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ABSTRACT 
In this paper, Legendre piecewise polynomials are used to approximate the solutions 
of linear Volterra integral equations. Both second and first kind integral equations 
with regular as well as weakly singular kernels are considered. A matrix formulation 
is given for linear Volterra integral equations by the technique of Galerkin method. 
Numerical examples are considered to verify the accuracy of the proposed 
derivations, and the numerical solutions in this paper are also compared with the 
existing methods in the published literature. 
Keywords: Volterra integral equation, Galerkin method, Legendre polynomials 

1. Introduction 
In order to find out the numerical solutions of Integral solutions we have seen that there 
are many methods to solve analytically but a few methods for solving numerically 
various classes of integral equations [1] are available. Continuous or piecewise 
polynomials are incredibly useful as mathematical tools since they are precisely defined. 
They can be differentiated and integrated without difficulty. Bernstein’s approximation 
were used in [2] by Maleknejad et al to find out the Numerical solution of Volterra 
integral equations. Bhattacharya and Mandal in [3] and Shirin and Islam in [4] studied on 
Volterra and Fredholm Integral Equations Using Bernstein Polynomials to find out their 
numerical solutions. Shahsavaran in [5] to solve Volterra integral equations of first and 
second kind Using Block – Pulse Functions and Taylor expansion by Collocation 
Method. However, in this paper, we have solved Volterra integral equations of first and 
second kind numerically by the technique of very well-known Galerkin method [6] and 
Legendre piecewise polynomials [7] are used as trial function in the basis.   

2. Legendre Polynomials  
The general form of the Legendre polynomials [7] of nth degree is defined by  
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The first few Legendre polynomials are given below : 

1)(0 =xP ,  xxP =)(1 ,  )13(
2
1)( 2

2 −= xxP ,  )35(
2
1)( 3

3 xxxP −=  

)33035(
8
1)( 24

4 +−= xxxP ,   )157063(
8
1)( 35

5 xxxxP +−=  

)5105315231(
16
1)( 246

6 −+−= xxxxP , )35315693429(
16
1)( 357

7 xxxxxP −+−=  

)3512606930120126435(
128

1)( 2468
8 +−+−= xxxxxP  

)3154620180182574012155(
128

1)( 3579
9 xxxxxxP +−+−=  

)633465300309009010939546189(
256
1)( 246810

10 −+−+−= xxxxxxP  

Now the first six Legendre polynomials over the interval [-1, 1] are shown in Fig. 1(a), 
and the remaining six Legendre polynomials are shown in Fig. 1(b). 

  
Fig. 1(a). Graph of first 6 Legendre polynomials    Fig. 1(b). Graph of last 6 Legendre polynomials 
                       over the interval [-1,1]                                                over the interval [-1,1] 

3. Formulation of Integral Equation in Matrix Form 
We consider the Volterra integral equation (VIE) of the first kind [1] given by  

bxaxfdtttxk
x

a

≤≤=∫ ,)()(),( ϕ                                                                                   (2) 

where, )(xϕ  is the unknown function, to be determined, ),( txk  the kernel, is a 
continuous or discontinuous and square integrable function )(xf being the known 
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function satisfying 0)( =af . 

Now we use the technique of Galerkin method, [Lewis, 6], to find an approximate 
solution )(~ xϕ  of (2). For this, we assume that  
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)()(~ϕ                      (3) 

where, )(xPi are Legendre polynomials of degree i  defined in equation (1) and ia  are 
unknown parameters, to be determined. Substituting (3) into (2), we get 
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Then the Galerkin equations are obtained by multiplying both sides of (4) by )(xPj  and 
then integrating with respect to x  from a to b, we have  
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Since in each equation, there are two integrals. The inner integrand of the left side is a 
function of x , and t  and is integrated with respect to t  form .ttoa  As a result the outer 
integrand becomes a function of x  only and integration with respect to x  from 

btoa yields a constant. Thus for each nj ,,1,0 KK= , we have a linear equation with 
1+n  unknowns ia , ni ,,1,0 KK= .  

Finally, equation (5) represents the system of 1+n linear equations in 1+n unknowns, are 
given by 
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njdxxfxPF
b

a
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Now the unknown parameters ia  are determined by solving the system of equations (6) 
and substituting these values of parameters in (3), we get the approximate solution )(~ xϕ  
of the integral equation (2). 
Now, we consider the Volterra integral equation (VIE) of the second kind [1] given by 

bxaxfdtttxkxxc
x

a

≤≤=+ ∫ ,)()(),()()( ϕλϕ               (7) 
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where )(xϕ  is the unknown function to be determined, ),( txk , the kernel, is a continuous 
or discontinuous and square integrable function, )(xf  and )(xc being the known function 
and λ  is the constant. Then applying the same procedure as described above, we obtain  
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          njdxxfxPF
b

a
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Now the unknown parameters ia  are determined by solving the system of equations (8) 
and substituting these values of parameters in (3), we get the approximate solution 

)(~ xϕ of the integral equation (7). The absolute relative error for this formulation is 
defined by  

Absolute Relative Error 
)(

)(~)(
x

xx
ϕ

ϕϕ −
=  

4. Numerical Examples 
In this section, we explain both first and second kind Volterra integral equations, with 
regular and weakly singular kernels, which are available in the existing literature [1-3, 5] 
to verify the accuracy of our formulation presented in the previous section. The 
convergence of each linear Volterra integral equations is calculated by  

δϕϕ p)(~)(~
1 xxE nn −= +  

where, )(~ xnϕ denotes the approximate solution by the proposed method using nth degree 
polynomial approximation and δ  varies from 610−  for 10≥n . 
Example 1: Consider the VIE of first kind (regular kernels) [1, pp 20] 

∫ ≤≤=−
x

tx xxdtte
0

10,)(ϕ                  (9) 

The exact solution is xx −= 1)(ϕ . Using the formula derived in the previous section and 
solving the system (6) for 1≥n , we get the approximate solution is xx −= 1)(~ϕ , which 
is the exact solution. 
Example 2: Consider an Abel’s integral equation (VIE of first kind with weakly singular 
kernels) of the form [2] 
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∫ ≤≤+−=
−

x

xxxxdtt
tx0

32 10)4856105(
105

2)(
)(

1 ϕ            (10) 

The exact solution is 1)( 23 +−= xxxϕ . Results have been shown in Fig.2 for 10=n . 
The absolute relative errors are obtained in the order of 1610−  for 10=n . On the 
contrary, the accuracy is found nearly the order of 710−  by Maleknejad et al in [2] for 

10=n  using Bernstein approximation. 

 
Fig.2: Absolute relative error of example 2 for 10=n  

Example 3: Consider an Abel’s integral equation (VIE of first kind with weakly singular 
kernels) of the form [3] 

∫ ≤≤=
−

x

xxdtt
tx0

5 10,)(
)(

1 ϕ                  (11) 

The exact solution is 2/9
315
1280)( xx πϕ = . Results have been shown in Fig.3 10=n . The 

absolute relative errors are found in the order of 710− for 10=n , while the accuracy 

were found in [3] by Bhattacharya and Mandal nearly the order of 710− for 10=n  using 
Bernstein polymomials. 

 
Fig 3: Absolute relative error of example 3 for 10=n  
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Example 4: Consider the weakly singular VIE of second kind [3] 

∫ ≤≤−=
−

−
x

xxxdtt
tx

x
0

7 10),
6435
40961()(

)(
1)( ϕϕ             (12) 

The exact solution is 7)( xx =ϕ . Results have been shown in Fig.4 for 10=n .The 
absolute relative errors are obtained in the order of 1610−  for 10=n .On the contrary, the 
accuracy is found nearly the order of 710− for 10=n  in [3] by Bhattacharya and Mandal 
using Bernstein polynomials. 

 
Fig 4: Absolute relative error of example 4 for 10=n  

Example 5: Consider the weakly singular VIE of second kind [5] 

∫ ≤≤+=
−

+
x

xxxdtt
tx

x
0

2
5

2 10,
15
16)(

)(
1)( ϕϕ                         (13) 

The exact solution is 2)( xx =ϕ . Using the formula derived in the previous section and 
solving the system (8) for 2≥n , we get the approximate solution is 2)(~ xx =ϕ , which is 
the exact solution. On the contrary, the accuracy is found nearly the order of 310−  for 

32=n  in [5] by Shahsavaran using Block – Pulse Functions and Taylor Expansion. 

5. Conclusions 
The objective of this paper is to present an efficient and accurate method to solve 
Volterra integral equation. In this paper, we have developed Galerkin method to 
approximate the solution of Volterra integral equation of first kind, second kind and also 
singular types of these equations. In this method we have used Legendre polynomials as 
trial functions in the basis. The proposed method is applied to solve a several number of 
Volterra integral equations both second and first kind with regular, as well as weakly 
singular kernels. The numerical results obtained by the proposed method are in good 
agreement with the exact solutions. In this paper, we may note that the numerical 
solutions coincide with the exact solutions even a few of the polynomials are used in the 
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approximation, which are shown in examples 1 & 5. We also notice that the error terms 
are almost smaller than that of [2, 3, 5], which are shown in Fig. [2-4].  
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