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ABSTRACT 
The most severe tropical cyclones are formed over the Bay of Bengal because of its 
complex geometric structure and shallow coastal bathymetry. These natural disasters 
significantly impact our lives as well as the environment. To quantify the impact of 
such disasters, we analyzed data pertaining to the severe cyclone Sidr-2007, 
considering the cyclone’s duration and angle of land fall, as well as the bathymetry 
of the near-coastal zones. We propose a reliable hydrodynamic model to simulate the 
severity of such cyclones. The model’s reliability is verified by comparison of the 
numerical results with actual storm-surge data. Our model requires meteorological 
and hydrological inputs, including the time-dependent positions of the storm centre, 
the maximum wind radius, as well as pressure-drop and bathymetry data. The model 
results are in good agreement with the reported data. 
Keywords: Bathymetry, Bay of Bengal, Coastal zone, Cyclones, Simulation, Storm 
Surges 

1. Introduction 
The Bay of Bengal is frequently affected by storm surges associated with tropical 
cyclones. Storm surges—i.e., extreme overflows of sea water onto coastal regions by the 
force of strong winds associated with low-pressure weather systems—are long waves that 
increase both the sea water level and the tides during cyclones. They may last from a few 
minutes to several days, depending on the cyclone’s size and speed of movement. Statistics 
show that approximately 5% of the world’s tropical cyclones form over the Bay of 
Bengal. On average, five to six storms form in this region every year. Of all countries 
surrounding the Bay of Bengal, Bangladesh suffers most from storm surges caused by 
tropical cyclones, almost every year. Eighty percent of the global casualties due to storm 
surges occur in Bangladesh because of the complex coastal geometry of the Bay of 
Bengal’s northern tip. 
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Different aspects of the procedure and the developments involved are reported in the 
papers by Flather (1976) in [11], Heaps et al. (1979) in [14]. Some attempts have been 
made to develop numerical simulations of storm surges associated with tropical cyclones 
over the Bay of Bengal and the Arabian Sea. Storm-surge modeling studies of the Bay of 
Bengal include those of Das (1981) in [5], Das et al. (1983) in [6], Dube et al. (1984) in 
[10], Gosh et al. (1983) in [12], Johns (1981) in [19], and Johns et al. (1983) in [20]; for 
comprehensive reviews of previous studies, see also Das (1980) in [4], Dube and Singh 
(1982) in [9], Ali (1996) in [1], Ali et al. (1997) in [2], Debsarma (1997, 2009) in [7] and 
[8], Sarkar (2011) in [17], Chittibabu (1999) in [3], Roy (1999) in [16], and Hoque 
(2008) in [15]. Very limited simulation studies have been performed for storm surges in 
the Arabian Sea. To our knowledge, probably the only simulations of storm surges along 
the western coast of India are those of Dube et al. (1982) in [9], Ghosh and Chandar 
(1983) in [13], and Sinha et al. (1984) in [18]. 

2. Hydrodynamic storm-surge Model 
Numerical computation has become a powerful and popular tool to study oceanographic 
natural disasters and coastal processes, among others. The Indian Institutes of 
Technology (IIT) Storm Surge Model is a state-of-the-art numerical hydrodynamic 
storm-surge model suite. It uses the custom-developed GMT graphics software to 
visualize the results. A dynamical storm model is adopted for computation of surface 
winds and ocean currents associated with cyclonic storms. The required meteorological 
and hydrological inputs are the position of the storm center as a function of time and the 
radius of maximum wind, as well as pressure-drop and bathymetry data. The number of 
iterations (which depends on the time resolution required), the latitude of the open sea, 
the East–West and North–South extents of the area(s) of interest, and the number of 
storm positions are also important inputs.  
The parameters adopted for the simulations performed in this paper are based on actual 
data of the severe cyclone Sidr-2007. They are summarized below. 
 Number of East–West grid points  331 
 Number of North–South grid points  154 
 Storm track’s starting point  18	°N,   89.20	°E 
 Storm track’s end point  22	°N,  89.80	°E  
 Duration of model run  18 hr 
 Time step (DT)  60 s 
 Number of iterations (KS)  1080 (KS = DT × duration in hr) 
 Radius of maximum wind (Rmax)  40 km 
 Pressure drop  64 hP 

3. Governing equations 
The basic hydrodynamic equation of continuity for dynamical processes at sea is given 
by 
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For large-scale meteorology, ߱ ≪ ,ݑ   ,.so neglecting the ߱-related terms is justified, i.e  ,ݒ
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where ߱  is the angular speed of rotation of the earth, and  f = 2߱sin߮ is the Coriolis 
parameter, and ݑ,  are the average Reynolds velocity components in the x, y, and ݓ	and ,ݒ
z directions, respectively, defined as ݑ = തݑ	+ ݑ́ ഥݓ	+ ݓ́ = ݓ and ,ݒ̅	+ ݒ́ = ݒ  , ,  where 
́,ݑ ́,ݒ and	ݓ			́ are the fluctuating (turbulence) velocity components, and ݑത ഥݓ and ,ݒ̅ 	,  are 
the average velocity components in the x, y, and z directions, respectively. Here p denotes 
pressure, t time, ρ the density of sea water (which is supposed to be incompressible and 
homogeneous), g is the acceleration due to gravity, and	߬௫ 	and	߬௬ 	are the x and y 
components of the frictional (Reynolds) stress, respectively. We neglect the molecular 
viscosity. Using scale analysis, the vertical momentum equation (8) reduces to the 
hydrostatic pressure approximation, 
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We represent the displaced position of the free surface and the position of the sea floor by 
ݖ = ,ݕ,ݔ)ߞ	 ݖ		and (ݐ = 	−ℎ(ݕ,ݔ), respectively, so that the total depth of the water level 
is  ߞ + h. During a storm period, the upper surface stress is generated by the circulatory 
wind of the storm system, while the bottom stress acts as dissipation term, which is 
known as bottom friction. The terms ߬௫  and ߬௬ are included to model the vertical 
turbulent diffusion. We denote the x and y components of the surface stress as ௫ܶ 	and	 ௬ܶ, 
respectively, and adopt the same convention for the bottom friction, ܨ௫  and ܨ௬. 
Atmospheric pressure is denoted as ୟܲ. The bottom and surface conditions are then given 
by (at the bottom) 
and  (߬௫   0 = ݓ = ݒ =  ݑ , ߬௬) = (ܨ௫	, ܨ௬)  at   ݖ = 	−ℎ(ݕ,ݔ)                             (10) 
(at the free surface) 
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Condition (11) is known as the kinematic surface condition. It expresses the fact that the 
free surface materially follows the fluid. Equations (5), (6), (7), and (9) can be solved in 
principle, but the procedure would be laborious because of the presence in the equations 
of the vertical coordinate. Unlike for atmospheric problems, a boundary layer would need 
to be designed both at the top and the bottom of the integration domain. There is 
currently insufficient knowledge about the flow characteristics in such boundary layers. 
To overcome this difficulty, a simplification is generally introduced by integrating the 
governing equations vertically. The unknown dependent variables are then the water 
transport (or mean) current and the surface height. This procedure is commonly adopted 
for storm-surge computations, because the water level is of primary importance. 
Upon vertically integrating Equations (5) to (7) from z = –h to z = ߞ and using boundary 
conditions (9) to (11), in addition to adopting the simplification discussed above, one 
obtains  
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where over bars denote depth-averaged values. For example, 
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In most storm-surge simulation models, the nonlinear advective terms are neglected 
mainly on the basis of scale analysis. This is justifiable when the characteristic amplitude 
of the surge is significantly lower than the characteristic depth of the basin. In shallow-
water regions, particularly at the head of the Bay of Bengal, the nonlinear terms are of 
special importance and must be retained in the formulation. However, retention in 
Equation (13) of terms such as ൫ݑଶതതത,ݑതଶ൯ leads to a fundamental difficulty, since they 
cannot be evaluated within the framework of a vertically integrated model. In many well-
documented applications of the nonlinear, vertically integrated Equations (12) to (14), 
assumptions are usually typified by  

ଶതതതݑ                                       − തଶݑ	 = 0  
ଶതതതݒ                                      −	 ଶݒ̅ = 0  and                                                            (18) 
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This is equivalent to saying that the currents ݑത and ̅ݒ do not vary significantly in the 
vertical direction and that the flow is dominated by the midstream flow. The validity of 
Equation (18) has been demonstrated by Johns (1981) in [19]. In the latter article, the 
author found that,  
for all t,  

                               0.996	 < ቀ௨ഥ
మ

௨మതതതത
		ቁ < 1.04                                                         (19) 

In addition, a parameterization of the bottom stress must be adopted in terms of the 
depth-averaged current. This is frequently done by using the conventional quadratic law, 
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where  ܿ୤ = 2.6	 × 	10ିଷ is an empirical bottom-friction coefficient. 
However, substituting the values from Equations (18) and (20) into Equations (13) and 
(14), we obtain (the overbars have been dropped for convenience)    
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For numerical treatment, it is convenient to express Equations (21) and (22) in flux form, 
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Equations (13), (24), and (25) can be simplified to 
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where ݑ෤ = ߞ) + ℎ)ݑ and ݒ෤ = ߞ) + ℎ)ݒ are new prognostic variables and (ߞ + ℎ) 
represents the total depth of the basin.  
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4. Formulation of the Model 
The model covers an analysis area spanning [83.5	଴E to 94.5	଴E] and [18	଴N to 23	଴N]. 
It has a fixed eastern boundary at approximately 250 km from India’s east coast, at 
ݔ = 	 ܾଶ(ݕ). The treatment of coastal boundaries involves a procedure leading to a 
realistic curvilinear representation of both the western and eastern sides of the Bay of 
Bengal. The model also incorporates increased spatial resolution adjacent to the coastline. 
The resolution of the Head of the Bay of Bengal model is high (∆x = 3.7 km, 		∆y = 3.5 
km, and ∆t = 60 sec). For the formulation of the model, a system of rectangular Cartesian 
coordinates u, v, w is used. The western coastal boundary (the east coast of India) is 
situated at ݔ = 	 ܾଵ(ݕ) and the eastern coastal boundary is located at ݔ = 	 ܾଶ(ݕ). Southern 
open sea and northern coastal boundaries are at ݕ	 = 0 and	ܮ, respectively.  
After neglecting barometric forcing terms, the governing Equations (25) to (27) reduce to    
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5. Boundary conditions of the Model 
For the Bay of Bengal, all coastal boundaries (except ݕ = 0) are coastal sidewalls. The 
condition of zero normal velocity at these boundaries is given by  
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Conceptually, a radiation condition is applied at the southern open-sea boundary to yield  
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6. Coordinate transformation  
To simplify the numerical treatment of an irregular boundary configuration we introduce 
a coordinate transformation that is similar to that used by Johns et al. (1981) in [19] and 
which is based on a new set of independent variables ݕ,ߦ, and ݐ, where  
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Thus, the western and eastern boundaries correspond to ߦ = 0 and	1, respectively. Taking 
,ݕ,ߦ   as our new, independent coordinates, Equations (28) to (30) may be rewritten as	ݐ
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7. Numerical procedure 
We define discrete coordinate points in the (ߦ −  .plane, i.e	(ݕ
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= 	 కܺߜ = (ܺ௜ାଵ,௝
௣ −	ܺ௜ିଵ,௝

௣ )/(2Δߦ)			                                     (48) 

																																	డ௑
డ௬

= 	 ௬ܺߜ = (ܺ௜,௝ାଵ
௣ −	ܺ௜,௝ିଵ

௣ )/(2Δݕ)		  

averaging operators as 

																																	 തܺక =
1
2
ቀܺ௜ାଵ,௝

௣ + 	 	ܺ௜ିଵ,௝
௣ ቁ 

																																 തܺ௬ = ଵ
ଶ
ቀܺ௜,௝ାଵ

௣ + 	ܺ௜,௝ିଵ
௣ ቁ                                                                    (49) 

																																 തܺక௬ = 		 തܺకതതതത
௬
	  

and a shift operator as  



50 Sarkar et al. 

௧ܺܧ																																				 = 	ܺ௜	,௝
௣ାଵ                                                                               (50) 

Equation (37), the equation of continuity, is then discretized as 
																																	Δ௧(ܾߞ) 	+ క̅ߞకൣܾ൫ߜ	 + 	ℎ൯ܷ൧ 	+ 		 ௬ߜ ෤ݒ	 	= 0                                      (51) 

This equation results in an updating procedure to compute the elevation at the interior ߞ 
points and is consistent with mass conservation in the system. The elevations at	݆ = 1 
and	݅ = 2, 4, … , ݉− 2 are determined by Equation (34). In practice, this is applied at 
݆ = 2 and replaced by  

																																ଵ
ଶ
	൬ ௚
௛೔,మ
൰
భ
మ
൫ߞ௜,ଵ

௣ାଵ + 	 ௜,ଷߞ
௣ାଵ൯ + ௜,ଶݒ	

௣ 		= 0                                                 (52) 

thus leading to an updating procedure for the elevation at the western open-sea boundary 
of the form  

௜,ଵߞ																																
௣ାଵ 				= ௜,ଷߞ		−

௣ାଵ 			− 2	 ቀ௛೔,మ
௚
ቁ
భ
మ ௜,ଶݒ

௣                                         (53) 

Similarly, the elevations at ݆ = ݊ and ݅ = 2, 4	, … ,݉− 2	 are determined by Equation 
(33), which takes the form  

௜,௡ߞ																																
௣ାଵ 				= ௜,௡ିଶߞ		−

௣ାଵ 	+ 2	 ቀ௛೔,೙షభ
௚

ቁ
భ
మ ௜,௡ିଵݒ

௣                                (54) 

The elevation along the southern open-sea boundary, ߦ = 1, is determined by Equation 
(43), which yields 

௠,௝ߞ																																	 
௣ାଵ 				= ௠ିଶ,௝ߞ		−

௣ାଵ 	+ 2	 ቀ
௛೘షభ,ೕ

௚
ቁ
భ
మ 	 ௝ܾܷ௠ିଵ,௝

௣                                 (55) 

This equation returns updated elevations for ݅ = ݉. Elevations along the coast at ݅ = 1 
are not carried through in our computational scheme. These are determined by linear 
extrapolation from the adjacent ߞ points using  

ଵ,௝ߞ																																		
௣ାଵ 				= ଵ

ଶ
ቀ3	ߞଶ,௝

௣ାଵ ସ,௝ߞ	−
௣ାଵቁ                                         (56) 

Equation (38) is discretized as  

 Δ௧ݑ෤ 	+ 	 	కൣߜ ഥܷకݑ෤തక൧ + కݒ̅	௬ൣߜ		 ෤ത௬൧ݑ	 	− ෤̅క௬ݒ݂ = క̅ߞ௧ൣ൫ܧ݃−	 + ℎ൯ߜక +൧	ߞ	 	௕	்ೣ
ఘ
	                                           

                                                          −	
௖౜ቂ௨మା൫௩ത഍೤	൯

మ
ቃ
భ
మ	ா೟(௨෥)

ா೟൫఍ത഍ା௛൯
                                             (57)                                                   

It is used to update	ݑ෤  at the ݑ points. Updated values of	ݑ may then be obtained by 
applying Equation (41),  

௜,௝ݑ                                             
௣ାଵ = 	

௨෥೔,ೕ
೛శభ

௕ೕ(఍೔,ೕ
ುశభതതതതതത	഍ା	௛೔,ೕ)

                                       (58) 

Equation (57) is applied for ݅ = 3, 5, … ,݉− 1 and		݆ = 3, 5, … ,݊ − 2. With the help of 
Equation (42) the boundary value of	ܷ at		݅ = 1, referenced by the averaging operator in 
Equation (57) is identically zero. When applied at	݅ = ݉− 1, the averaging operator in 
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Equation (58) references values of	ܷ outside the analysis area and, to overcome this 
difficulty, an appropriate one-sided extrapolation of ߜక is used. Similarly, when Equation 
(43) is applied at ݆ = 3 and		݆ = ݊ − 2, the averaging operator references values of ݑ at 
݆ = 1 and ݆ = ݊ and, at these positions, we also use a one-sided definition of 	ߜ௬. This 
way, values of ݑ෤ 	(or	ݑ) may be updated at all interior ݑ points. 
A similar discretization scheme is applied to Equation (39), whose finite-difference form 
may be written as  

Δ௧ݒ෤ 	+ 	కൣߜ	 ഥܷ௬ݒ෤̅క൧+ 		 ௬ݒ̅	]௬ߜ [෤̅௬ݒ	 + ෤തక௬൧ݑ௧ൣ݂ܧ

= ௧ܧ݃−	 ൤ܾ(ߞ௬̅ + ℎ)ߜ௬ ߞ	 − ൬
߲ܾଵ
ݕ߲

	+ ߦ	
߲ܾ
ݕ߲
	൰ ௬̅ߞ) + 	ℎ	)ߜకߞక̅௬ 	൨ 

																																																															+ 	
௕	 ೤்
ఘ
	−

௖౜ቂ	൫௨ഥ഍೤	൯
మ
ା௩మ	ቃ

భ
మ	ா೟(௩෤)

ா೟൫఍ത೤ା௛൯
	                   (59)  

This equation is used to update ݒ෤ at the ݒ	points. Updated values of ݒ may then be 
determined by applying Equation (41) 

௜,௝ݒ                          
௣ାଵ = 	

௩෤೔,ೕ
೛శభ

௕ೕ(఍೔,ೕ
ುశభതതതതതത	೤ା	௛೔,ೕ)

                                                     (60) 

Equation (59) is applied for ݅ = 2, 4, … ,݉− 2 and  ݆ = 2, 4, … ,݊ − 1. One-sided 
definitions of 	ߜ௬ are used when ݆ = 2 and ݆ = ݊ − 1. Once ݑ and ݒ have been updated, 
ܷ may also be updated using Equation (40), whose discretized form may be written as  

																																				ܷ = ଵ
௕
	ቂ	ݑ − ቀ	డ௕భ

డ௬
+ ߦ	 డ௕

డ௬
	ቁ  ௬ቃ                                                   (61)	కݒ̅

8. Results and discussion 
In this paper, we analyzed the characteristics of the severe cyclone Sidr-2007, whose 
track is shown in (Fig. 1). Adopting an actual duration of 18 hr, we obtained a simulated 
peak surge value of 6.20 m, a radius of maximum wind (ܴ୫ୟ୶) of 40 km, and a pressure 
drop of 64 hPa (Fig. 2). However, in the fast-moving case, the cyclone’s duration was 12 
hr, while we obtained a maximum surge value of 4.28 m (Fig. 3). We also considered a 
slow-moving alternative that lasted 24 hr. The simulated peak surge for a cyclone of the 
same intensity as Sidr-2007 was 6.34 m (Fig. 4). Therefore, we conclude that the surge 
heights of severe cyclones are comparatively lower for faster-moving systems and higher 
for more slowly moving systems. 
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Figure 1:  Track of the severe cyclone Sidr-2007. (S)CS(H): (Severe) Cyclonic Storm (Hurricane). 
(DD): (Deep) Depression 

For cyclone land falls in different coastal zones, we obtained different results for the 
surge heights of severe cyclones of the same intensity as Sidr-2007. We considered three 
different coastal shapes, in particular convex, concave, and complex. Depending on the 
geometric shape, the resulting surge height varied significantly. In the eastern coastal 
zone, particularly at our investigations point location of (22.50 °N, 91.80 °E), the coastal 
shape is convex and the simulated peak-surge value was 3.84 m (Fig. 5). In the central 
coastal zone, specifically at (22.20 °N, 90.70 °E), the coastal shape is concave and the 
simulated maximum surge value was 4.20 m (Fig. 6). Similarly, in the western coastal 
zone, at (21.90 °N, 89.20 °E), the coastal shape is complex and our simulated maximum 
surge was 3.85 m (Fig. 7). Thus, a concave coast will experience a significantly higher 
storm surge than a convex coast. 

 
 

 

Figure 2: Storm surge for the 
severe cyclone Sidr-2007 

Figure 3: Storm surge for fast-
moving cyclone of similar 
intensity as Sidr-2007. 

Figure 4: Storm surge for 
slow- moving cyclone of 
similar intensity as Sidr-2007 
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Figure 5: Storm surge for a 
cyclone of the same intensity 
as Sidr-2007, land fall in the 
eastern coastal zone 

Figure 6: Storm surge due to a 
cyclone of the same intensity as  
Sidr-2007, making land fall in 
the western coastal zone 

Figure 7: Storm surge due to a 
cyclone of the same intensity 
as Sidr-2007, making making 
land fall in the central zone. 

Conclusion 
The severe cyclone Sidr-2007, which developed in the northern part of the Bay of 
Bengal, was selected to simulate characteristics such as its structure, intensity, and 
movement. The location of the highest storm surge depends on the duration and angle of 
landfall, as shown in this paper. Through this simulation, it was shown that the central 
coastal zone is the most vulnerable region for storm surges in Bangladesh because of its 
physical shape. It was also shown that the resulting storm surge is higher for slowly 
moving storms than for the actual system, and lowers for fast-moving systems. The 
location of the highest surge depends predominantly on the angle of landfall. Cyclones of 
similar intensity generate surges of different amplitudes, depending upon the angle of 
landfall at a particular location. A concave coast will experience a higher surge than a 
convex coastal zone. 
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