GENERALIZED DERIVATIONS OF PRIME GAMMA RINGS

¹Kalyan Kumar Dey, and ²Akhil Chandra Paul

^{1, 2}Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh ¹kkdmath@yahoo.com, ²acpaulrubd_math@yahoo.com

Received 28.08.12 Accepted 31.07.13

ABSTRACT

Let *M* be a prime Γ -ring satisfying a certain assumption $a\alpha b\beta c = a\beta b\alpha c$ for all *a*, *b*, $c \in M$ and α , $\beta \in \Gamma$, and let *I* be an ideal of *M*. Assume that (D, d) is a generalized derivation of *M* and $a \in M$. If $D([x, a]_{\alpha}) = 0$ or $[D(x), a]_{\alpha} = 0$ for all $x \in I$, $\alpha \in \Gamma$, then we prove that $d(x) = p\beta[x, a]_{\alpha}$ for all $x \in I$, α , $\beta \in \Gamma$ or $a \in Z(M)$ (the centre of *M*), where *p* belongs C(M) (the extended centroid of *M*).

Mathematics Subject Classification: 16N60, 16W25.

Keywords: Prime Γ -ring, derivation, generalized derivation, commuting mapping.

1. Introduction

The notion of a Γ -ring was first introduced by Nobusawa [9]. Barnes [5] weakened slightly the conditions in the definition of Γ -ring in the sense of Nabosawa [9]. Ceven and Ozturk [6] studied on Jordan generalized derivations in Γ -rings and they proved that every Jordan generalized derivation on some Γ -rings is a generalized derivation and an example of a generalized derivation and a Jordan generalized derivation for Γ -rings are given. Hvala [8] first introduced the generalized derivations in rings and obtained some remarkable results in classical rings. Generalized derivations of semiprime rings has been worked by Ali and Chaudhry [1]. They proved that d(x)[y, z] = 0 for all x, y, $z \in R$ and the associate derivation d is central. They characterized a decomposition of R relative to the generalized derivations. Atteya [4] obtained some results on generalized derivations of semiprime rings. He proved that the ring *R* contains a nonzero central ideal. Rehman [12] studied on generalized derivations acting as homomorphisms and anti-homomorphisms. He investigated the commutativity of R by means if generalized derivations acting as homomorphisms and anti-homomorphisms. Aydin [3] studied on generalized derivations of prime rings. Assuming F([x, a]) = 0 or [F(x), a] = 0 for all $x \in I$, he proved that d(x) = 0 $\lambda[x, a]$ for all $x \in I$ or $a \in Z$, (F, d) is a generalized derivation of R, I is an ideal of R, $a \in R$ and $\lambda \in C(R)$ (the extended centroid of *R*).

In this paper, we obtain the analogous results of Aydin [3] in Γ -rings. If M is a prime Γ ring satisfying a certain assumption (*) $a\alpha b\beta c = a\beta b\alpha c$ for all a, b, $c \in M$ and α , $\beta \in \Gamma$, and I is an ideal of M, then we prove that $d(x) = p\beta[x, a]_{\alpha}$ for all $x \in I$, α , $\beta \in \Gamma$ or $a \in Z(M)$ (the centre of *M*), $p \in C(M)$ (the extended centroid of *M*) by assuming that $D([x, a]_{\alpha}) = 0$ or $[D(x), a]_{\alpha} = 0$ for all $x \in I$, $\alpha \in \Gamma$, where $a \in M$.

2. Preliminaries

Let *M* and Γ be additive abelian groups. *M* is called a Γ -ring if for all *a*, *b*, $c \in M$, α , $\beta \in \Gamma$, the following conditions are satisfied:

- (i) $a\alpha b \in M$,
- (ii) $(a + b)\alpha c = a\alpha c + b\alpha c, \ a(\alpha + \beta)b = a\alpha b + a\beta b,$ $a\alpha(b + c) = a\alpha b + a\alpha c,$
- (iii) $(a\alpha b)\beta c = a\alpha(b\beta c).$

This definition of a Γ -ring is given by Barnes [5]. We represent Z(M) as the centre of a Γ -ring M. Let M be a Γ -ring. A subring I of M is an additive subgroup which is also a Γ -ring. A right ideal of M is a subring I such that $I\Gamma M \subset I$. Similarly a left ideal can be defined. If I is both a right and a left ideal then we say that I is an ideal.

The commutator $x\alpha y - y\alpha x$ will be denoted by $[x, y]_{\alpha}$. We know that $[x\beta y, z]_{\alpha} = [x, z]_{\alpha}\beta y + x\beta[y, z]_{\alpha} + x[\beta, \alpha]_{z}y$

and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z + y[\beta, \alpha]_{x}z$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

We take an assumption (*) $x\beta y\alpha z = x\alpha y\beta z$ for all x, y, $z \in M$ and α , $\beta \in \Gamma$. Using the assumption the basic commutator identities reduce to

 $[x\beta y, z]_{\alpha} = [x, z]_{\alpha}\beta y + x\beta [y, z]_{\alpha}$

and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Recall that a ring *M* is semiprime if $a\Gamma M\Gamma a = 0$ implies a = 0 and is prime if $a\Gamma M\Gamma b = 0$ implies a = 0 or b = 0. An additive mapping $d : M \to M$ is called a derivation on *M* if $d(x\alpha y) = d(x)\alpha y + x\alpha d(y)$ for all $x, y \in M, \alpha \in \Gamma$. An additive mapping $f : M \to M$ is called commuting if $[f(x), x]_{\alpha} = 0$ for all $x \in M, \alpha \in \Gamma$. It is called central if $f(x) \in Z(M)$ for all $x \in M$. Let $a \in M$, then the mapping $d : M \to M$ given by $d(x) = [a, x]_{\alpha}$ is a derivation on *M*. It is called inner derivation on *M*.

An additive mapping *D* of *M* into itself is called a generalized derivation of *M*, with associated derivation *d*, if there is a derivation *d* of *M* such that $D(x\alpha y) = D(x)\alpha y + x\alpha d(y)$ for all $x, y \in M, \alpha \in \Gamma$. Obviously this notion covers the notion of a derivation (in case D = d) and a left centralizer (in case d = 0). An additive mapping $D : M \to M$ is called a left centralizer if $D(x\alpha y) = D(x)\alpha y$ for all $x, y \in M, \alpha \in \Gamma$.

We refer to [10, 11] for the definitions of the centroid and of the extended centroid of Γ -rings.

3. Generalized Derivations of Prime Γ-rings

In this section, we prove our main results. Before proving our results, we need the following three lemmas which are given below.

Generalized Derivations of Prime Gamma Rings

Lemma 3.1. Let *d* be a derivation of a prime Γ -ring *M* and *a* be an element of *M*. If $a\Gamma d(x) = 0$ for all $x \in M$ then either a = 0 or d = 0.

Proof. Let $a \in M$, and $\alpha \in \Gamma$, then $a\alpha d(x) = 0$. Replacing $x\beta y$ for x, $(y \in M, \beta \in \Gamma)$ we get $a\alpha d(x\beta y) = a\alpha d(x)\beta y + a\alpha x\beta d(y) = a\alpha x\beta d(y) = 0$. By the primeness of M, we obtain either a = 0 or d = 0.

Lemma 3.2 Let *M* be a Γ -ring satisfying the condition (*), *I* be an ideal of *M* and (*D*, *d*) be a generalized derivation of *M* and $a \in M$. If $a \notin Z(M)$ and

 $[D(x), a]_{\alpha} = 0$ for all $x \in I$, $\alpha \in \Gamma$, then $D([x, a]_{\alpha}) = 0$ for all $x \in I$, $\alpha \in \Gamma$.

Proof. We replace *x* by $x\delta r$, $r \in M$, $\delta \in \Gamma$, in the defining equation

 $[D(x), a]_{\alpha} = 0 \text{ for all } x \in I, \alpha \in \Gamma$ (1) and hence we obtain.

 $0 = [D(x\delta r), a]_{\alpha} = [D(x)\delta r + x\delta d(r), a]_{\alpha}$

 $= [D(x)\delta r, a]_{\alpha} + [x\delta d(r), a]_{\alpha}.$

By using the condition (*) we obtain

 $[D(x)\delta r, a]_{\alpha} + [x\delta d(r), a]_{\alpha}$ $= D(x)\delta[r, a]_{\alpha} + [D(x), a]_{\alpha}\delta r + x\delta[d(r), a]_{\alpha} + [x, a]_{\alpha}\delta d(r)$ for all $x \in I$, $r \in M$, α , $\delta \in \Gamma$, which implies that $D(x)\delta[r, a]_{\alpha} + x\delta[d(r), a]_{\alpha} + [x, a]_{\alpha}\delta d(r) = 0 \text{ for all } x \in I, r \in M, \alpha, \delta \in \Gamma$ (2) In (2), replacing x by $x\beta y$, $(y \in I, \beta \in \Gamma)$ and using (2), we obtain $0 = D(x\beta y)\delta[r, a]_{\alpha} + x\beta y\delta[d(r), a]_{\alpha} + x\beta[y, a]_{\alpha}\delta d(r) + [x, a]_{\alpha}\beta y\delta d(r)$ $= D(x)\beta y \delta[r, a]_{\alpha} + x\beta d(y)\delta[r, a]_{\alpha} + x\beta y \delta[d(r), a]_{\alpha} + x\beta[y, a]_{\alpha}\delta d(r)$ + $[x, a]_{\alpha}\beta y\delta d(r)$ $= D(x)\beta y \delta[r, a]_{\alpha} + x\beta d(y)\delta[r, a]_{\alpha} + x\beta (y\delta[d(r), a]_{\alpha} + [y, a]_{\alpha}\delta d(r))$ + $[x, a]_{\alpha}\beta y\delta d(r)$ $= D(x)\beta y\delta[r, a]_{\alpha} + x\beta d(y)\delta[r, a]_{\alpha} - x\beta D(y)\delta[r, a]_{\alpha} + [x, a]_{\alpha}\beta y\delta d(r)$ $= (D(x)\beta y + x\beta d(y) - x\beta D(y))\delta[r, a]_{\alpha} + [x, a]_{\alpha}\beta y\delta d(r)$ so we get $(D(x)\beta y + x\beta d(y) - x\beta D(y))\delta[r, a]_{\alpha} + [x, a]_{\alpha}\beta y\delta d(r) = 0,$ for all $x, y \in I, r \in M, \alpha, \beta, \delta \in \Gamma$. (3) Replace *r* by *a* in (3), we have $[x, a]_{\alpha}\beta y\delta d(a) = 0, x, y \in I, \alpha, \beta, \delta \in \Gamma$. Since $a \notin Z(M)$ and the primeness of I, yields d(a) = 0If we substitute $s\lambda x$, $(s \in M, \lambda \in \Gamma)$, for x in (3), then we get $0 = (D(s\lambda x)\beta y + s\lambda x\beta d(y) - s\lambda x\beta D(y))\delta[r, a]_{\alpha} + [s\lambda x, a]_{\alpha}\beta y\delta d(r)$ $= ((D(s)\lambda x + s\lambda d(x))\beta y + s\lambda x\beta d(y) - s\lambda x\beta D(y))\delta[r, a]_{\alpha}$

 $+ s\lambda[x, a]_{\alpha}\beta y\delta d(r) + [s, a]_{\alpha}\lambda x\beta y\delta d(r)$ $= (D(s)\lambda x\beta y + s\lambda d(x)\beta y + s\lambda x\beta d(y) - s\lambda x\beta D(y))\delta[r, a]_{\alpha}$ $+ s\lambda[x, a]_{\alpha}\beta y\delta d(r) + [s, a]_{\alpha}\lambda x\beta y\delta d(r)$ $= D(s)\lambda x\beta y\delta[r, a]_{\alpha} + s\lambda d(x)\beta y\delta[r, a]_{\alpha} + s\lambda x\beta d(y)\delta[r, a]_{\alpha}$ $-s\lambda x\beta D(y)\delta[r, a]_{\alpha} + s\lambda[x, a]_{\alpha}\beta y\delta d(r) + [s, a]_{\alpha}\lambda x\beta y\delta d(r)$ $= (D(s)\lambda x\beta y + s\lambda d(x)\beta y)\delta[r, a]_{\alpha} + s\lambda((x\beta d(y) - x\beta D(y))\delta[r, a]_{\alpha}$ + $[x, a]_{\alpha}\beta y\delta d(r)$ + $[s, a]_{\alpha}\lambda x\beta y\delta d(r)$ $= (D(s)\lambda x\beta y + s\lambda d(x)\beta y)\delta[r, a]_{\alpha} + s\lambda(-D(x)\beta y\delta[r, a]_{\alpha}) + [s, a]_{\alpha}\lambda x\beta y\delta d(r)$ $= (D(s)\lambda x\beta y + s\lambda d(x)\beta y - s\lambda D(x)\beta y)\delta[r, a]_{\alpha} + [s, a]_{\alpha}\lambda x\beta y\delta d(r)$ and so $(D(s)\lambda x + s\lambda d(x) - s\lambda D(x))\delta y\beta[r, a]_{\alpha} + [s, a]_{\alpha}\lambda x\beta y\delta d(r) = 0,$ for all $x, y \in I, r, s \in M, \alpha, \beta, \delta, \lambda \in \Gamma$. (4) In (4) replacing s by a, $(D(a)\lambda x + a\lambda d(x) - a\lambda D(x))\beta y\delta[r, a]_{\alpha} = 0,$ for all *x*, $y \in I$, $r \in M$, α , β , $\delta \in \Gamma$. (5)Using $a \notin Z(M)$ and the primeness of *I*, we obtain $D(a)\lambda x + a\lambda d(x) - a\lambda D(x) = 0.$ Then we have $D(a\lambda x) = a\lambda D(x)$, for all $x \in I$, $\lambda \in \Gamma$, (6)On the other hand, since d(a) = 0, we see that the relation $D(x\lambda a) = D(x)\lambda a + x\lambda d(a) = D(x)\lambda a$ is reduced to $D(x\lambda a) = D(x)\lambda a$, for all $x \in I$, $\lambda \in \Gamma$. $\Leftrightarrow D(x\alpha a) = D(x)\alpha a$, for all $x \in I$, $\alpha \in \Gamma$. (7)Combining (6) and (7), we arrive at $D([x, a]_a) = D(x\alpha a) - D(a\alpha x) = D(x)\alpha a - a\alpha D(x) = [D(x), a]_a$ for all $x \in I$, $\alpha \in \Gamma$. By using the hypothesis, we have $D([x, a]_{\alpha}) = [D(x), a]_{\alpha} = 0$, for all $x \in I$, $\alpha \in \Gamma$. This completes the proof.

Lemma 3.3 Let *M* be a prime Γ - ring satisfying the condition (*), *I* be an ideal of M, (*D*, d) be a generalized derivation of *M* and $a \in M$. If $a \notin Z(M)$ and $D([x, a]_{\alpha}) = 0$ for all $x \in I$, $\alpha \in \Gamma$, then $[D(x), a]_{\alpha} = 0$ for all $x \in I$, $\alpha \in \Gamma$.

Proof. We replace *x* by $x\beta a$ ($\beta \in \Gamma$) in the defining equation $D([x, a]_{\alpha}) = 0$ to obtain $0 = D([x\beta a, a]_{\alpha}) = D([x, a]_{\alpha}\beta a) = D([x, a]_{\alpha})\beta a + [x, a]_{\alpha}\beta d(a)$ and so Generalized Derivations of Prime Gamma Rings

 $[x, a]_{\alpha}\beta d(a) = 0, \text{ for all } x \in I, \alpha, \beta \in \Gamma.$ (8) Taking $x\delta y, y \in I, \delta \in \Gamma$, instead of x in (8), $0 = [x\delta y, a]_{\alpha}\beta d(a) = x\delta[y, a]_{\alpha}\beta d(a) + [x, a]_{\alpha}\delta y\beta d(a)$ and using (8) we obtain $[x, a]_{\alpha}\delta y\beta d(a) = 0, \text{ for all } x \in I, \alpha, \beta, \delta \in \Gamma,$ (9) By the primeness of I and $a \notin Z(M)$, (9) implies that d(a) = 0. Now we replace x by $x\lambda y, (y \in I, \lambda \in \Gamma)$ in the defining equation $D([x, a]_{\alpha}) = 0$ to obtain $0 = D([x\lambda y, a]_{\alpha}) = D(x\lambda[y, a]_{\alpha} + [x, a]_{\alpha}\lambda y)$ $= D([x, a]_{\alpha}\lambda y) + D(x\lambda[y, a]_{\alpha})$ $= D([x, a]_{\alpha}\lambda d(y) + D(x)\lambda[y, a]_{\alpha} + x\lambda d([y, a]_{\alpha})$ $= [x, a]_{\alpha}\lambda d(y) + D(x)\lambda[y, a]_{\alpha} + x\lambda([d(y), a]_{\alpha} + [y, d(a)]_{\alpha})$ Since d(a) = 0, we have

 $D(x)\lambda[y, a]_{\alpha} + [x, a]_{\alpha}\lambda d(y) + x\lambda[d(y), a]_{\alpha} = 0,$ for all $x, y \in I, \alpha, \lambda \in \Gamma$, (10)

Substitute $y\delta z$, $(z \in I, \delta \in \Gamma)$, instead of y in equation (10) and use the equation (10), we obtain,

 $0 = D(x)\lambda[y\delta z, a]_{\alpha} + [x, a]_{\alpha}\lambda d(y\delta z) + x\lambda[d(y\delta z), a]_{\alpha}$ $= D(x)\lambda y\delta[z, a]_{\alpha} + D(x)\lambda[y, a]_{\alpha}\delta z + [x, a]_{\alpha}\lambda d(y)\delta z$ $+ [x, a]_{\alpha}\lambda y\delta d(z) + x\lambda[d(y)\delta z, a]_{\alpha} + x\lambda[y\delta d(z), a]_{\alpha}$ $= D(x)\lambda y\delta[z, a]_{\alpha} + (D(x)\lambda[y, a]_{\alpha} + [x, a]_{\alpha}\lambda d(y))\delta z + [x, a]_{\alpha}\lambda y\delta d(z)$ $+ x\lambda d(y)\delta[z, a]_{\alpha} + x\lambda[d(y), a]_{\alpha}\delta z + x\lambda y\delta[d(z), a]_{\alpha} + x\lambda[y, a]_{\alpha}\delta d(z)$ $= D(x)\lambda y\delta[z, a]_{\alpha} + (D(x)\lambda[y, a]_{\alpha} + [x, a]_{\alpha}\lambda d(y) + x\lambda[d(y), a]_{\alpha})\delta z$ $+ [x, a]_{\alpha}\lambda y\delta d(z) + x\lambda d(y)\delta[z, a]_{\alpha} + x\lambda y\delta[d(z), a]_{\alpha} + x\lambda[y, a]_{\alpha}\delta d(z)$ $= D(x)\lambda y\delta[z, a]_{\alpha} + [x, a]_{\alpha}\lambda y\delta d(z) + x\lambda d(y)\delta[z, a]_{\alpha} + x\lambda y\delta[d(z), a]_{\alpha}$ $+ x\lambda[y, a]_{\alpha}\delta d(z)$ $= (D(x)\lambda y + x\lambda d(y))\delta[z, a]_{\alpha} + [x, a]_{\alpha}\lambda y\delta d(z) - x\lambda D(y)\delta[z, a]_{\alpha}$ and so $(D(x)\lambda y + x\lambda d(y) - x\lambda D(y))\delta[z, a]_{\alpha} + [x, a]_{\alpha}\lambda y\delta d(z) = 0,$

for all $x, y, z \in I, \alpha, \lambda, \delta \in \Gamma$, (11)

Replace *x* by $a\alpha x$, $(\alpha \in \Gamma)$ in equation (11), we obtain,

$$0 = (D(a\alpha x)\lambda y + a\alpha x\lambda d(y) - a\alpha x\lambda D(y))\delta[z, a]_{\alpha} + a\alpha[x, a]_{\alpha}\lambda y\delta d(z)$$

= $D(a\alpha x)\lambda y\delta[z, a]_{\alpha} + a\alpha(x\lambda d(y)\delta[z, a]_{\alpha} - x\lambda D(y)\delta[z, a]_{\alpha} + [x, a]_{\alpha}\lambda y\delta d(z))$
= $D(a\alpha x)\lambda y\delta[z, a]_{\alpha} - a\alpha D(x)\lambda y\delta[z, a]_{\alpha}$

Hence we get

 $(D(a\alpha x) - a\alpha D(x))\lambda y \delta[z, a]_{\alpha} = 0, \text{ for all } x, y, z \in I, \alpha, \lambda, \delta \in \Gamma.$ (12)

Since $a \notin Z(M)$ and the primeness of *M*, we have

 $D(a\alpha x) = a\alpha D(x)$, for all $x \in I$, $\alpha \in \Gamma$. (13)

On the other hand, since d(a) = 0,

 $D(x\alpha a) = D(x)\alpha a + x\alpha d(a) = D(x)\alpha a \qquad (14)$

Combining (13) and (14) we arrive at

$$[D(x), a]_{\alpha} = D(x)\alpha a - a\alpha D(x)$$
$$= D(x\alpha a) - D(a\alpha x) = D([x, a]_{\alpha}) = 0$$

and so

 $[D(x), a]_{\alpha} = 0$, for all $x \in M$, $\alpha \in \Gamma$.

Thus the proof is complete.

Theorem 3.4 Let *M* be a Γ - prime ring satisfying the condition (*), *I* be an ideal of *M*, (*D*, *d*) a generalized derivation of *D* and $a \in M$. If $a \notin Z(M)$ and $D([x, a]_{\alpha}) = 0$ or $[D(x), a]_{\alpha} = 0$ for all $x \in I$, $\alpha \in \Gamma$, then $d(x) = p\beta[x, a]_{\alpha}$, where $p \in C(M)$, the extended centroid of *M*, for all $x \in I$, $\alpha, \beta \in \Gamma$.

Proof. Since $a \notin Z(M)$ and $[D(x), a]_{\alpha} = 0$ for all $x \in I$, $\alpha \in \Gamma$, then by Lemma 2.2 we have $D([x, a]_{\alpha}) = 0$ and d(a) = 0

By the proof of the Lemma 2.2, we have the equation (3), in the equation (3), replace *y* by $[a, y]_{\alpha}$ then we get

 $0 = (D(x)\beta[a, y]_{\alpha} + x\beta d([a, y]_{\alpha}) - x\beta D([a, y]_{\alpha}))\delta[r, a]_{\alpha} + [x, a]_{\alpha}\beta[a, y]_{\alpha}\delta d(r)$

 $= (D(x)\beta[a, y]_{\alpha} + x\beta[a, d(y)]_{\alpha}\delta[r, a]_{\alpha} + [x, a]_{\alpha}\beta[a, y]_{\alpha}\delta d(r)$

 $= -(D(x)\beta[y, a]_{\alpha} + x\beta[d(y), a]_{\alpha})\delta[r, a]_{\alpha} + [x, a]_{\alpha}\beta[a, y]_{\alpha}\delta d(r)$

In the above equation, using the equation (10)

 $[a, x]_{\alpha}\beta d(y) = D(x)\beta[y, a]_{\alpha} + x\beta[d(y), a]_{\alpha}$

in the proof of the Lemma 2.2, we obtain

 $[a, x]_{\alpha}\beta(d(y)\delta[r, a]_{\alpha} - [y, a]_{\alpha}\delta d(r)) = 0$

Define $h: M \to M$ by $h(x) = [a, x]_{\alpha}$, then the above equation yields

 $h(x)\beta(d(y)\delta[r, a]_{\alpha} - [y, a]_{\alpha}\delta d(r)) = 0$. Since $a \notin Z(M)$, by Lemma 2.2, we get

 $d(y)\delta[r, a]_{\alpha} = [y, a]_{\alpha}\delta d(r)$, for all $y \in I$, $r \in M$, α , β , $\lambda \in \Gamma$. (15)

Replace *r* by $r\lambda s$, $(s \in M, \lambda \in \Gamma)$, in (15) and use (15), we obtain

 $d(y)\delta r\lambda[s, a]_{\alpha} = [y, a]_{\alpha}\lambda r\delta d(s)$, for all $r, s \in M, y \in I, \alpha, \delta, \lambda \in \Gamma$, (16)

Substitute $y\gamma z$, $(z \in M, \lambda \in \Gamma)$ instead of y in (16) and use (16) it gives us

$$d(z)\delta r\lambda[s, a]_{\alpha} = [z, a]_{\alpha}\lambda r\delta d(s) \text{ for all } r, s, z \in M, \alpha, \delta, \lambda \in \Gamma,$$
(17)

Now, define $g: M \to M$ by $g(x) = [x, a]_{\alpha}$, then from (17) we have

 $d(z)\delta r\lambda g(s) = g(z)\lambda r\delta d(s)$, for all $r, s, z \in M, \delta, \lambda \in \Gamma$.

Since $g \neq 0$, we get, for some $p \in C(M)$, $d(x) = p\beta[x, a]_{\alpha}$, for all $x \in I$, α , $\beta \in \Gamma$. Thus, the proof is complete.

REFERENCES

- 1. F. Ali and M. Anwar Chaudhry, On generalized derivations of semiprime rings, International J of Algebra, 4, 14, (2010), 677 - 684.
- 2. F. Ali and M. Anwar Chaudhry, Dependent elements of derivations on semiprime rings, International Journal of Mathematics and Mathematical Sciences, 2009.
- 3. N. Aydin, A note on generalized derivations of prime rings, International J. of Algebra, 5, 1, (2001),17-23.
- 4. M. Jabel Atteya, On generalized derivations of Semiprime rings, International Mathematical Journal of Algebra, 4, 12, (2010), 591-598.
- 5. W. E. Barnes, On the Γ -rings of Nabusawa, Pacific J. Math., 18, (1966), 411-422.
- 6. Y. Ceven and M. Ali Ozturk, On Jordan generalized derivations in Gamma rings, Hacettepe Journal of Mathematics and Statistics, 33, (2004), 11-14.
- 7. Kalyan Kumar Dey, Akhil Chandra Paul and Isamiddin S. Rakhimov, Generalized derivations in semiprime gamma-rings, International Journal of Math. and Math. Sci., 2012, doi:10.1155/2012/270132
- 8. B. Hvala, Generalized derivations in rings, Comm. Algebra, 26, 4, (1998), 1147-1166.
- 9. N. Nabusawa, On a generalization of the Ring Theory, Osaka J. Math., 1, (1964), 65-75.
- 10. M. A. Ozturk and Y. B. Jun, On the centroid of the prime Γ-ring, Comn. Korean Math. Soc., 15(3), (2000), 469-477.
- M. A. Ozturk and Y. B. Jun, On the centroid of the prime Γ-ring II, Turk. J. Math., 25, (2001), 367-377.
- 12. N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ., 44, (2002), 43-49.