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ABSTRACT 

Natural convection flow in a rectangular cavity containing internally heated and 
electrically conducting fluid has been investigated numerically. The bottom wall of 
the cavity is linearly heated whereas the top wall is well insulated. The left and right 
vertical walls are maintained at constant hot and cold temperature respectively. 
Results have been obtained with respect to Rayleigh numbers and Hartmann 
numbers. Flow and temperature fields for these cases have been studied. Average 
Nusselt numbers at hot, cold and linearly heated bottom wall have been calculated. It 
is found that the temperature, fluid flow and heat transfer strongly depend on internal 
and external Rayleigh numbers and Hartmann numbers. 
Keywords: Natural convection, Heat generation, Rectangular cavity, Non-uniform 
heating. 

1. Introduction 
The influence of magnetic field on the natural convection flow of fluid is of great 
importance in the field of industry. Magnetohydrodynamic (MHD) principles are used in 
the design of heat exchangers, pumps and flow meters, in space vehicle propulsion and 
developing confinement schemes for controlled fusion. The extensive research studies 
using various numerical simulation reported by Oreper and Szekely[8], Ozoe and 
Maruo[9], Grandet et al.[2], Rudraiah et al.[10] and Chamkha[1]. ensure that several 
attempts have been made to acquire a basic understanding of natural convection flows 
and heat transfer characteristics in a rectangular enclosure having internal energy sources 
and electrically conducting  fluid. However, in most studies, one vertical wall of the 
enclosure is cooled another one is heated while the remaining top and bottom wall are 
well insulated. Non-uniform temperature in the wall was not used in these studies. 
The effect of surface tension on unsteady laminar natural convection flow of an 
electrically conducting fluid in a rectangular enclosure under an externally imposed 
magnetic field with internal heat generation has been investigated by Hossain et al.[3]. 
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The top horizontal surface of the rectangular cavity is assumed to be free and the bottom 
one insulated, whereas the left vertical wall is cold and the right one is uniformly hot.  
Sarris et al.[11] presented a numerical  study of unsteady two dimensional  natural 
convection of  an electrically conducting fluid in a laterally and volumetrically heated 
square cavity under the influence of  a magnetic field. Mehmet and Elif [6] studied the 
natural convection  flow  under a magnetic field in an inclined rectangular enclosure 
heated and cooled on adjacent walls. 
Kandaswamy et al. [5] studied magnetohydrodynamic natural convection  in an enclosure 
with partially active vertical walls. Nithyadevi et al.[7] investigated the natural 
convection  flow  under a magnetic field  in a square cavity with partially active vertical 
walls having time periodic boundary condition. Kahveci et al.[4] studied 
magnetohydrodynamic natural convection flow  and heat transfer in a laterally heated 
partitioned enclosure. Sathiyamoorty et al.[12] investigated the steady natural convection 
flow in a square cavity with linearly heated side walls. As per author’s knowledge the 
literature review revealed that no work has yet been done on the magnetohydrodynamic 
natural convection flow in a rectangular cavity with heat generation having non-uniform 
temperature profile in the wall. The aim of the present investigation is to study on the 
magnetohydrodynamic natural convection flow in a rectangular cavity filled with heat 
generating fluid having linearly heated bottom wall. 

2. Geometry and equations of motion 
A rectangular cavity filled with viscous incompressible fluid is shown in the Fig. 1. The 
cavity dimensions are defined by L for width .and H for height. The cavity is isothermally 
heated from the left vertical wall with a uniform constant temperature Th and the right 
vertical with temperature )( chc TTT > . The bottom horizontal wall is linearly heated 

with 
L
xTTT chh )( −−  while the remaining wall is considered perfectly insulated.  

 
Fig. 1   The flow configuration and coordinate system 
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The governing equations of the problem under consideration are based on the balance 
laws of mass, linear momentum and energy modified to account for the presence of 
thermal buoyancy, magnetic field and the heat generation or absorption effects. Non-
dimensional quantities used for making the governing equations into dimensionless form 
are stated as follows: 
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where X and Y are the coordinates varying along horizontal and vertical directions, 
respectively, U and V are, the velocity components in the X and Y directions  respectively, 
θ is the dimensionless temperature and P is the dimensionless pressure. After substitution 
of the dimensionless variables into the governing equations we get the following 
dimensionless equations: 
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The dimensionless parameters appearing in the Eqs. (1)-(4) are the external Rayleigh 
number RaE, internal Rayleigh number RaI, Prandtl number Pr, Hartmann number Ha , 
They are defined as follows: 
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where g is the gravitational constant, β is the volumetric coefficient of thermal expansion, 
Q is the rate of internal heat generation per unit volume, B0  is the magnetic induction, α   
is the thermal diffusivity and ν kinematic viscosity of the fluid. 
The dimensionless boundary conditions are: 
U(X,0)=U(X,A) =U(0,Y)=U(1,Y)=0 
V(X,0)=V(X,A) =V(0,Y)=V(1,Y)=0 
θ (X.0)=1-X  θ (0,Y)=1, θ (1,Y)=0 
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where LHA /=  is the aspect ratio of the rectangular cavity which is taken as 
 0 .75. The heat transfer coefficient in terms of local Nusselt number is defined 

by
n

Nu
∂
∂

−=
θ

 where n denotes the normal direction on a plane. The average Nusselt 

numbers at the bottom and side walls are computed as ∫=
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3. Numerical method and choice of parameter 
The governing Eqs.(1)-(4) along with the boundary conditions are solved numerically, 
employing finite element method. The six nodded triangular element is used in this work 
for the development of the finite element equations. All six nodes are associated with 
velocities as well as temperature; only the corner nodes are associated with pressure. This 
means that a lower order polynomial is chosen for pressure. 
 The velocity components, temperature distribution and pressure distribution according to 
their highest derivative orders in the differential equations is considered as  

( ) ββ UNYXU =,      (5) 

( ) ββ VNYXV =,      (6) 

( ) ββ TNYXT =,      (7) 

( ) λλ PHYXP =,   (8) 

where Nα ( α = 1, 2, … … , 6) are the element shape functions for the velocity 
components and the temperature, and Hλ ( λ = 1, 2, 3) are the element shape functions 
for the pressure. 
To derive the finite element equations, the method of weighted residuals is applied to the 
Eqs. (1)–(4)  according to Zienkiewicz [13] as  
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where A is the element area. 
Gauss divergence theorem is then applied to Eqs. (10)-(12) to generate the boundary 
integral terms associated with the surface tractions and heat flux. Then Eqs. (10)-(12) 
become, 
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Here Eqs.(13)-(14) specifies surface tractions (Sx, Sy) along outflow boundary S0 and 
Eq.(15) specifies heat flux (qw) that flows into or out from domain along wall boundary 
Sw.  
Substituting the element velocity component distributions, the temperature distribution, 
and the pressure distribution in Eq. (9)and Eqs.(13)-(15)  the finite element equations can 
be written in the form, 
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where the coefficients are in the form of the integrals over the element area and along the 
element edges S0 and Sw as  
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The integration involved in each term is evaluated numerically by using Gauss-Legendre 
quadrature method. 
The finite element Eqs. (17)-(19), are nonlinear. These nonlinear algebraic equations are 
solved by applying the Newton-Raphson iteration technique by first writing the 
unbalanced values from the set of the finite element Eqs. (16)-(19) as, 

p x yF K U K Vβ βα αβ αβ
= +  (20) 

uQUSSPMUVKUUKF yyxxxyxu
αβαβαβµαµγββγαγββγαα

−++++= )Pr(            (21) 

vQVKHaKRa

VSSPMVVKVUKF yyxxYyxv

αβαββαβ

βαβαβµαµγββγαγββγαα

θ −−+

++++=

PrPr

)Pr(
2

                (22) 

θαβ

βαβαβµαµγββγαγββγαα

α

θ θθθ

QK
Ra
Ra

SSPMVKUKF

I

E

yyxxYyx

−+

++++= )(
                        (23) 

This leads to a set of algebraic equations with the incremental unknowns of the element 
nodal velocity components, temperatures, and pressures in the form, 
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An assessment of the accuracy of the numerical simulation procedure is of course of 
fundamental importance. The discretization process involves a certain amount of error, 
which can be systematically reduced by a series of grid refinements. To this end, five 
types of grid densities have been chosen to check for the self-consistency of the present 
study. The grids chosen are: (a) 22342 nodes, 3453 elements, (b) 28455 nodes, 4421 
elements (c) 35796 nodes, 5589 elements (d) 41124 nodes, 6424 elements (e) 47212 
nodes, 7387 elements. Type (c) mesh density was found to give sufficient accuracy with 
modest computational time, and hence selected for the simulation study. 
To ensure   convergence of solutions the following criteria is applied to all dependent 
variables over the solution domain 

                              ERMAXn
ji

n
ji ≤Φ−ΦΣ −1

,,  

 where Φ  represents the dependent variables U, V, P and T ;the indexes i, j refers to 
space coordinates and the index n is the current  iteration.. The value of ERMAX is 
chosen as 10- 5. 
The parameter used in this study are Hartmann number. external Rayleigh number and 
internal Rayleigh number.The fundamental concept behind MHD is that magnetic fields 
can induce currents in a moving conductive fluid, which in turn creates forces on the fluid 
and also changes the magnetic field itself. Hartmann number is the ratio of 
electromagnetic force to the viscous force. The extent of the effect of magnetic field on 
the flow is determined by the magnitude of the Hartmann number. 
The external Rayleigh number is the ratio of buoyancy and viscosity forces times the 
ratio of momentum and thermal diffusivities. The extent of the effect of lateral heat on 
the flow is determined by the magnitude of the external Rayleigh number. The  effect of 
internal heat generation on the flow is determined by the magnitude of the internal 
Rayleigh number. 
The present code was exercised on the work of Sathiyamoorty et al.[12] to check its 
validity. We recall here some results obtained by our code in comparison to those 
reported in Sathiyamoorty et al.[12] for RaE=103, 104, 105 . Table 1. shows that the 
present results have a good agreement with those obtained by Sathiyamoorty et al.[12]. 

Table 1.  Nusselt Number comparison for Pr = 0.71 

RaE Present work Sathiyamoorty et al. Error (%) 

103 3.7196    3.7294    0.26 

104   4.7520   4.7753    0.34 

105   6.8042       6.8272 0.33 
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4. Results and Discussion 
Numerical results are presented in order to determine the effects of the presence of 
magnetic field, volumetric heat generation and lateral heat difference on the natural 
convection flow of an electrically conducting fluid in a rectangular cavity. It is seen that 
there are three governing parameters in this problem: the Hartmann number Ha, the 
internal Rayleigh number RaI , the external Rayleigh number RaE.  
Values of the Hartmann number Ha range from 0.0 to 50.0, the external Rayleigh number 
RaE   from 102 to105  and the internal Rayleigh number RaI  from 00 to 105

  while Pr=0.71 
is kept fixed.   All four boundaries are considered to be rigid (u=v=0). The top wall is 
assumed to be adiabatic( 0/ =∂∂ Yθ ) and the bottom wall is linearly heated with 

temperature 
L
xTTT chh )( −− . The left wall is maintained at temperature Th  while the 

right wall is held at temperature )( chc TTT > . 

4.1  Flow and temperature fields 
4.1.1 Effects of Internal Rayleigh numbers  
The effect of internal heat generation on the flow field has been considered. The resulting 
flow and temperature distribution has been depicted in Figs. 2-5 where the top row gives 
the streamlines for increasing values of the internal Rayleigh numbers RaI = 00, 103 ,104 
and 105 while the external Rayleigh number RaE = 103 , the Hartmann number Ha=20 and 
the Prandtl number Pr=0.71 are kept fixed with linearly heated bottom wall where the top 
wall is well insulated. The left and right vertical wall are maintained at hot and cold 
temperature respectively. 
 In these figures we see that without heat generation there is only one cell called primary 
cell . With the effect of the internal Rayleigh number a secondary cell has been developed 
in top left corner of the cavity. The increasing rate of heat within the cavity due to the 
increase of the internal Rayleigh Number leads to increase the flow rate in the secondary 
cell as well as increase in its size until it occupies half of the cavity. This effect of 
internal heat generation on the flow field is reasonable since internal heat generation 
assists the buoyancy forces by accelerating the fluid flow.  
On the other hand the fluid temperature increases significantly due to effect of the 
internal Rayleigh number which is shown in the isotherms of Figs. 2-5 (bottom). It is 
clearly seen that owing to the increase of the internal Rayleigh Number the fluid 
temperature exceeds the surface temperature.  
4.1.2. Effects of External Rayleigh numbers  
Figs. 6-9 illustrate the stream functions and isotherm contours for various values of RaE 
=102 , 103 ,104 and 105 where Ha=20 , RaI=104 and Pr=0.71 is kept fixed with linearly 
heated bottom wall where the top wall is well insulated the left and right vertical walls 
are maintained at hot and cold temperature respectively. For the lower external Rayleigh 
number two convective cells dominate the flow, however with the increase of the external 
Rayleigh number, primary cell becomes larger and occupies whole domain when RaE = 
104. This behaviour is almost opposite to the effect of the internal Rayleigh number from  
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Fig. 2. Contour         Fig. 3. Contour         Fig. 4. Contour           Fig. 5. Contour  
plots for RaE=103,   plots for RaE=103      plots for RaE=103         plots for RaE=103 
RaI=00, Ha=20       RaI=103, Ha=20         RaI=104, Ha=20          RaI=105, Ha=20 
streamline(top);      streamline(top);          streamline(top);            streamline(top); 
isotherm(bottom)   isotherm(bottom)        isotherm(bottom)         isotherm(bottom)        
 
lower to higher, for a fixed external Rayleigh number. As we discussed earlier that the 
internal Rayleigh number accelerates the flow and eventually it has an  influence on 
buoyancy, however, for a fixed internal Rayleigh number when external Rayleigh 
number increases; the buoyancy effect accelerates and dominates the flows although  
 
 
 
 
 
 

 
 
 
 
Fig. 6. Contour        Fig. 7. Contour        Fig. 8. Contour          Fig. 9. Contour  
plots for RaE=102,   plots for RaE=103      plots for RaE=104      plots for RaE=105 
RaI=104, Ha=20     RaI=104, Ha=20         RaI=104, Ha=20        RaI=104, Ha=20 
streamline(top);      streamline(top);          streamline(top);        streamline(top); 
isotherm(bottom)   isotherm(bottom)        isotherm(bottom)      isotherm(bottom)        
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there is a weak internal Rayleigh number influence on the flow field. The same 
phenomenon has been seen on the temperature contours as shown in Figs. 6-9(bottom). 
Initially when the external Rayleigh number is small, the internal fluid temperature is 
higher, but it decreases with the increase of RaE. As RaE increases from 103 to105 the 
flow rate increases. At RaE=104 the circulation are stronger and consequently the 
temperature contours are pushed towards the right corner of the cavity. 
4.1.3. Effects of Hartmann numbers                   
Figs. 10-13 depict the influence of Hartmann number Ha on the flow and temperature 
fields for various values of Ha= 00, 10, 20, 50 where external Rayleigh number   
RaE=103 , internal Rayleigh number RaI=104 and Pr=0.71 is kept fixed . Because of 
linearly heated bottom wall and uniformly heated left vertical wall fluid rises up from the 
left portion of the bottom wall and flow down along the right wall forming a roll with 
clock wise rotation inside the cavity as shown in the Fig. 2(top) with RaE=103 and 
RaI=00. 
But here in the Fig. 10(top)  two cells are formed due to the fact that the internal Rayleigh 
number is greater than the external Rayleigh number as shown in the Fig. 4.(top) with 
RaE=103 and RaI=104. The left cell revolves anticlockwise because of greater internal 
Rayleigh number and the right cell revolves clockwise as expected. 
 

 
 
 
 

   
 
 
 

 
Fig. 10. Contour      Fig. 11. Contour       Fig. 12. Contour          Fig. 13. Contour  
plots for RaE=103,  plots for RaE=103       plots for RaE=103         plots for RaE=103 
RaI=104, Ha=00    RaI=104, Ha=10          RaI=104, Ha=20           RaI=104, Ha=50 
streamline(top);     streamline(top);          streamline(top);            streamline(top); 
isotherm(bottom)   isotherm(bottom)        isotherm(bottom)         isotherm(bottom)        
 
From the figures as shown in the top rows, it can be seen that intensities of the   flow 
decrease owing to increase in the magnetic field. Because of the decrease of the intensity 
of the flow the left cell is becoming smaller. This is expected since presence of magnetic 
field usually retards the velocity field.  
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The corresponding effect of the increasing magnetic field on the isotherms may be 
viewed from the Figs. 10-13(bottom). It is seen that the isotherms become more  curved  
due to the increase of the magnetic field strength, which is expected; since the magnetic 
field resists the flow.  
4.2. Heat transfer rates    
 
            
               
 
          
 
                

 
                   
          (a)                                                (b)                                                (c) 

Fig.14 Variation of average Nusselt number with external Rayleigh number for (a) 
linearly heated bottom wall, (b) heated left wall and (c) cooled right wall for Hartmann 
number Ha = 0.0, 10, 20 and 50. 
The overall effects of RaE and Ha on the average Nusselt number for linearly heated 
bottom wall, heated left wall and  cooled right wall for Pr=0.71, internal Rayleigh 
number RaI=104 and Hartmann numbers Ha = 0.0, 10, 20 and 50. are displayed in Figs. 
14(a), (b) and (c) via average Nusselt number vs external Rayleigh number plot. 
Initially at RaE =103 the heat transfer on the bottom and left wall is negative. From Fig. 
14(a) and (b) it is observed that the average Nusselt numbers smoothly increase due to 
dominant heat conduction mode and becomes positive when the external Rayleigh 
number RaE  is 3x104

 for the bottom wall and 2x104
 for the left wall. Then the Nusselt 

number increases rapidly as Rayleigh number increases further.  
From the Fig. 14(c) it is seen that at RaE =103 the heat transfer on the right wall is 
positive and increases smoothly for  RaE from 103  to 105  in case of Ha = 0.0, 10 and 20 
but for  RaE  from 104  to 105  Nusselt numbers decreases for Ha = 50. 

The heat transfer characteristics of the present study are of technological importance, 
mainly because of the presence of the magnetic field. The increase of the Hartmann 
number causes reduction of the heat transfer rates from the cavity surfaces. This 
phenomenon is related to the damping effect of the increasing magnetic field which 
results in the domination of conduction over convection heat transfer. 
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                            (a)                                            (b)                                               (c) 
Fig.15 Variation of average Nusselt number with external Rayleigh number for (a) 
linearly heated bottom wall, (b) heated left wall and (c) cooled right wall for internal 
Rayleigh number RaI= 0.0, 103 , 104  and 105  

The overall effects of RaE and RaI on the average Nusselt number for linearly heated 
bottom wall, heated left wall and cooled right wall for Pr=0.71, external Rayleigh number 
for RaE=103 and internal Rayleigh number RaI= 0.0, 103 , 104  and 105  are displayed in fig. 
15(a), (b) and (c) via average Nusselt number vs external Rayleigh number plot. 
 It is seen that the average Nusselt Number is negative for both the linearly heated bottom 
wall and heated left wall. But it is positive for the cooled right wall. In all the cases heat 
transfer is very high for RaI= 105  in all the walls. But it is very low in all other cases.  

5. Conclusion  
The influence of linearly heated bottom walls with uniformly heated left wall on flow and 
heat transfer characteristic due to natural convection within a rectangular enclosure 
having heat generating and electrically conducting fluid has been studied in the present 
investigation. An analysis for the distribution of streamlines, isotherms, average Nusselt 
numbers was performed to study the effect of dimensionless parameters. The 
investigation was carried out for a number of dimensionless groups namely the external 
Rayleigh number RaE , internal Rayleigh number RaI  and Hartmann number Ha. From 
the present investigation the following conclusion may be drawn: 
• Increase in the value of external Rayleigh numbers leads to increase the size of the 

primary cell until it occupies the whole cavity space. Also the circulation gets 
stronger and consequently the temperature contours are pushed towards the right 
corner of the cavity. Rate of heat transfer from the heated left wall and bottom wall 
increases due to the increase of external Rayleigh number.  

• The temperature of the fluid in the cavity increases due to the increase of the internal 
Rayleigh number, consequently the rate of heat transfer from the left wall and bottom 
wall decreases. Increase in the value of internal Rayleigh number leads to develop a 
secondary cell on the left corner of the cavity and increases its size until it occupies 
almost half of the cavity. 
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• The significant effect of the magnetic field is observed in the heat transfer 
mechanisms and flow characteristics inside the cavity. Strong suppression of the 
convective current can be obtained by applying strong magnetic field. This is why; 
reductions in the average Nusselt number Nu were produced as the strength of the 
applied magnetic field were increased. 
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