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ABSTRACT 
In this paper, surfaces of positive constant curvature and those of negative 
curvature are studied. In certain cases, a very few important structures of 
this class of surfaces have been obtained.  
Keywords: Positive curvature, negative curvature, isometric mapping, 
psudosphere, semigeodesic parameterization, local structure. 

1. Introduction 
Investigations on properties of various types of surfaces are made in [2], [4] and 
[5]. In some cases, surfaces of constant curvature K (K being greater than zero, 
equal to zero and less than zero) play important role in such type of study. The 
case when 0=K , the surfaces belong to a particular class called the surfaces of 
vanishing curvature or flat surface, is studied recently in [1]. Almost similar 
study for another type of surfaces is made by the author of [3]. This paper deals 
with the study of those surfaces for which the constant curvature 0≠K  i.e., 
when K  may be either greater than zero or, less than zero.  
Now, some of the necessary definitions and preliminaries are recalled in the 
following. A point Sp ∈  is said to be an elliptic point, a hyperbolic point and a 
parabolic point if ,0>K  0<K  and 0=K hold respectively.  

Consider an embedded surface S and let every )3,2,1( =ixi  be the Cartesian co-
ordinates of any Sp ∈ . Then there are parameterizations 2,1;)( == ααuxx , 
having 11 uu = , .2 constu =  and ,.1 constu =  22 uu =  as associated families of 
paths called the parametric net of the parameterization. If g defines a differentiable 
tensor field with components Eg =11 , Fgg == 2112 , Gg =22 , where E, F, G are 
the 1st fundamental coefficients and if ∈  is introduced in such a way that 

),,(),( wvNwv =∈ , where )(, STwv p∈ and N  being the unit normal to S, there 
corresponds an anti-symmetric tensor with components given by 
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),,(),( βαβααβ xxNxx ==∈∈  so that 2
1

2112 )][det(g=∈−=∈  and 02211 ==∈∈ . Also, 

concepts about the gauss map or the spherical image, the Weingarten transformation and 
equations, 2nd fundamental forms and magnitudes and Gaussian curvature are supposed 
to be known. If b is the symmetric bilinear map →× )()(: STSTb pp R so that there 
associated a symmetric two-times covariant tensor at Sp ∈  with components given 
by αβαββαβαβααβ xNxNxNxxlxxbb ⋅=⋅−=⋅−=⋅== ),( , then b defines a 

tensor field with NbMbbLb ==== 22211211 ,, . If the Weingarten transformation l  is 
defined as vkvl =)( , k being some scalar and v  an eigenvector, then the corresponding 
eigenvalues k  are called the principal curvatures. Combining the above definitions, the 
principal curvature k can be given by the equation 0)(det =− γβγβ gkb of second 
degree in k . Then (i) the sum of the two values of k , denoted by H , is called the mean 
curvature of S at Sp ∈ , and (ii) the product of the two values of k , denoted by K , is 
called the total curvature or Gaussian curvature of S at .Sp ∈  This H and K must 
satisfy 02 =+− KkHk , )(ltacebgH == αβ

αβ , and 

)(det)det(/)det( lgbK == αβαβ . Simply, Gaussian curvature is termed curvature. If 
0>K , the curvature is called positive curvature, and if 0<K  the curvature is called 

negative curvature. 
Theorem 1.1[1] The curvature of a surface depends only on the first fundamental 
form of the surface. 

Two surfaces S and 'S  are said to be isometric if there exists a correspondence between 
their parameters such that the metric of S  transforms into the metric of 'S . The 
correspondence itself is called an isometry or an isometric mapping. A local 
parameterization x  of S is called semigeodesic if the first fundamental tensor satisfies the 
conditions ,0,1 211211 === ggg  w. r. to that parameterization. 

In the basis of the above definitions, there is immediately the following result:  

Proposition 1.2 For every point Sp ∈0 and for every geodesic arcC through 0p , 
there is a semigeodesic parameterization of S at 0p such that C  belongs to the 

parametric lines .2 constu =  

2. Surfaces of Non-zero Constant Curvature 
There is already encountered the structures of surfaces of vanishing curvature in 
[1]. Now, in the following, structures for the surfaces with non-vanishing curvature 
have been made locally.  
Firstly, a structure of cyclic surfaces having non-zero constant curvature can be 
given as follows: 
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Theorem 2.1 All cyclic surfaces in R3 with non-zero constant curvature are just 
surface of revolution. 
Proof. By following the proof of the theorem 2(i) in [3], one can easily prove this 
theorem. 

Consider a point Sp ∈ and a semigeodesic parameterization ),( 21 uux  at p. Then  
0,1 1211 == gg and we shall also assume, as in the remark of Proposition 1.2, that 

0)(,1),0( 01
222

22 1 =
∂
∂

=
=uu

gug  …….. (A). By means of this parameterization and the 

Gauss Theorema Egregium, one obtain 1122
22

).(1 g
g

K −=   so that if .constK = , 

the differential equation 0)( 221122 =+ gKg  is found. Fore 0>K , the general 
solution of it has the following form: 

)sin()()cos()( 12
2

12
122 uKucuKucg +=  and if the initial data (A) are 

assumed, then )(cos 12
22 uKg = . Again, if 0<K , the solution of the above 

differential equation  with data (A) is )(cos 12
22 uKhg −= . 

The above information shows that the value of .constK = defines completely the first 
fundamental form of the surface. Two surfaces of the same constant curvature have the 
same first fundamental forms at corresponding points if one considers local 
correspondences between the two surfaces defined by the equality of the semigeodesic 
parameters of the surfaces. Because of this fact, it can be stated as follows: 
Theorem 2.2 Any two surfaces of the same constant curvature are locally isometric, and 
have the same intrinsic geometry. 
The above theorem helps one to look for some standard models of surfaces of constant 

curvature. The principal curvatures at every point of a sphere are both equal to r
r

,1
 

being the radius of the sphere. Therefore, the total curvature is 2

1
r

, and so if 0>K , the 

sphere of radius 
K
1

 can be taken as the standard model of a surface of constant 

positive curvature. Consequently one has the following theorem: 
Theorem 2.3 Every surface of constant positive curvature is locally isometric to a sphere. 
A semi geodesic parameterization of a sphere of radius r is provided by the equation  

,coscos 211 uurx =  ,sincos 212 uurx = 13 sin urx = followed by the parameter 

transformation 2
~
21

~
1 , uruuru == . This suggests to look for a model of the case 

0<K  in the class of the surface of revolution. 
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Consider the surface of revolution defined by  

,cos)( 211 uuhx =  ,sin)( 212 uuhx =  )( 13 ukx = …..(B), where 

),exp()(
1

1

r
uruh =  0;)]2exp(1[)(

2
1

0

1
1

1

>−= ∫ rdt
r
uuk

u

. The surface (B) is termed 

pseudosphere. Then for the surface under invesigation one has obviously the result: 
2

221211 ,0,1 hggg === . Hence (B) is a semigeodesic parameterization, and 

formula (A) yields 2

1
r

K −= . So the description can be stated as the following: 

Theorem 2.4 Every surface of constant negative curvature is locally isometric to a 
pseudosphere.  

Theorem 2.5 Let S be a compact surface in 3E . Then there is at least one point 
Sp ∈  such that 0)( >pK . 

Proof. Since S is compact it is bounded, and one can define r as the infimum of the radii 
of the closed disks containing S with centre at the origin, then Φ≠∩Σ Sr , rΣ  being 
the sphere of radius r centered at the origin. If Sp r ∩Σ∈ , then rΣ  and S have the 
same unit normal vector N  at p. Otherwise, S gets out from the disk bounded by rΣ  
and, therefore, the same tangent plane. In this situation, if v  is a common tangent of S 
and rΣ , and if α  is  the plane  defined by ),( Nv , then α  cuts S and rΣ  by curves 
whose normal curvatures exactly have the same sign. Because of the fact that S is interior 

to rΣ  and 
r
1

 is the normal curvature of any curve on rΣ ,  the section α∩S , of course, has a 

large curvature nk  i.e.,  
r

kn
1|| ≥ .  So applying this to the principal vectors v  of S at p, finally one 

gets 221
1)()()(
r

pkpkpK ≥=  so that 0)( >pK . 

Conclusion 
The local geometric structures of the surfaces with non-zero curvature have been 
obtained completely through the theorem 2.3 and theorem 2.4 in the last section. 
Moreover, from the last theorem 2.5, it can be concluded that there is no complete 
surface in 3E  with strictly constant negative sectional curvature. 
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