right and a left ideal then we say that I is an ideal. 
The commutator xy − yx will be denoted by [x, y]. We know that [xy, z] = [x, z]y 
+ x[y, z] + x[, ]Zy  
and [x, yz] = y[x, z] + [x, y]z + y[, ]xz, for all x, y, zM and , . 
We take an assumption (*) xyz = xyz for all x, y, zM and , . Using the 
assumption the basic commutator identities reduce to  
[xy, z] = [x, z]y + x[y, z]  
            and [x, yz] = y[x, z] + [x, y]z, for all x, y, zM and , . 
Recall that a ring M is semiprime if aMa = 0 implies a = 0 and is prime if aMb = 0 
implies a = 0 or b = 0. An additive mapping d : M → M is called a derivation on M if 
d(xy) = d(x)y + xd(y) for all x, yM, . An additive mapping f : M → M is called 
commuting if [f(x), x] = 0 for all xM, . It is called central if f(x)Z(M) for all 
xM. Let aM, then the mapping d : M → M given by d(x) = [a, x] is a derivation on M. 
It is called inner derivation on M. 
An additive mapping D of M into itself is called a generalized derivation of M, with 
associated derivation d, if there is a derivation d of M such that D(xy) = D(x)y + 
xd(y) for all x, yM, . Obviously this notion covers the notion of a derivation (in 
case D = d) and a left centralizer (in case d = 0). An additive mapping D : M → M  is 
called a left centralizer if D(xy) = D(x)y for all x, yM, . 
We refer to [10, 11] for the definitions of the centroid and of the extended centroid of -
rings. 

3. Generalized Derivations of Prime -rings   
In this section, we prove our main results. Before proving our results, we need the 
following three lemmas which are given below. 
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Lemma 3.1. Let d be a derivation of a prime -ring M and a be an element of M. If 
ad(x) = 0 for all xM then either a = 0 or d = 0. 
 Proof. Let aM, and , then ad(x) = 0. Replacing xy for x, (yM, ) we get 
ad(xy) = ad(x)y + axd(y) = axd(y) = 0. By the primeness of M, we obtain 
either a = 0 or d = 0. 
Lemma 3.2 Let M be a -ring satisfying the condition (*), I be an ideal of M and (D, d) 
be a generalized derivation of M and aM. If aZ(M) and  
[D(x), a] = 0 for all xI, , then D([x, a]) = 0 for all xI, . 
Proof. We replace x by xr, rM, , in the defining equation 
[D(x), a] = 0 for all xI,               (1) 
and hence we obtain,  

0 = [D(xr), a] = [D(x)r + xd(r), a] 

= [D(x)r, a] + [xd(r), a]. 

By using the condition (*) we obtain  
[D(x)r, a] + [xd(r), a]. 

= D(x)[r, a] + [D(x), a]r + x[d(r), a] + [x, a]d(r) 
for all xI, rM, , , which implies that 
D(x)[r, a] + x[d(r), a] + [x, a]d(r) = 0 for all xI, rM, ,     (2) 
 In (2), replacing x by xy, (yI, ) and using (2), we obtain 
0 = D(xy)[r, a] + xy[d(r), a] + x[y, a]d(r) + [x, a]yd(r) 
= D(x)y[r, a] + xd(y)[r, a] + xy[d(r), a] + x[y, a]d(r)  

+ [x, a]yd(r) 
= D(x)y[r, a]+ xd(y)[r, a] + x(y[d(r), a] + [y, a]d(r))  

+ [x, a]yd(r) 
= D(x)y[r, a] + xd(y)[r, a] − xD(y)[r, a] + [x, a]yd(r) 
= (D(x)y + xd(y) − xD(y))[r, a] + [x, a]yd(r) 
so we get 
(D(x)y + xd(y) − xD(y))[r, a] + [x, a]yd(r) = 0, 
for all x, yI, rM, , , .     (3) 
Replace r by a in (3), we have [x, a]yd(a) = 0, x, yI, , , . 
Since aZ(M) and the primeness of I, yields d(a) = 0  
If we substitute sx, (sM, ), for x in (3), then we get 
0 = (D(sx)y + sxd(y) − sxD(y))[r, a] + [sx, a]yd(r) 

= ((D(s)x + sd(x))y + sxd(y) − sxD(y))[r, a]  
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       + s[x, a]yd(r) + [s, a]xyd(r) 
= (D(s)xy + sd(x)y + sxd(y) − sxD(y))[r, a]  
         + s[x, a]yd(r) + [s, a]xyd(r) 
= D(s)xy[r, a] + sd(x)y[r, a] + sxd(y)[r, a]  

                    − sxD(y)[r, a] + s[x, a]yd(r) +  [s, a]xyd(r) 
= (D(s)xy + sd(x)y)[r, a] + s((xd(y) − xD(y))[r, a]  

                      + [x, a]yd(r)) + [s, a]xyd(r) 
= (D(s)xy + sd(x)y)[r, a] + s(−D(x)y[r, a]) + [s, a]xyd(r) 
= (D(s)xy + sd(x)y − sD(x)y)[r, a] + [s, a]xyd(r) 
and so  
(D(s)x + sd(x) − sD(x))y[r, a] + [s, a]xyd(r) = 0,  
for all x, yI, r, sM, , , , .    (4) 
In (4) replacing s by a, 
(D(a)x + ad(x) − aD(x))y[r, a] = 0,  
for all x, yI, rM, , , .                (5) 
Using aZ(M) and the primeness of I, we obtain  

D(a)x + ad(x) − aD(x) = 0. 
Then we have  
D(ax) = aD(x), for all xI, ,                (6) 
On the other hand, since d(a) = 0, we see that the relation 

D(xa) = D(x)a + xd(a) = D(x)a 
is reduced to D(xa) = D(x)a, for all xI, .   
 D(xa) = D(x)a, for all xI, .                  (7) 
Combining (6) and (7), we arrive at 
D([x, a]) = D(xa) − D(ax) = D(x)a − aD(x) = [D(x), a] for all xI, . 
By using the hypothesis, we have  

D([x, a]) = [D(x), a] = 0, for all xI, . 
This completes the proof. 
Lemma 3.3 Let M be a prime - ring satisfying the condition (*), I be an ideal of M, (D, 
d) be a generalized derivation of M and aM. If aZ(M) and D([x, a]) = 0 for all xI, 
, then [D(x), a] = 0 for all xI, . 
Proof. We replace x by xa () in the defining equation D([x, a]) = 0 to obtain 0 = 
D([xa, a]) = D([x, a]a) = D([x, a])a + [x, a]d(a) 
and so  
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[x, a]d(a) = 0, for all xI, , .         (8) 
Taking xy, yI, , instead of x in (8),  
0 = [xy, a]d(a) = x[y, a]d(a) + [x, a]yd(a) 
and using (8) we obtain  
[x, a]yd(a) = 0, for all xI, , , ,    (9) 
By the primeness of I and aZ(M), (9) implies that d(a) = 0. 
Now we replace x by xy, (yI, ) in the defining equation  
D([x, a]) = 0 to obtain 
0 = D([xy, a]) = D(x[y, a] + [x, a]y) 

= D([x, a]y) + D(x[y, a]) 
= D([x, a])y + [x, a]d(y) + D(x)[y, a] + xd([y, a]) 
= [x, a]d(y) + D(x)[y, a] + x([d(y), a] + [y, d(a)]) 

Since d(a) = 0, we have 
D(x)[y, a] + [x, a]d(y) + x[d(y), a] = 0, 
for all x, yI, , ,                        (10) 
Substitute yz, (zI, ), instead of y in  equation (10) and use  the equation (10), we 
obtain, 

0 = D(x)[yz, a] + [x, a]d(yz) + x[d(yz), a] 

    = D(x)y[z, a] + D(x)[y, a]z + [x, a]d(y)z  
      + [x, a]yd(z) + x[d(y)z, a] + x[yd(z), a] 

   = D(x)y[z, a] + (D(x)[y, a] + [x, a]d(y))z + [x, a]yd(z) 
     + xd(y)[z, a] + x[d(y), a]z + xy[d(z), a] + x[y, a]d(z) 
    = D(x)y[z, a] + (D(x)[y, a] + [x, a]d(y) + x[d(y), a])z  
       + [x, a]yd(z) + xd(y)[z, a] + xy[d(z), a] + x[y, a]d(z) 

= D(x)y[z, a] + [x, a]yd(z) + xd(y)[z, a] + xy[d(z), a]  
    + x[y, a]d(z) 

= (D(x)y + xd(y))[z, a] + [x, a]yd(z)  
      + x(y[d(z), a] + [y, a]d(z)) 

= (D(x)y + xd(y))[z, a] + [x, a]yd(z) − xD(y)[z, a] 

and so 
(D(x)y + xd(y) − xD(y))[z, a] + [x, a]yd(z) = 0,  

for all x, y, zI, , , ,    (11) 
Replace x by ax, () in equation (11), we obtain, 
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0 = (D(ax)y + axd(y) − axD(y))[z, a] + a[x, a]yd(z) 
= D(ax)y[z, a] + a(xd(y)[z, a] − xD(y)[z, a] + [x, a]yd(z)) 
= D(ax)y[z, a] − aD(x)y[z, a] 

Hence we get  
(D(ax) − aD(x))y[z, a] = 0, for all x, y, zI, , , .        (12) 
Since aZ(M) and the primeness of M, we have 
D(ax) = aD(x), for all xI, .          (13) 
On the other hand, since d(a) = 0,  
D(xa) = D(x)a + xd(a) = D(x)a      (14) 
Combining (13) and (14) we arrive at  

[D(x), a] = D(x)a − aD(x) 
= D(xa) − D(ax) = D([x, a]) = 0 

and so  
[D(x), a] = 0, for all xM, . 

Thus the proof is complete. 
Theorem 3.4 Let M be a - prime ring satisfying the condition (*), I be an ideal of M, 
(D, d) a generalized derivation of D and aM. If aZ(M) and D([x, a]) = 0 or [D(x), a] 
= 0 for all xI, ,  then d(x) = p[x, a], where pC(M), the extended centroid of M,  
for all xI, , . 
Proof. Since aZ(M) and [D(x), a] = 0 for all xI, , then by Lemma 2.2 we have 
D([x, a]) = 0 and d(a) = 0 
By the proof of the Lemma 2.2, we have the equation (3), in the equation (3), replace y by 
[a, y] then we get 
0 = (D(x)[a, y] + xd([a, y]) − xD([a, y]))[r, a] + [x, a][a, y]d(r) 
   = (D(x)[a, y] + x[a, d(y)][r, a] + [x, a][a, y]d(r) 
   = −(D(x)[y, a] + x[d(y), a])[r, a] + [x, a][a, y]d(r) 
In the above equation, using the equation (10) 

[a, x]d(y) = D(x)[y, a] + x[d(y), a]  
in the proof of the Lemma 2.2, we obtain 

[a, x](d(y)[r, a] − [y, a]d(r)) = 0 
Define h : M → M by h(x) = [a, x], then the above equation yields  
h(x)(d(y)[r, a] − [y, a]d(r)) = 0. Since aZ(M), by Lemma 2.2, we get  
d(y)[r, a] = [y, a]d(r), for all yI, rM, , , .   (15) 
Replace r by rs, (sM, ),  in (15) and use (15), we obtain 
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d(y)r[s, a] = [y, a]rd(s), for all r, sM, yI, , , ,    (16) 
Substitute yz, (zM, ) instead of y in (16) and use (16) it gives us 
d(z)r[s, a] = [z, a]rd(s) for all r, s, zM, , , ,          (17) 
Now, define g : M → M by g(x) = [x, a], then from (17) we have 
d(z)rg(s) = g(z)rd(s), for all r, s, zM, , . 
Since g ≠ 0, we get, for some pC(M), d(x) = p[x, a], for all xI, , . Thus, the 
proof is complete. 
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