GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 79-93

TL-IDEALS OF TL-SUBNEAR-RINGS

J.D. Yadav.
S.G.M.College, Karad, Maharashtra, India
Email: jdy1560@yahoo.co.in

Y.S. Pawar.
Department Of Mathematics,
Shivaji University, Kolhapur, Maharashtra, India
Email: y_s pawar@yahoo.com

Received 20.07.2011 Accepted 08.01.2012

ABSTRACT

The aim of this paper is to introduce and study TL-ideals of TL-subnear-rings. Also we define T-
sum, T-difference and T-product of L-subsets of a near-ring R and obtain their properties.
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1. Introduction

Near-Ring is a generalized structure of a ring. The theory of fuzzy sets was introduced by
Zadeh [15] .The fuzzy set theory has been developed in many directions by the research
scholars. Goguen [9] introduced the concept of L-fuzzy sets. Rosenfeld [13] first
introduced the fuzzification of the algebraic structures and defined fuzzy subgroups.
Anthony and Sherwood [3], Asaad and Abou-zaid [4], Akgul [2], Das [6], Dixit, Bhambri
and Kumar [7] contributed the theory of fuzzy subgroups. Fuzzy ideals of rings are first
defined by Liu. [11] and the study was continued by many other researchers to extend the
concepts.

Abou-Zaid [1] introduced the notion of fuzzy R-subgroups and fuzzy ideals of near-rings.
Dutta and Biswas [8] introduced fuzzy and fuzzy cosets of fuzzy ideals of near-rings.
Cheng, Mordeson and Yandong [5] have discussed TL-subnear-rings and TL-ideals of a
ring.

As in ring theory, it is interesting to fuzzify some substructures of near-ring. Hence our
aim in this paper is to study TL-ideals of TL-subnear-rings and to characterize them.

2. Preliminaries

We recall some definitions for the sake of completeness.

Definition (2.1) [10]:By a near-ring we mean a non-empty set R with two binary
operations ‘+’ and ‘-’ satisfying the following axioms:

(1) (R, +) is a group,
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(i) (R, -) is a semi-group,
(i) x- (y+z)=xy+x 2z forall x,y,z € R.

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We
will use the word “near-ring” instead of “left near-ring”. We denote xy instead of x- y.
Note that x0 = 0 and x (—y) =—xy, but 0x # 0 for x, y € R.

Definition (2.2) [1, 8]: An ideal I of a near-ring R is a subset of R such that
(1) (I, +) is a normal subgroup of (R, +),
(i) RIc,
(i) (r+i)s-rs e I forallie I andr, seR.

Note that if [ satisfies (i) and (ii) then it is called a left ideal of R.

If I satisfies (i) and (iii) then it is called a right ideal of R.

Definition (2.3): A binary operation T on a lattice L is called a t-norm if it satisfies the
following conditions:

(1) T(T (a,b),c)=T (a, T (b, ¢)),
(1) T (a,b) =T (b, a),
(i) b<c = T(a,b) < T(a,c),
(iv)T(a,1)=a,
foralla,b,c € L.
Definition (2.4): A fuzzy set p in a near-ring R is a function p: R — [0, 1].

Definition (2.5): Let p be a fuzzy set in a near-ring R and t €[0, 1].Then the crisp set
= {xeR|u(x)>t} is calleda t-level subset or t-cut of p.

3. TL-ideals of TL-subnear-ring
Let R be a near-ring and L be a complete lattice.

Definition (3.1)[14]: An L-subset p of a near-ring R is called a TL-subgroup of R if it
satisfies the following conditions:

HuO)=1,

(i) p (-x) 2 p(x),

(ii1) p (xty) = p(x) T ply).
for all x,yeR.

Definition (3.2)[14]: An L-subset p of a near-ring R is called a TL- subnear-ring of R if it
satisfies the following conditions:
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Ou@©)=1,

(i) p (-x) 2 pu(x),

(i) p (x+y ) 2 pu(x) Tp(y ),
((V)p(xy)>w(x) Tu(y) forall x,y € R.

Remarks (3.3): (i) When T= A, a TL-subnear-ring is called L-subnear-ring.

(i1)The set of all TL- subnear-rings of R and set of all L- subnear-rings of R are denoted
by TL(R) and L(R) respectively.

(iii) If L = [0, 1], TL- subnear-ring and L- subnear-ring of R are known as T-fuzzy
subnear-ring and fuzzy subnear-ring of R respectively.

Definition (3.4)[14]: An L-subset p of a near-ring R is called a TL-ideal of R if
Hu =1,
(i) p (-x) 2 u(x),
(iif) p (x +y) 2 px) T w(y),
(iv) uly +x—y) 2 n(x),
(V) (xy) = u(y)s
(V) p((x + 1)y — xy) = p(i) for
forall x,y,i e R.
Remarks (3.5) : (i) If pu satisfies (i), (ii), (iii), (iv) and (v) then it is TL-left ideal of R and
if u satisfies (i), (i), (iii), (iv) and (vi) then it is TL-right ideal of R.
(1) When T= A, a TL-left ideal and TL-right ideal are known as L-left ideal and L-right
ideal respectively.
(ii1) The set of all TL- left ideals and TL-right ideals of R are denoted by
TLI;(R) and TLI, (R) respectively.

(iv) When T= A, set of all L- left ideals and L-right ideals of R are denoted by
LI, (R) and LI, (R) respectively.
(v) When L = [0, 1] TL-left ideals and TL-right ideals are known as T-fuzzy left ideals

and T-fuzzy right ideals of R respectively and when T= A, they are known as fuzzy
left ideals and fuzzy right ideals of R respectively.

Now we define TL-ideals of TL-subnear-rings:

Definition (3.6): A function u: R — L is called an L-subset of R.

The set of all L-subsets of R is called the L-power set of R and is denoted by L*.
Definition (3.7): Let pe L® , y eTL(R) and p <. Then
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(1) pisaTL-left ideal of y if
(i) pisanormal TL-subgroup of (R,+),
(i) p(xy)=yx)T w(y) for all x,y €R.
(2) pisaTL-right ideal of'y if
(i) pisanormal TL-subgroup of (R,+),
(1) p((x+)y-xy)>w(i) Ty(y) forallx,y,ieR.
(3) pissaid to be TL-two sided or TL-ideal of y if
(i) pisanormal TL-subgroup of (R,+),
(i1) pis both TL-left and TL-right ideal of'y.
Remark (3.8): When T= A these ideals will be called as L-left, L-right and

L-two sided ideals of y respectively.

Theorem (3.9): An L-subset pu € L® is a TL-right (resp.TL-left) ideal of R if and only if p
is a TL-right (resp.TL-left) ideal of the TL-subnear-ring 1g.

Proof: Part (I): Let p € L® be a TL-right ideal of R.
Then p(( x+i)y -xy) > (i) <forall x,y,i €R.

Now (i) T Ie () < p(i) A e (v) = u(i).
= u(1) T Ir (NS p(1) < p((xH)y -Xy).
Le. W(xH)y-xy)>u(i) T 1g (y) for all x, y, ieR.
Hence p is a TL-right ideal of the TL-subnear-ring 1.
Conversely let p be a TL-right ideal of the TL-subnear-ring 1.
Therefore p(( x+i)y -xy) > u(i) T 1x (y) forall x, y, 1 €R.
= p((xH)y -xy) 2 p(1) T Ir (y) = p(1).
= W(x+H)y -xy)>u(i) forall x,y,i eR.
Hence p is a TL-right ideal of R.
Part (I1): Let peL® be a TL-left ideal of R.
Then p is a normal TL-subgroup of (R, +) and p (xy) > w(y).

Therefore 1g (x) T p(y) < 1r(x) A n(y)=pu(y) forall x,y eR.

= e (X) Tpy)=py)=pxy).
Hence p is a TL-left ideal of the TL-subnear-ring 1g.
Conversely let p be a TL-left ideal of the TL-subnear-ring 1z.
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Therefore p (xy) = 1r () T p (y) = p (y)-
Hence p is a TL-left ideal of R. ]

Theorem (3.10): Let pe L® and y € L(R).If p is L- right (resp.L-left) ideal of y then for
every a€ L, u,is a right (resp. left) ideal of vy,.

Proof: Part (I): Let p be L-right ideal of vy .

Then p ((x+1) y -xy) = p (1) Ty (y).

Letx € p,and ye v,.

Thenx € pyandye y,. = p(x),y(y)>a.

Therefore p (y+x-y )=p(x)>aforallx € p, and ye v,.
= y+Xx-y € U, for all xep, and ye v,.

Hence p, is a normal L-subgroup of (y,,1).

Now letie p, and x,y€ v,

Thenp(i)>a andy(x)>a,y(y)>a.

since p(( x+)y -xy) = p(i) Ay (y) = a.

Therefore (x+i) y —xy € p, foralli € p, and X, y€ ¥,.

Hence p, s a right ideal of y,.

Part (I1): Let p be L- left ideal of .

Letx € p,and ye v,.

Thenx € w,and ye v, = wx), vy (y) > a.

Then pw(y+x-y) > w(x) >a for all x € p, and ye v,.

Therefore y+x-y € u, for all xep, and y€ v,.

Hence (u,,1) is a normal L-subgroup of (y,,t).

Now letye p,and x € vy,

Since p (xy) =7 (x) Ap(y)-

Therefore p (xy) >y (x) A n(y) >a.

Thus xye p, forally € p, and x € y,.

Hence p,is a left ideal of y,. [

Remark (3.11): The converse of the theorem is true only when pe L® is a normal L-
subgroup of (R, +).

Theorem (3.12): Let pe L®,yeL(R) and L be a chain. Then a necessary condition for p to
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be a L-right (resp.L-left) ideal of y is that for every ae L\{1}, u, is a right (resp. left)
ideal of Y(a]-

Proof: Part (1): Let p be a L-right ideal of y.Then

(1) 1 (0) =1 implies that O€ p, for every ae L\{1}.

(i) p (-x ) > p(x ) for x € ppy implies that - X € py .

(111) Let X,y € pp; . Then p(x ) >a, u(y ) >a,

But L is a chain, therefore either pu(x) > u(y) or w(y) > w(x).
Assume that pu(y) > w(x).

As pu(x +y) > u(x) A i(y) = i(x) > a. Therefore x +y € pp foralli € X,y € pp.
Hence py, is a L-subgroup of R.

(iv) If ppy is not normal then for some ae L\{1}, there exists y €R and x € p,; such that
y+X-y & Uy - Thus p(x )>a and p( y+x-y) < a.

Hence pu( y+x-y) < p (x ) and hence p is not normal which is a contradiction.
Thus py, is a normal subgroup of R for all ae L\{1}.

(v) Again if p, is not a right ideal of yj,) then for some ae L\{1}, there exists x,y €R and
1 € Uy such that ( x+)y -Xy & pa

Thus u(i) > a and u( (x+)y -xy) <a.

This implies that p is not L-right ideal.

Thus we get a contradiction.

Hence p ( (x+i)y -xy) >a foralli € pp and X, y €.
Hence p,is a right ideal of ).

Part (I1): Let u be a L-left ideal of'y.

Then as in part (I), (1), + )is a normal L-subgroup of (R,+).

Again if ) is not a left ideal of yj,) then for some ae L\{1}, there exists y € pp; and
X €Y[a Such that xye .

Then p(y) > a and p(xy) <a .Thus p(xy)< p(y)
Therefore xy¢ ) for y € pp ,Xx€yp) ,which is a contradiction.
Hence p, is a right ideal of vy, [

Theorem (3.13): Let pe L® and y € L(R) and L be dense. Then a sufficient condition for
u to be a L-right (resp.L-left) ideal of y is that for every ae L\{1}, ufis a right (resp. left)
ideal of y, .

Proof: Part (I): Let us suppose that for every ae L\{1}, p,is a right ideal of y,;
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(1) Clearly p (0) = 1.
(1) Take a< p (x).Then xe ppyimplies —Xx € ppy.

= un(x)>a=p(-x)>1 and p (x) > a.

=S pu-x)>pn(x)forallx € p .
(ii1) Now suppose X, Yy € U [q]
Let pu (x) Ap(y) > a.
Therefore p (x)>p(x) AR (Y).

= uX)>a=Xx € l.Similarly y € p [y

Hence x+y € p gyand so pu ( x+y ) > a.
Leta=p (X)AR(y).
Ifa=0then p(x+y)>0=p X)Apn(y).
If a> 0 then for any beL, b < a we observe that u [, is a right ideal of R
and X,y € u p7, implies that p(x+y ) € p by -
ie. W(xty)>b=pu(x+ty )= Vv{b/be L,b<aj}.
Since L is dense, V{b|be L,b<a} =a.
Therefore p (x+ty ) >a=p ((x)Ap(y) forall X,y € U (a.
(iv) Now lety € y[ and xe [y and let a > 0.

Then for any beL ,b < a we observe that (1 7 ,%) is a normal subgroup of (R,*), x €
implies p ( y+x-y ) > b.

Thus p (y+x-y) > V{b|be L, b <a}.

Since L is dense, V {b|be L,b<a} =a.
Therefore p (y+x-y ) > p (x) for all i € P, y € Yia)-
(v) Finally, letie p mand X, y € Y[a.

If a = 0 then clearly p ((x + 1) y-xy) > u (i).

If a> 0 then for any b € L, b <a we observe that p [ is a right ideal of y,jand x € p ),
implies p ((x+i)y-xy) > b.

Hence p ((x+i)y-xy) > V{b| be L, b<a}.

Since L is dense, V {b|be L,b<a} =a.
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Therefore p ((x+1) y-xy) >a=p (i) Ay (y).

Hence p ((x+i) y-xy) > n (i) Ay(y) for all x, y, 1 €R.

Thus p is a L-right ideal of vy.

Part (11): Let us suppose that i, is left ideal of y,; for every ae L\{1}

We shall prove the last condition which conforms that p is a L-left ideal of'y.

Letye p gjand xeyp;.Then p (y) > a and y(x) > a.

If a=0 then clearly p (xy) > 7(x) A p (y).

If a > 0 then for any beL, b < a we observe that p ,,; is a left ideal of y,and x € p )
implies p (xy) >b. Hence p (xy) > V {b|be L, b<a}.

Since L is dense, V {b|be L,b<a}=a.

Therefore p (xy) >a=7y(x) A p(y).

Hence p (xy) >a=7y(x) A n(y) forall x,y eR.

Thus p to be a L-left ideal of . ]
Theorem (3.14): Let ye TL(R) and p be a TL-left ideal of y.
Then Ry is a left ideal of Ry.

Proof: Let ye TL(R) and p be a TL-left ideal of .

Rp= {xeR| u(x) =1}, similarly Ry = {xeR|y (x ) = 1}.

We know that p <y and acL = p, < Y[y Therefore Ru < Ry.
Now first we shall prove that (Rp,+) is a subgroup of (R,+).
(i) Since W(0)=1,0 € Ru.

Hence Ry is a non-empty subset of R.

(i1) Let x € Ry

Then u(x) =1 and p (-x) > p(x) implies p (-x) = 1.

Therefore -x € Ry for all x € Ry.

(iii) Let x, y € Rp.

Then p(xt+y) = u(x) T w(y) = w(xt+y) = 1T1 = 1.

Therefore x+ye Ry for all X, ye Rp.

Hence (Rp,t) is a subgroup of (R,+).

(iv)Lety € Rand x € Rp.
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Since u(y+x-y) = w(x) and p(x) = 1, p(y+x-y) = 1.
Therefore y+x-ye Ruforally € R and x € R
Hence (Ry, +) is a normal subgroup of (R, +).
Similarly (Ry, +) is also a normal subgroup of (R, +).
Again since Ry < Ry, (Ry, +) is a normal subgroup of (Ry, +).
(v) Since p is a TL-left ideal of y, p(xy) > y(x) T w(y) for all x, y € R.
Letx € Ruandr € Ry.
Then w(x) =1 and y(r) = 1.
Therefore p (rx) >y(r) T p (x) = 1.
Hence rxe Ry forallre Ry and x € Rp.
ie. Ry Ruc Ry.
Hence Ry is a left ideal of Ry. ]
Similarly we can obtain the following theorem:
Theorem (3.15): Letye TL(R) and p be a TL-right ideal of .
Then Ry is a right ideal of Ry. ]

Theorem (3.16): Let p € TLI; (R) and y be a normal TL-subgroup of (R, +). Then uT y
is a TL-left ideal of y.

Proof: Let p e TLI,(R) and ye TL(R).

Clearly uTy <y and uTy is a TL-subgroup of (R, +).

Again uTy (y+x-y) = p(y+x-y) T y(y+x-y) = p(x) T y( x) = pTy(x).

Therefore pTy(y+x-y) > uTy(x) for all x, yeR.

Next uTy (xy) = p(xy) Ty(xy)= p(y) Tv(x) Ty(y) = v(x) T( uTy)(y) for all x, yeR.

Hence pTy is a TL-left ideal of 1. ]
Similarly we can prove the following theorem:

Theorem (3.17): Let u € TLI(R) and y be a normal TL-subgroup of (R, +). Then pTy is
a TL-left ideal of y ]

Theorem (3.18): Let &€ TL(R) and p,y be two TL-left ideals of § .Then p A y is a TL-
left ideal of &.

Proof: Let&e TL(R) and p ,y be two TL-left ideals of & .

Since p and y are TL-left ideals of &, p <&, y<&and so pA y <&.
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Hence p A y is a TL-subgroup of (R, +).
Again (1 A y) (Yx-y) = Wy+x-y) Ay (y+x-y)= w(x)Ay (x) = (0 A7) (x) , x €R.
(A Y) (xy) =p(xy) Ay (xy) 2 (Ex) T py)) AGX) Ty (¥)).

=) T (W(y) Ay () = &) T (AY) (y) for all x,yeR.

Hence pAy is a TL-left ideal of &. ]

Similarly we can prove the following theorem:

Theorem (3.19): Let £&e TL(R) and p,y be two TL-right ideals of § .Then pAyis a TL-
right ideal of &. ]
4. Homomorphism

The following definitions are well-known:

Definition (4.1): Let R and R' be two near-rings. A function f: R—R' is called a
homomorphism if for all X,y € R

(@) f(xty) =f£(x) + f(y),

(in) f (xy) = £ (x) £ (y).
We know that a one-one homomorphism is an isomorphism.
Definition (4.2) Extension Principle:

Let X and Y be two non-empty sets and f: X — Y be a function. Then f induces two
functions,

f: F(X)> F(Y)and £ F(Y) > F (X) which are defined as follows:
D [fW](y)= sup {p®)yj;ify=f(x),

Xy = f(x)
=0 ; otherwise.
2) [f'(1)] (x) =y (f(x); for all y € F (Y).

In the following theorem we prove that the homomorphic image of TL-left (resp.right)
ideal of R is a TL-left (resp.right) ideal of S:

Theorem (4.3): Let f: R —> S be a homomorphism of a near-ring R onto a near-ring S and
pu e TLI(R)( resp.p € TLI(R)).Then f (i) € TLI(S))(resp.n € TLI(S)).

Proof: Let f: R > S be a homomorphism of a near-ring R onto a near-ring S.
Letx, yeS.
Part (I): Let p € TLI(R).
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(i) Clearly f(u)(0')=1.
(if) FR)(-%) = V{ p(w)lweR, fw) = x}.
=V{ W-w)|-weR, f(-w) =x}.
>V { W(w)|weR, f(w) =x}.
= f(u)( x) for all xeS.
(iD) f()( x-y) = V{u(w)lweR, f{w) = x-y}
> VA{(u-v)u, veR, flu) =x ,f(v) =y}
> V)T p(Vu, v € R, f(u) =x f(v) =y}
> (V{n)fueR, flu) =x HT(V{p (V)| v € R, f(v) =y}
=f(uW)X)T f(n)(y) for all x,y € S.
(iii) f(p) (y+x-y) = V{n(w)lw R, fiw) =y +x -y}
= Vv{u(v+u-v)|uv eR, fu)=x .f(v)=y}.
>V{w(u) ju e R, f(u)=x}.

Therefore f(W)(y+x—-y)=V{u)ueR, flu)=x}.

ie. f(p) (y+x—y)>f(u)(x) forall x, yeS.

Hence f(p)( y+x-y) > f(p)( x) for all x, yeS.

V) fW((x+H)y-xy) = V{n(w)lw € R, flw) = (x + i)y —xy }.
>V{(u+tyv—uv)|u,v,te R, flu)=x, f(v) =y, f(t) =1i}.
> Vv{ut)|t € R, f(t) =1i}.
=f(w)() for all x,y,1 € S.

Hence f(n) € TLI(S). >

Part (I1): Let p € TLI, (R).Then clearly

(vi) f (u)(xy) > f(pu)(y) forall x,y € S.

Hence from (i), (ii), (iii), (iv) and (vi) f(n) € TLI(S). |
In the following theorem we discuss about the inverse images of TL-right/left ideals of R:

Theorem (4.4): Let f: R — S be a homomorphism of a near-ring R into a near-ring S
and ye TLI (S)(resp.ye TLI(S)).Then f'(y)e TLI(R) (resp.f'(y)e TLI(R) .
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Proof: Let f: R —> S be a homomorphism of a near-ring R onto a near-ring S.
Part (I): Let y eTLI«(S).

(i) £ (1)) =7 (H0) =7 (0) = 1.

(i) £ ()(-x) =y (Dx) = y(-fx)) = 1(f () = (1)(x) for all x eR.

(i) (ey) = (" ME)T (£ (¢)(y)) for all x,yeR.

(V) ((y-xty) = y(fly+x-y) = v (£ (x)) = £ (1)(x) for all x, yeR.

WF' () (xH)y-xy) =y (f((x+)y-xy)) = " v (i) for all x, y, ieR.

Hence f' (y) € TLL (R).

Part (1) : Lety €TLI, (S).

(VD' (n)(xy) = v(f(xy)) = (fx) f(y)) = v (fy)) = ' (¢)(y) for all x, y eR.
Hence from (i), (ii), (iii), (iv) and (vi) f'(y) eTLI(R). |

For peL® and y € TL (R) then f (u) is a TL-left ideal of f (y) under the following
conditions:

Theorem (4.5): Let f: R — S be a homomorphism of a near-ring R onto a near-ring S.
Let yeTL(R) and p a TL-left ideal of y.Then f(p) is a TL-left ideal of f (y).

Proof: Let f: R — S be a homomorphism of a near-ring R onto a near-ring S.
Since u<y , f(w) <f(y).
Part (1): Let p be a TL- right ideal of 1.
Also both f (p) and f (y) are TL-subgroups of (R,+).
Let x, yeS. Then
F(y+x-y) = Viw)lweR, f(w) = y+x-yj.
>V{ u(v+u-v)ju, v € R, f(u) =x, f(v) = y}.
=V{pn(uu eR, f(u) =x}.
=f (u)( x) for all x, yeR.
F(x+1)y —xy) = V{pWw)w € R, flw) = (x + 1)y — xy}
> vViw(@@+tv —uv)u, v, t € R, f((u+ t)v —uv)) = (x + i)y — xy}
> V{uOT y(v) [ty € R, f(t) =1, fy) = v}
= (V{n@®) [t e R () =iHT(V {v(v) [y € R f(y) =v}).
= fw® T £ ()(y).
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Thus f (u)( (x+1)y—-xy) > (@A) T f(y)(y), forall x,y, i e R.
Hence f (p) is a TL-right ideal of f (y). |

Part (11): Let p be a TL- left ideal of y.
f(w(xy) =V { p(w)weR, f(w) = xy}.
>V { p(uv)|u, veR, f(u) = x, f(v) = y}.
>V { y)T p(v)|u, veR, flu) =x, f(v) = y}.
(V{y (lu eR, f(u) =x PHT(V{nv) | v eR, f(v) =y }).
£ (y)(x) T £ () y) for all x, yeR.

Hence f (p) is a TL-left ideal of f(y). ]

For peL® and y € TL (R) then f (p) is a TL-left ideal of f (y), this we prove in the
following theorem:

Theorem (4.6):Let f:R— S be a homomorphism of a near-rings and ye TL(S), p be TL-
right (resp.left) ideal of y.Then f'(u) is a TL-right(resp.left) ideal of £ (y).

Proof: Let f :R — S be a homomorphism of a near-rings.
Clearly p<y=f'(n) < f'(y).
As proved earlier ' () and ' (y) are TL-subgroups of R and £ () < f' (y).
Part (1): Let pu be a TL- right ideal of y and x, yeR. Then
(i) 1 (WO0)=p{O)=7(0)=1.
(i) £ (%) = 1 (D) = p (£ () = (F(x) = £ (W(x) for all x eR.
(iif) £ (0x-y) = 1 (D) = pE)TR(EY) = £ (W(x) T £ W y):
ie. ' (Wx-y)> ' (u)(x) T ' (u)(y) forall x,y eR.
(W (W(y+x-y) = 1 (Dxy) = 1 E)H ()-3) = (F (%) = £ (W ).
ie £ (W(y+x-y)>f' (w)( x) for all x,yeR.
W (xH)y-xy) = p (F)((eH)y-xy).
= u((F0x) + (RENAY)- FR(RY)).
> p (£ (1))
=7 (W( ).
Thus ' (w)((x+)y-xy) > p(f(i)) = f'(u)() for all x, y, ieR.
Hence f () is a right ideal of f' (y).
Part (I1):Let pu be a TL- left ideal of y.Then
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(VD ((xy) = m(f(xy)) = pE)fY)) = yE)Tr(f(y) = OEDTE™ (W y))-
ie. £ (Wxy) > (' (D) T (£ (W(y)) forall x, y eR.
Hence from (i), (ii) (iii) (iv) and (vi) f ' (u) is a TL-left ideal of f' (y). |

Theorem (4.7): If an L-subset p* of R/u is defined by p*(x+ p) = pu(x) for all xeR then
u*eTLI(R).

Proof: Now let us define a function f: R/u — R/R p by

f(x+ p)=x+Rpforall x eR.

We shall prove that f is an onto isomorphism.

(D f(x+ Wty + W) =flx +y) + ) = x +y) + Ru= (x + Rw+(y + Rp)
=fx+p) + 1y +p).

(2) f((x+ Wyt W) =fixy + p) =xy + Ru=(x +Rp)« (y + Rp).
= f(x + p):f(y + p).

(3) Let f(x + p) = f(y + p) where x, y €R.

Then f(x + p)=fly+p) = x+Rpu=y+Rpu=x-ye Rp= pux-y)=wo0)

= X =y > x=y=xtpu=y+pu
Hence f'is an isomorphism.

(4) We observe that for all x + R pe R/R p, x €R there exists x + pe R/u such that f(x +
W) =x+ Ry forall x eR.

Therefore f is an onto isomorphism.
(5) An L-subset u* of R/u is defined by
u*(x+ p) = u(x) for all x € R. Then
(1) p*(w = p*(0+ p = (o) =1.
(i) p*(-x + p) = p(-x) > w(x) = p*(x + p) for all x € R.
(i) P (x + ) F1(y T ) = pH (X +y) + ) = px +y).
2 ()T w(y) = p* (x+ T p*(y+ p) forallx, y € R.
(V) p*((y + ) +r (x +p) 1y + ) = pF((y+x) + p) -y + p)).
=p((y+x) +p) +1(-y + ).
=P ((y+x-y) + ).
= p(yt+x-y)
> W (x).
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= p*(x+ p) for all x, yeR.

(VIR ((x + W=y + W) = p* (xy + ) = w(xy) = p(y) = p*(y +p) forall x, y € R.
V) W [((x+ ) F1 (a+ ) )y + - X+ -y + ]

=P [(x +a)y + p) - (x + )y + wl.
=p (x +a)y +w- (xy + wl

= p [((x +a)y —xy) + pl.
=p((x+a)y—xy).

>u(a).

= pn*(at+ p) for all x,y,acR.

Therefore p* is a TL-left as well TL-right ideal of R. |
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