
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) Vol. 33 (2013) 1 – 11 

A DECOMPOSITION TECHNIQUE FOR SOLVING 
INTEGER PROGRAMMING PROBLEMS 

Md. Istiaq Hossain1, and M. Babul Hasan2 
1 Institute of Natural Science, United International University, Dhaka, Bangladesh  

2 Department of Mathematics, University of Dhaka, Bangladesh 
E-mail: 1shishir2004x@gmail.com ,  1 mbabulhasan@yahoo.com  

 
Received 09-05-2012             Accepted 31-07-2013 

 
 

ABSTRACT 

Dantzig-Wolfe decomposition as applied to an integer program is a specific form of 
problem reformulation that aims at providing a tighter linear programming relaxation 
bound due to the non-convexity of an integer problem. In this paper, we develop an 
algorithm for solving large scale integer program relying on column generation 
method. We implemented our algorithm for solving Capital budgeting and scheduling 
type problems. Moreover, we used the Computer Aided System (CAS) AMPL to 
convert our algorithm into programming codes and illustrated the same problem in our 
program. We demonstrate our method by illustrating some numerical examples. 
Keywords: Decomposition, Relaxation, Integer linear programming, Binary integer 
programming 

1. Introduction 
In the linear-programming (LP) models the variables possess continuous values, in the 
sense that decision variables are allowed to be fractional. However, when fractional 
solutions are not realistic, and we must consider the optimization problem as:  

Maximize ෍ ௝ܿ ݔ௝

௡

௝ୀଵ

subject to ෍ܽ௜௝ ݔ௝ ≤ ܾ௜  (݅ = 1,2, … … ,݉)
௡

௝ୀଵ

௝ݔ ≥ 0 and integer (݆ = 1,2, … … ,݊) ⎭
⎪⎪
⎬

⎪⎪
⎫

                                                   (1.1) 

This problem is called the integer- linear -programming problem (ILP). It is said to be a 
mixed integer program (MIP) when some, but not all, variables are restricted to be 
integer, is called a pure integer program when all decision variables must be integers and 
is called a binary (or 0-1) integer programming (BIP) when the decision variables are 
either zero (0) or one (1).   
 



2 Hossain and Hasan 

 
 

Although several algorithms have been developed for ILP, none of these methods are 
totally reliable from the computational standpoint, particularly as the number of integer 
variables increases. Unlike LP, where problems with thousands of variables and 
thousands of constraints can be solved in a reasonable amount of time, computational 
experience with ILP, after more than 30 years of development, remains elusive. The 
computational difficulty with available ILP algorithms has led users to find other means 
to “solve” the problem. One such approach is to solve the model as a continuous LP and 
then round the optimum solution to the closest feasible integer values. However, it is 
nonsensical to deal with fractional values of ݔ where the decision to finance a project can 
be represented by the binary variable ݔ = 0 if the project is rejected and ݔ = 1 if the 
project is accepted. The use of rounding as an approximation is logically unacceptable. 
Dantzig-Wolfe decomposition [2, 3] transforms the original mathematical problem into a 
master problem, where the number of columns may be large but the number of rows is 
reduced. To make the new model more tractable, columns are generated iteratively in the 
hopes of only having to include a subset of the columns in the model. This is denoted by 
delayed column generation and consists of solving a pricing problem in each iteration. 
Dantzig-Wolfe decomposition (DWD) as applied to an IP is a specific form of problem 
reformulation that aims at providing a tighter LP relaxation bound. The reformulation 
gives rise to an integer master problem, whose typically large number of variables is dealt 
with implicitly by using an IP column generation procedure, also known as branch-and-
price algorithm. 
Column generation (CG) can be considered as one of the most successful approaches for 
solving large-scale IP problems over the last decade. The idea was introduced by Gilmore 
& Gomory [8] when finding the optimal solution for the cutting-stock problem. The 
problem was to cut lumber which were in different lengths to meet demands for specific 
lengths of shelves. They noticed that, it is practically impossible to generate all the 
possible configurations of lumber cuts. Therefore, they devised a methodology which 
started with a set of feasible configurations, and used the optimal solution to the 
simplified problem to generate a new promising configuration. Later, the idea has been 
used by Minoux [11] as a powerful technique to reformulate some important 
combinatorial problems. Vance et. al. [15] combined CG and branch-and-bound to 
present an algorithm for binary cutting stock problems. In this article, we have studied to 
solve the BIP in an efficient and user friendly way. For this, we have used the concept of 
DWD principle relying on column generation along with Lagrangean relaxation for 
solving the problem. 
The solution method of LP problems by using decomposition are discussed in Hossain 
[9] based on the notion of searching for optimal solution to a problem among the near-
optimal solutions to its Lagrangean relaxation. The decomposition method for IP is 
discussed effectively in Sweeny [13] which presents the method for decomposing large 
scale IP (more than 200 variables) having a block angular structures. For the IP problem, 
the consequence of the non-convexity is that we may not have an optimal solution for the 
original problem. Application of Lagrangean relaxation to a block angular integer 
problem leads to smaller sub problems. A master problem is then constructed containing 
one column for each of the near-optimal sub problem solutions. Since for IP, we are 



A Decomposition Technique for Solving Integer Programming Problems 3 

guaranteed only weak duality, we may not have an optimal feasible solution but we can 
have a good bound for every IP. 
The rest of the article is organized as follows. In Section 2, we present some of the 
preliminary definitions. Section 3 and 4 are dedicated for some common applications of 
BIP models. In Section 5, 6, 7, we discuss our proposed algorithm, working steps and 
flowchart of the solution method. Numerical problems of some BIP models are illustrated 
in section 8. The pseudo codes in AMPL [6] for the method and the outputs are shown in 
Section 9. In Section 10, we discussed our results and findings. Finally, we draw a 
conclusion. 

2. Some Preliminary Definitions 
In this section, we will discuss some elementary definitions and its mathematical 
expression to pursue our problem of interest. 
2.1 Lagrangean relaxation 
To describe the Lagrangean relaxation [5, 7], let us consider the general BIP as 
ݔܣ ,ݔܿ Maximize :(ݔ)ܲ ≤ ݔܦ ,ܾ ≤  .{1,0}߳ݔ ,݂
Then the Lagrangean relaxation, for fixed ߣ is defined as 
,ݔ)ܵ ݔܿ Maximize :(ߣ − ݔܣ)ߣ − ݔܦ ,(ܾ ≤  .{1,0}߳ݔ ,݂
For minimization problem let the problem is given as follows 
ݔܣ ,ݔܿ Minimize :(ݔ)ܲ ≥ ݔܦ ,ܾ ≥  .{1,0}߳ݔ ,݂
Then the Lagrangean relaxation, for fixed ߣ is defined as 
,ݔ)ܵ ݔܿ Maximize :(ߣ + ݔܣ)ߣ − ݔܦ ,(ܾ ≥  .{1,0}߳ݔ ,݂
2.2 Weak vs. Strong Duality 
Consider the IP problem given by the system (1.1). Then the Lagrangean relaxation 
,ݔ)ܵ ,ݔ)ܵ of ܲ is defined as (ߣ ݔܿ minimize :(ߣ + ܾ)ߣ − ݔܦ,(ݔܣ = ݂, ݔ ≥ 0. 
In a particular case if ݔ is feasible in ܲ, then ݔܣ − ܾ = 0, so ܿݔ + ܾ)ߣ − (ݔܣ =  .ݔܿ
So everything feasible to ܲ has the same objective value in ܵ. But ܵ has a larger feasible 
region. So ݒ(ܵ) ≤  .This is weak duality .(ܲ)ݒ
On the other hand for LPs, ݒ(ܵ) =  .at the optimum. This is strong duality (ܲ)ݒ

3. Application for Binary Integer Programming (BIP) 
In the last decade, the column generation approach to IP has been successfully applied to 
several problems that can be formulated as some variant of the set partitioning problem 
with binary variables. These applications include routing problems Desrosiers et al. [4], 
crew assignment problems Anbil et al. [1], the generalized assignment problem 
Savelsberg [12], edge clustering problems Johnson et al. [10], and Vanderbeck [17], and 
the bin packing problem Vance et al. [15] and Vanderbeck [18] among others. In the 
present paper, as well as in the recent studies of Vance [16] and Valerio de Carvalho [14], 
cutting stock problems are solved to optimality using column generation within a branch-
and-bound algorithm. Such applications, where the master obtained through Dantzig-



4 Hossain and Hasan 

 
 

Wolfe decomposition is an integer program with non-binary variables, emphasize the 
difficulties inherent to branching in an IP column generation approach. 

4. Some Binary Integer Programming (BIP) Models 
Integer-programming models arise in practically every area of application of 
mathematical programming. To develop a preliminary appreciation for the importance of 
these models, we introduce, in this section, two areas namely Capital Budgeting and 
Scheduling problems where the BIP has played an important role in supporting 
managerial decisions. We do not provide the most intricate available formulations in each 
case, but rather give basic models and suggest possible extensions. 
Capital Budgeting  
In a typical capital-budgeting problem, decisions involve the selection of a number of 
potential investments. The investment decisions might be to choose among possible plant 
locations, to select a configuration of capital equipment, or to settle upon a set of research 
and development projects. Often it makes no sense to consider partial investments in 
these activities, and so the problem becomes a go–no-go integer program, where the 
decision variables are taken to be ݔ௝ = 0 or 1, indicating that the ݆-th investment is 
rejected or accepted. Assuming that ௝ܿ  is the contribution resulting from the j-th 
investment and that ܽ௜௝ is the amount of resource ݅ , such as cash or manpower, used on 
the ݆-th investment, we can state the problem formally as: 
 

Maximize ෍ ௝ܿ ݔ௝

௡

௝ୀଵ

    subject to ෍ܽ௜௝ ݔ௝ ≤ ܾ௜  (݅ = 1,2, … … ,݉)
௡

௝ୀଵ

௝ݔ = ݆) 1 ݎ݋ 0 = 1,2, … … ,݊) ⎭
⎪⎪
⎬

⎪⎪
⎫

                                                   (4.1) 

 
The objective is to maximize total contribution from all investments without exceeding 
the limited availability ܾ௜ of any resource. 
The simplest of all capital-budgeting models has just one resource constraint, but has 
attracted much attention in the management-science literature. It is stated as: 

Maximize ෍ ௝ܿ ,௝ݔ 
௡

௝ୀଵ

 

           subject to:  

෍ܽ௜௝ ݔ௝ ≤ ܾ௜         (݅ = 1,2, … … ,݉),
௡

௝ୀଵ

 

௝ݔ = ݆)              1 ݎ݋ 0 = 1,2, … … ,݊) 



A Decomposition Technique for Solving Integer Programming Problems 5 

Usually, this problem is called the 0–1 knapsack problem, since it is analogous to a 
situation in which a hiker must decide which goods to include on his trip. Here c j is the 
‘‘value’’ or utility of including good ݆, which weighs  ௝ܽ >  0 pounds; the objective is to 
maximize the ‘‘pleasure of the trip,’’ subject to the weight limitation that the hiker can 
carry no more than ܾ pounds. 
Scheduling  
The entire class of problems referred to as sequencing, scheduling, and routing is 
inherently integer programs. Consider, for example, the scheduling of students, faculty, 
and classrooms in such a way that the number of students who cannot take their first 
choice of classes is minimized. There are constraints on the number and size of 
classrooms available at any one time, the availability of faculty members at particular 
times, and the preferences of the students for particular schedules. Clearly, then, the ݅-th 
student is scheduled for the ݆-th class during the ݊-th time period or not; hence, such a 
variable is either zero or one. 
As a specific example, consider the scheduling of airline flight personnel. The airline has 
a number of routing ‘‘legs’’ to be flown, such as 10 A.M New York to Chicago, or 6 
P.M. Chicago to Los Angeles. The airline must schedule its personnel crews on routes to 
cover these flights. One crew, for example, might be scheduled to fly a route containing 
the two legs just mentioned. The decision variables, then, specify the scheduling of the 
crews to routes: 

௝ݔ = ቄ1              if a crew is assigned to route j 
0                  otherwise.                                   

 

Let  

ܽ௜௝ = ቄ1          if leg i is included on route j 
0          otherwise.                                   

 

And  

௝ܿ = Cost for assigning a crew to route j. 
The coefficients ܽ௜௝ define the acceptable combinations of legs and routes, taking into 
account such characteristics as sequencing of legs for making connections between 
flights and for including in the routes ground time for maintenance. The model becomes:  

Maximize ෍ ௝ܿ ,௝ݔ 
௡

௝ୀଵ

  

subject to:   

෍ܽ௜௝ ݔ௝ = 1        (݅ = 1,2, … … ,݉),
௡

௝ୀଵ

 

௝ݔ = ݆)                     1 ݎ݋ 0 = 1,2, … … ,݊). 
The ݅-th constraint requires that one crew must be assigned on a route to fly leg ݅. An 
alternative formulation permits a crew to ride as passengers on a leg. 



6 Hossain and Hasan 

 
 

5. Algorithm for Solving Binary Integer Programming 
Let the original integer problem is stated as system (4.1), where the variables are assumed 
to have the values either 0 or 1 (i.e. binary). Then we have the following simple steps as 
our algorithm. 
Initialize Set iteration ݇ = 1 and pick a ߣ௞ 
Step: 1 Solve sub-problem ݔ)ݏ, ݔܿ ௞):  maxߣ − ݔܣ)௞ߣ − ݔܦ ,(ܾ ≤ ݂, ݔ ∈ {0,1} 
These variables are ݔ.  
Step: 2 Take the solution ݔ௞  and put in (ߠ)ܯ with a new variable ߠ௞ 
        Solve (ߠ)ܯ:  max ∑ ௟௞ߠ

௟ୀଵ  ,௟ݔܿ
   ∑ ௟௞ߠ

௟ୀଵ ܽ௟ݔ௟ ≤ ܾ௜ for each ݅ , 
   ∑ ௟௞ߠ

௟ୀଵ = 1, 
௟ߠ    ≥ 0.   
We get solution ߠ∗ and dual prices ߣ∗. 

Step: 3 If ݒ ቀܵ൫ݔ, ௞൯ቁߣ =  .then stop ,(ߠ)ܯ)ݒ

Else set ݇ = ݇ + 1, set ߣ௞ =  .and go to Step 1 ,∗ߣ

6. Working Steps 
The followings are the working steps for getting a feasible upper bound of the given 
integer problem: 
(i) At the very first time we have to randomly pick up an initial value of the dual 

variable and then solve the sub problem with respect to the variable ݔ௜  using the ݏ′
step-1 of the algorithm. 

(ii) After we get the solution, we will import our current solution of the sub problem to 
form the master problem with respect to the variable ߠ௜  with the help of step-2 of ݏ′
the algorithm and solve. 

(iii) Then we have to investigate the optimality condition. If the optimality condition 
holds, we have the feasible solution from the final sub problem values and put this 
in the original objective function to get the bound (upper bound for maximization 
and lower bound for minimization type problems). Otherwise, we will take the 
current dual value from the master problem and import this to update our sub 
problem and continue the same process unless we meet the optimality condition. 

6.1 Flowchart 
The following is a pictorial representation of the communication between master problem 
(restricted master) and sub-problems discussed earlier. 



A Decomposition Technique for Solving Integer Programming Problems 7 

 
7. Numerical examples 
In this section, we will give two numerical examples in which the exact solution is shown 
as a remark and the complete solution procedure is shown for the first example only. 
(A) 

Maximize  ݖ = ଵݔ20 + ଶݔ40 + ଷݔ20 + ସݔ15 + ହݔ30
Subject ݔ5     ݋ݐଵ + ଶݔ4 + ଷݔ3 + ସݔ7 + ହݔ8 ≤ 25
ଵݔ                            + ଶݔ7 + ଷݔ9 + ସݔ4 + ହݔ6 ≤ 25
ଵݔ8                        + ଶݔ10 + ଷݔ2 + ସݔ + ହݔ10 ≤ 25

௜ݔ                                                                             ≥ 0

                                                           (7.1) 

Remark 1:  
The exact solution of the problem is (ݔଵ, ଶݔ , ,ଷݔ ,ସݔ (ହݔ ≡ (1, 1, 1, 1, 0) and the maximum 
of ݖ is= 95. 
Solution: 
Applying the Lagrangean relaxation by relaxing constraint (7.1), we have the general 
sub-problem as follows: 
Sub-problem for ࢑ −  iteration ࢎ࢚
Maximize ݖ = ଵݔ20 + ଶݔ40 + ଷݔ20 + ସݔ15 + ହݔ30 − ଵݔ௞(5ߣ + ଶݔ4 + ଷݔ3 + ସݔ7 +
ହݔ8 − 25) 
Subject to ݔଵ + ଶݔ7 + ଷݔ9 + ସݔ4 + ହݔ6 ≤ ଵݔ8 ;25 + ଶݔ10 + ଷݔ2 + ସݔ + ହݔ10 ≤ 25; 
௜ݔ ∈ {0,1}. 
Master problem for ࢑ −  iteration ࢎ࢚
Maximize ݖ = ∑ ௜௞ߠ

௜ୀଵ ଵ௞ݔ20) + ଶ௞ݔ40 + ଷ௞ݔ20 + ସ௞ݔ15 +  (ହ௞ݔ30

Subject to ∑ ௜௞ߠ
௜ୀଵ ൫5ݔଵ௞ + ଶ௞ݔ4 + ଷ௞ݔ3 + ସ௞ݔ7 + ହ௞൯ݔ8   ≤ 25 



8 Hossain and Hasan 

 
 

  ∑ ௜௞ߠ
௜ୀଵ ൫ݔଵ௞ + ଶ௞ݔ7 + ଷ௞ݔ9 + ସ௞ݔ4 + ହ௞൯ݔ6   ≤ 25 

  ∑ ௜௞ߠ
௜ୀଵ ൫8ݔଵ௞ + ଶ௞ݔ10 + ଷ௞ݔ2 + ସ௞ݔ + ହ௞൯ݔ10   ≤ 25 

  ∑ ௜௞ߠ
௜ୀଵ = ௜ߠ  ;1 ≥ 0 

Now we are about to start the iterating process. 
Iteration-1 (For k=1) 
Starting value for ߣଵ = 100 
Sub-problem  
Maximize ݖ = ଵݔ20 + ଶݔ40 + ଷݔ20 + ସݔ15 + ହݔ30 − ଵݔ௞(5ߣ + ଶݔ4 + ଷݔ3 + ସݔ7 +
ହݔ8 − 25) 
       = ଵݔ80− − ଶݔ360 − ଷݔ280 − ସݔ685 − ହݔ770 + 2500                  
Subject to  ݔଵ + ଶݔ7 + ଷݔ9 + ସݔ4 + ହݔ6 ≤ ଵݔ8 ;25 + ଶݔ10 + ଷݔ2 + ସݔ + ହݔ10 ≤
௜ݔ;25 ∈ {0,1} 
Solving by Lindo [19] gives all ݔ௜′ݏ are zero and sub-problem value max ݖ = ଵܵ(ݒ) =
2500. 
Master problem 
Maximize ݖ = )ଵߠ  20.0 + 40.0 + 20.0 + 15.0 + 30.0) =  ଵߠ.0
Subject to ߠଵ(5.0 + 4.0 + 3.0 + 7.0 + 8.0) = ଵߠ.0 ≤ ଵߠ ;25 = ௜ߠ ;1 ≥ 0 
Solving by Lindo gives ߠଵ = 1, and master problem value max ݖ = (ݒ)ଵܯ = 0, and the 
dual value for the next step is ߣଶ = 0 
Since ݖ = ଵܵ(ݒ) = 2500 ≠ 0 =  thus the current solution is not optimal. Hence ,(ݒ)ଵܯ
we proceed to the next iteration. 
Iteration-2 (For k=2) 
Sub-problem 
Maximize ݖ = ଵݔ20 + ଶݔ40 + ଷݔ20 + ସݔ15 + ହݔ30 − ଵݔ5)0 + ଶݔ4 + ଷݔ3 + ସݔ7 +
ହݔ8 − 25) 
         = ଵݔ20 + ଶݔ40 + ଷݔ20 + ସݔ15 +                         ହݔ30
Subject to ݔଵ + ଶݔ7 + ଷݔ9 + ସݔ4 + ହݔ6 ≤ 25 

ଵݔ8  + ଶݔ10 + ଷݔ2 + ସݔ + ହݔ10 ≤ ,ଵݔ  ;25 ,ଶݔ ,ଷݔ ସݔ  ∈ {0,1}. 
Solving by Lindo gives ݔଵ = ଶݔ = ଷݔ = ସݔ = 1, ହݔ = 0 and the sub-problem value 
ݖ = ܵଶ(ݒ) = 95. 
Master problem 
Maximize ݖ = ଵߠ.0  + ଶߠ95 =  ଶߠ95
Subject to  0.ߠଵା + ଶߠ19 ≤ + ଵߠ.0 ;25 ଶߠ21 ≤ + ଵߠ.0 ;25 ଶߠ22 ≤ 25; 

ଶߠ+ଵߠ  = ௜ߠ,ଵߠ ;1 ≥ 0 
Solving by Lindo gives ߠଵ = ଶߠ,0 = 1 and master problem value ݖ = (ݒ)ଶܯ = 95. 



A Decomposition Technique for Solving Integer Programming Problems 9 

Since ݖ = ܵଶ(ݒ) = 95 = 95 =  thus the current solution is optimal. This gives ,(ݒ)ଶܯ
ଵݔ = ଶݔ = ଷݔ = ସݔ = 1, ହݔ = 0 with maximum of ݖ = 95. 
B. Covering All Characteristics (Assignment/Scheduling problem): 
Southwestern Airways needs to assign its crews to cover all its upcoming flights. We will 
focus on the problem of assigning crews based in San Francisco to the flights listed in the 
first column of the Table 1. The other 12 columns show the 12 feasible sequences of 
flights for a crew. We have to choose the crew in such a way that every flight is covered. 
The cost of assigning crew to a particular sequence of flights is given (in thousands of 
dollars) in the bottom row of the table. The objective is to minimize the total cost that 
covers all the flights. 

Flight 
Feasible Sequence of Flights 

1      2     3     4     5     6     7      8      9      10     11    12 

1. San Francisco to Los Angeles 
2. San Francisco to Denver 
3. San Francisco to Seattle 
4. Los Angeles to Chicago 
5. Los Angeles to San Francisco 
6. Chicago to Denver 
7. Chicago to Seattle 
8. Denver to San Francisco 
9. Denver to Chicago 
10. Seattle to San Francisco 
11. Seattle to Los Angeles 

1                      1                   1                 1                  1  
                      1                      1                         1 
                1                      1                      1                   1 
                        2               2              3       2                  3 
2                                      3                               5        5 
                        3      3                              4 
                                         3      3               3        3        4 
        2              4      4                              5 
                2                              2      2 
                2                       4      4                                   5 
                                 2                      2       4        4        2 

       Cost $1,000’s 2      3      4      6     7     5      7     8      9     9      8        9 

Table 1: Data for Southwestern Airways Problem 

Formulation with Binary variables: 
With 12 feasible sequences of flights, we have 12 yes-or-no decisions. For example, 
consider the last flight in the Table 1 (Seattle to Los Angeles). Five sequences (namely, 
sequences 6, 9, 10, 11 and 12) include the flight. Therefore, at least one of these five 
sequences must be chosen. The resulting constraint is  

଺ݔ + ଽݔ + ଵ଴ݔ + ଵଵݔ + ଵଶݔ ≥ 1 
Using similar constraints for the other 10 flights, the complete BIP model is  
Minimize  ܼ = ଵݔ2 + ଶݔ3 + ଷݔ4 + ସݔ6 + ହݔ7 + ଺ݔ5 + ଻ݔ7 + ଼ݔ8 + ଽݔ9 + ଵ଴ݔ9 +
ଵଵݔ8 +  ଵଶݔ9
Subject to 
ଵݔ   + ସݔ + ଻ݔ + ଵ଴ݔ ≥ ଶݔ  ;1 + ହݔ + ଼ݔ + ଵଵݔ ≥ 1 



10 Hossain and Hasan 

 
 

ଷݔ   + ଺ݔ + ଽݔ + ଵଶݔ ≥ ସݔ  ;1 + ଻ݔ + ଽݔ + ଵ଴ݔ + ଵଶݔ ≥ 1 
ଵݔ   + ଺ݔ + ଵ଴ݔ + ଵଵݔ ≥ ସݔ  ;1 + ହݔ + ଽݔ ≥ 1 
଻ݔ   + ଼ݔ + ଵ଴ݔ + ଵଵݔ + ଵଶݔ ≥ ଶݔ ;1 + ସݔ + ହݔ + ଽݔ ≥ 1 
ହݔ   + ଼ݔ + ଵଵݔ ≥ ଷݔ   ;1 + ଻ݔ + ଼ݔ + ଵଶݔ ≥ 1 
଺ݔ   + ଽݔ + ଵ଴ݔ + ଵଵݔ + ଵଶݔ ≥ 1 
and ݔ௝  is binary, for ݅ = 1,2, … … , 12. 
Remark 2:  
The exact solution of the problem is ݔଷ = ସݔ = ଵଵݔ = 1 and other ݔ௜  are zero. Another ݏ′
optimal solution is ݔଵ = ହݔ = ଵଶݔ = 1 other ݔ௜ =is ݖ are zero. The minimum of ݏ′
18,000$. 

8. Pseudo Codes 
We develop a pseudo code based in AMPL [6]. Every AMPL program is consists of three 
parts namely model, run and data file.  The readers are referred to the authors for the 
program files. 

9. Findings & Result Discussions 
The result shown as remark 1 and remark 2 in section 7(A) and 7(B) respectively was 
found directly by using the optimization software Lindo. If we closely take a look at the 
results in those sections and that we have computed using our AMPL codes, we can find 
that algorithm is giving precisely the same result in example (A) and giving a good lower 
bound for the second one. For the first problem, we had 5 variables and three constraints 
which converged to the exact solution in only two iterations. But for the second problem, 
we had relatively large scale problem with 12 variables and 11 constraints which is 
actually a quite difficult task to solve exactly using the conventional method of solving 
binary integer programming. Though our method does not offer exact solution, it can be 
incredibly useful to study the feasibility of a large scale BIP. Moreover the algorithm has 
an available pseudo code to turn into a computer program which can help our searching 
faster. 

10. Conclusion 
Our decomposition technique has a noteworthy advantage that may or may not provide 
an optimal solution but it gives us a tighter bound for solving large scale integer 
programs. We implemented our algorithm for solving Capital budgeting and scheduling 
type problems. Furthermore, our pseudo codes facilitate our algorithm to convert into an 
AMPL codes for getting computer generated solutions. We showed the numerical 
problems manually and also using our codes which make our method more interactive. 
 
 
 



A Decomposition Technique for Solving Integer Programming Problems 11 

REFERENCES 
[1] Anbil, R., C. Barnhart, L. Hatay, E. L. Johnson, V. S. Ramakrishnan (1993), “Crew-pairing 

optimization at American Airlines Decision Technologies”, T.A. Cirani, R.C. Leachman, 
eds. Optimization in Industry. Wiley, New York, pp. 31–36. 

[2] Dantzig, G, B (1993), “Linear Programming and Extensions”, Princeton University Press, 
Princeton, U.S.A. 

[3] Dantzig, G,B and P. Wolfe (1996), “The Decomposition Algorithm for Linear 
Programming”, Econometrica, Vol. 29, No. 4. 

[4] Desrosiers, J., Y. Dumas, M. M. Solomon, F. Soumis. (1994), Time constrained routing and 
scheduling. M.E. Ball, T.L. Magnanti, C. Monma, G.L. Nemhauser, eds. Handbooks in 
Operations Research and Management Sciences: Networks. North-Holland, Amsterdam. 

[5] Fisher, M.L (1979), “The Lagrangean Relaxation Method for Solving Integer Programming 
Problems”, Management Science, Vol. 27, No. 1. 

[6] Fourer, R., D.M. Gay and B.W. Kernighan (2003), A Modeling Language for Mathematical 
Programming, Second Edition, Thomson Publication. 

[7] Geofrion, A.M (1974), “Lagrange Relaxation for Integer Program”, Mathematical 
Programming Study, Vol. 2, pp. 82-114. 

[8] Gilmore, P. C., and Gomory, R. E., 1961, “A linear programming approach to the cutting 
stock problem”, Operations Research 9, pp. 849-859. 

[9] Hossain, M. I.and Hasan, M. B. (2011), “An Improved Decomposition Algorithm and 
Computer Technique for Solving LPs”, IJBAS-IJENS, Vol.11, Issue. 3, pp. 14-25. 

[10] Johnson, E. L., A. Mehrotra, G. L. Nemhauser (1993), “Min-cut clustering”, Math. 
Programming    62, pp. 133–151. 

[11] Minoux, M. 1987, A class of combinatorial optimization problems with polynomially 
solvable large problem, Operations Research, Vol. 9, pp. 849–859. 

[12] Savelsbergh, M. W. P., (1997), “A branch-and-price algorithm for the generalized 
assignment problem”, Operations Research 45, pp. 831–84. 

[13] Sweeny, D.J. and Murphy (1979), “A Method of Decomposition for Integer Programs”, 
Operations Research, Vol. 27, No. 6, pp. 1128-1141. 

[14] Valerio de Carvalho, J. M. (1996), “Exact solution of bin-packing problems using column     
generation and branch-and-bound”, Working Paper, Depart. Prouducao e Sistemas, 
Universidade do Minho, Portugal. 

[15] Vance, P.H., C. Barnhard, E.L. Johnson, G.L. Namhauser (1994), “Solving Binary Cutting 
Stock Problems by Column Generation and Branch-and-Bound”, Comput. Optim. Appl. 3, 
pp. 111-130. 

[16] Vance, P.H., C. Barnhard, E.L. Johnson, G.L. Namhauser (1996), “Branch-and-price 
algorithms for the one-dimensional cutting stock problem”, Working Paper, Department of 
Industrial Engineering, Auburn University, Auburn, AL. To appear in Comput. Optim. 
Appl. 

[17] Vanderbeck, F. (1994), “Decomposition and column generation for integer programs”, 
Ph.D. Thesis. Faculte des Sciences Appliqees, Universite Catholique de Louvain, Louvain-
la-Neuve. 

[18] Vanderbeck, F. (1996), “Computational study of a column generation algorithm for bin 
packing and cutting stock problems”, Research Papers in Management Studies, University 
of Cambridge, to appear in Math. Programming. 

[19]   www.lindo.com 


