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Abstract 

Speciation of Cu2+ with Humic acid (HA) was studied by Cu-Ion Selective Electrode (ISE) potentiometry. Free Cu2+ 

concentration was measured directly from the Cu-ISE titration data, and the bound Cu2+ was calculated from the mass 

balance of total copper added [Cu2+]t. The titration data were analyzed and compared with six data reduction models: 

Scatchard, Ružić, Buffle Y function (BYF), Klotz and Hunston (KH), Discrete Binding Model (DBM), Continuous 

Binding Model (CBM), and the Computational Chemical Equilibrium Model (MINTEQA). All models yielded complexing 

capacity of HA and the binding constant, K.  The models were primarily validated by residual plots. Only CBM gave 

statistically validated values for two binding sites. The effective molecular weight of HA and the binding constant of metal 

with protonated ligand HA were determined only by BYF. It is clear from this study that all models except KH and CBM 

are valid for 1:1 complex within a limited portion of the data, while CBM, a non-linear model, is valid for the entire data, 

therefore, yields a robust estimate of the parameters and their uncertainties for two binding sites of HA in CuHA complex. 

The model predictions are further validated by MINTEQA, a chemical reaction model firmly based on the reaction 

stoichiometry and thermodynamics. 

Keywords: Copper complexation/speciation, Humic acid, ISE, multi-model data evaluation, MINTEQA

I. Introduction 

The organic complexation and speciation of trace metals 

like Cu, Cd, and Zn is of great environmental health 

significance because it controls their bioavailability and 

toxicity.¹⁻⁴ Copper(II) is a critical water quality regulating 

element, essential for living systems at trace level but toxic 

at higher concentrations, depending on factors like pH.⁵,⁶ 

Humic acids (HAs), on the other hand, constituting about 

50% of all dissolved organic matter in natural waters,⁷ 

contain numerous binding sites (e.g., hydroxyl, carboxylic, 

amino) that form strong complexes with metal ions.⁸ These 

metal-humic complexes could be either soluble, potentially 

contaminating groundwater, or insoluble, reducing metal 

bioavailability.⁶,⁹ 

In the past decades, research has been focused on 

determining physicochemical parameters like the binding 

constant (K) and ligand concentration (L) for these 

interactions. However, reported K values show wide 

variations due to differing methodologies and HA sources.¹⁰ 

Data is typically collected via electroanalytical methods 

like stripping voltammetry or ion-specific electrode (ISE) 

potentiometry,¹¹ but complex data requires specialized 

treatment procedures for accurate interpretation.¹² While 

different methods can yield similar K values within an 

order of magnitude, calculated ligand concentrations may 

vary significantly.¹³ Studies have also shown that binding 

constants can decrease with increasing metal-to-ligand 

ratios,¹⁴ and models like MINTEQA are used to predict 

speciation.¹⁵ Assuming the formation of ML1 (metal-first 

ligand site) and ML2 (metal-second ligand site) complexes 

has been found to yield better results in data analysis.
15-17

 

Here, the ligand (HA) is assumed to have two binding sites 

(L1 and L2) are independent and chemically distinct from 

each other.  

In this study, we investigated Cu
2+

-HA complexation at pH 

5 using Cu-ISE (Ion Selective Electrode) titrations and six 

data reduction models: Scatchard
18

, Ruzic,
19 

Buffle Y 

Function (BYF)
16

, Klotz and Hunston (KH)
20, 21

 Discrete 

Binding Model (DBM), Continuous Binding Model 

(CBM)
16,17

, and MINTEQA
22

 to calculate the binding 

constant and complexation capacity. Only the KH model 

yielded the effective molecular weight of HA and its proton 

binding constant to Cu-HA. These models were validated 

by residual plots and other numerical fitting criteria.   

II. Experimental  

Materials and Methods 

Reagents 

Humic acid with 20% ash content and Fluka certified 

molecular weight (600-1000) (Fluka-Aldrich, Germany) 

was used in this work. Cupric nitrate (Cu(NO3)2.3H2O) (E. 

Merck) with 99.5% purity  was used  as the  standard (in 

1% HNO3) to calibrate  Cu-Ion-selective electrode (Cu-

ISE). Orion ionic strength adjuster, KNO3 (ATI-Orion, 

USA) (Original stock solution. 5 M KNO3) was used for all 

potentiometric measurements. All other reagents (HNO3, 

NaOH, KNO3) were of AnalaR grade purity (99.5%).  
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Milli-Q 18 MΩ water (Barnstead System, USA) was used 

for reagent preparation and rinsing of volumetric wares and 

Cu-ISE. The glassware, titration cell and high-density 

polyethylene and polypropylene wares were cleaned in acid 

bath at least 24 hours, first washed with distilled deionized 

water, then finally with Milli-Q water.  

Preparation of Humic acid (HA) solution 

A standard solution of Humic acid (HA) (29.5 mg L
-1

) was 

prepared in Milli-Q water in a Pyrex flask (250 mL) after 

filtering through 0.45μM acetate membrane filter 

(Millipore, USA), with Millipore pressurized filtering setup 

and stored in dark at room temperature (26
o
 C). Analytical 

standards of Cu
2+

 solution were prepared in 0.1M KNO3 

after appropriate dilution of the standard stock solution and 

preserved at 4
o 
C in a refrigerator until use. 

Methodology and Instrumentation  

Cupric ion-selective electrode (Cu-ISE) potentiometry was 

applied in this study. An Orion digital Ion Analyzer Model 

720 A equipped with auto temperature controller (ATC) 

(Orion, MA, USA), Cu-ISE  (Orion Model 94-29), Double  

junction  reference  electrode (Ag/AgCl) (3 M KCl)  (Orion 

Model  90-02)  and a Ross Combination pH electrode 

(Orion Model 8102 BNC) were used in all potentiometric  

measurements. The crystal membrane of Cu-ISE was 

polished with Al2O3 polishing strip (Orion Cat No. 948201) 

before each titration, rinsed with Milli-Q water and 

preserved in 0.1M KNO3 before use. The titration cell (100 

mL) was made of Pyrex glass with a plastic cover with 

holes for electrode entry. A magnetic stirrer with a Teflon 

coated bar magnet was used to equilibrate the test solutions. 

During titration the cell was covered with aluminum foil to 

avoid electrode response to any stray light. The standard 

solutions and the titrant were dispensed with Eppendorf 

micropipettes and a Microburette (5 mL). All measurements 

were done at ambient temperature 30.7 
o
C. 

 Calibration of Cu
2+

 Ion-selective electrode (Cu-ISE) 

The Cu-ISE was calibrated in a test solution of 25 mL taken 

in a 100 mL Pyrex titration cell, at pH 5 and ionic strength I 

= 0.1M KNO3. Cu
2+

 standard solution (1mM) was used to 

calibrate the electrode, covering the range of 0.1– 200 μM. 

After each addition of the titrant, the solution was 

equilibrated for 1-2 min and after 1-min stop time, 

potentials were recorded to an accuracy of ± 0.1 mV. The 

electrode was calibrated afresh each day for new 

measurements at the experimental pH. The calibration 

equation: E (mV) = (-31.13 ± 0.2) log [Cu
2+

] + (304.5 ±0.9), 

n = 23, r
2
 =0.9994, where the standard errors were 

calculated with 95% CL and random residuals.  

Titration of Humic acid (HA) with Cu
2+

  

The methodology of complexometric titration of Humic 

acids (HA) for chemical speciation by Cu-ISE 

potentiometry was established in an earlier work from this 

laboratory.
17 

Briefly, all Cu-ISE titrations of HA standard 

(29.5 mg/L)  with Cu
2+

 standard solution  (1 mM) were 

carried out  in a test solution of 25 mL  taken in a 100 mL 

Pyrex titration  cell, at pH 5 and  ionic strength 0.1M 

KNO3. Dissolved oxygen and other dissolved gases were 

removed by purging with 99.987 % pure N2 while stirring 

for about 25 min. During titration, positive pressure of N2 

was maintained. Therefore, no ambient CO2 was present.  

After each addition of the titrant, the test solution was 

equilibrated by stirring for about 1-2 min and after 1 min of 

stop time,  potentials were  recorded to an accuracy of ± 0.1 

mV. During titration, pH was maintained at 5.0 with 0.1M 

NaOH. The concentration range of the titrant was 2.4–138 

μM Cu
2+

. Free Cu
2+

 concentration was directly measured 

from the calibration equation. The complexation capacity 

(CuL or ML) was calculated from the mass balance.  The 

results are shown in Table 1. 

Table 1. Calculated values of total, free, and bound Cu
2+

 

from the titration of a known concentrations of Humic acid 

(L) and measured by Cu-ISE. Temp 30.7
o
C. I = 0.1 M 

KNO3, pH = 5.0. The experimental data was used for the 

computation of binding constants, binding capacity, and 

other parameters outlined later. Concentrations were 

calculated with a precision of ± 0.2 µM.  

Total [Cu2+], µM 

 

[Cu2+], µM 

 

[CuL], µM 

 

2.4 0.1 2.3 

3.2 0.2 3.0 

4.0 0.4 3.6 

4.8 0.6 4.2 

5.6 0.8 4.7 

6.8 0.9 5.8 

7.9 1.3 6.7 

9.9 1.6 8.3 

11.9 2.4 9.5 

15.7 4.0 11.8 

19.6 5.8 13.9 

23.4 6.9 16.5 

31.0 10.5 20.5 

38.5 14.1 24.3 

56.6 25.1 31.5 

74.1 33.1 40.9 

90.9 43.7 47.3 

107.1 52.5 54.6 

122.8 61.7 61.1 

137.9 70.8 67.1 

  

III. Results and Discussion 

In this section we evaluate and critically compare the six 

models- Scatchard, Ruzic, Buffle Y Function (BYF), Klotz 

and Hunston (KH) discrete, Continuous Binding Model 

(CBM), and MINTEQA to calculate and validate the ligand 

binding constants (K1 and K2) and the binding capacities 

[L].  We consider here binding of a free metal ion, M (Cu
2+

 

in this case) with humic acid (HA) having two independent 

and chemically distinct binding sites with molar capacities 

L1 and L2 in aqueous media. The following equilibrium and 

mass balance equations can be expressed as:    
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M + L1 ⇌ ML1;                  K1 = [ML1]/([M] [L1]) (1) 

M + L2 ⇌ ML2;                  K2 = [ML2]/([M] [L2]) (2) 

Mt = [M] + [ML1] + [ML2] (3) 

Lt = [L1] + [L2] (4) 

 [ML]t = [ML1] + [ML2] (5) 

where, Mt, Lt, and [ML]t are the total concentrations of 

metal, ligands, and metal-ligand complexes, respectively. 

Equations 1-5 can be used to find the binding constants K1 

and K2 and their binding capacities, L1 and L2, respectively. 

Table 2 shows the various models used to find these 

constants. Majority of the models were used to find K1 and 

L1 from a limited range of experimental data. To extract K 

and L, we need the total concentration of Mt and the free 

metal ion concentration, M, where the bound M as MLt can 

be found by equations 3 and 5. Experimentally, finding free 

metal ion concentrations (M
n+

) was not simple, until the 

availability of modern ion selective electrodes. This study 

involves the measurement of free Cu
2+

 in presence of HA 

over a wide range of total Cu
2+

 ion concentrations. Thus, it 

is possible to critically test the models in Table 2 for their 

validity. As shown in Table 2, most of the models consider 

one ligand site, L1, as the dominant site. We have tested 

these models with the data shown in Table 1 and the final 

results of the parameters are shown in Table 3.  

 

Table 2. Metal binding equations for six models described in the text. 

Models Equations Scope and limits 

Scatchard: 

Linearized 

Discrete Ligand 

Model 

 

ML1/M = K1. L1 – K1. ML1 

ML1 = Mt – M 

Linearized graphical method for 1:1 

complex: Limiting model. Error inherent in 

fitting to a non-linear data, equal weights of 

all data. 

 

Ružić 

 

M/ML1 = M/L1 +1/(K1. L1) 

 

 

 

Linearized and transformed parameters. 

Model fits a limited data range.  

Buffle Y 

function, BYF 

(Lt /Mt)(α/ (α -1)) = (Mw/K1) (1+ (H+x / β1) (α/Mt)) 

α = Mt/M 

β1 =   ML1. Y H+x /(M. L1Hx
+) 

 

Linear 1:1-Limiting model. Model allows 

estimation of molecular weight, Mw, and β1 

of protonated L1 or L1.Hx. 

 

Klotz and 

Hunston (KH) -

Discrete, non-

linear, 

L1 only 

 

Refer to Figure on the right 
 

Intercept 1= K1.L1 

 
Intercept 2= L1 

 
Intercept 3= (K1.L1)

2 /(K1
2 . L1) 

Intercept 4= L1
2/(L1/K1) 

 
 

ML1 complex, limiting model reduces to 

Scatchard 

 
KH-Discrete 

Non-linear 

L1 and L2 

 

Intercept 1= K1.L1 + K2.L2 

 
Intercept 2= L1+L2 

 
Intercept 3= (K1.L1 +K2.L2)

2/(K1
2 .L1+ K2 .L2) 

Intercept 4= (L1+L2)
2 / (L1/K1+L2/K2) 

 

ML1 and ML2 complexes due to the 

presence of two chemically independent 

sites, L1 and L2 

Continuous 

Binding 

 

 

[ML]t = (L1.K1.[M]) / (1+K1.[M])  

           + (L2.K2.[M]) / (1+K2. [M]) + .. 

 

Non-linear. Uses all data and able to 

estimate several independent binding 

equilibria. 
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Table 3.  Values of K, L, and other parameters form binding models in Table 2. 

Models Binding Constants,  

K1, K2, M
-1 

Binding Capacity 

L1, L2, µM 

 

Correlation 

Coefficient, 

R2 

Comments 

Scatchard (limited data) 

Linear fit, ([Cu2+] >10 µM), 

 

K1 = (1.63 ± 0.6) x 104 123.3 ± 20   0.787 NL, NRR, poor 

fit 

Scatchard (all data) 

MCMC, non-linear fit 

 

K1 = (2.3 ± 0.01) x 105 72.82 ± 1.6 0.887 NL, NRR, 

poor fit 

Scatchard ([Cu2+] >10 µM), limited, 

MCMC, non-linear fit 

 

K1 = (1.6 ± 1.) x 106 98.2 ± 3.8   0.981 L, NRR 

Ružić ([Cu2+] >10 µM), linear fit, limited 

 

K1 = (4.1 ± 1.) x 107 2.34 ± 0.5   0.924 L, NRR 

Ružić (all data) 

MCMC, non-linear fit 

 

K1 = (1.3 ± 0.13) x 104 107.5 ± 4.3   0.992 NL, NRR 

Ružić ([Cu2+] >10 µM), MCMC, non-

linear fit, 

limited 

 

K1 = (1.4 ± 0.2) x 106 104.7 ± 7.   0.988 L, NRR 

Buffle Y Function (BYF) Initial slope, 

limited data,  

 

K1 = (5.45 ± 0.2) x 106 

MW= 534 g/mol 

x= 0.5 (power of H+) 

β1= 49.4 /µM 

 

229.4 ± 5  0.9939 L, R 

Discrete Binding Model (DBM) 

Linearized one site, limited  

 

K1 = (1.0 ± 0.2) x 105 

 

229.7 ± 10   0.9879 NRR 

Discrete Binding Model (DBM) 

Non-linear, two sites, limited data 

 

K1 = (8.0 ± 0.3) x 104 

 

K2 = (3. ± 0.02) x 106 

 

L1: 229.6 ± 0.3 

 

L2: 2.02 ± 0.04   

0.9824 

 

0.989 

RR 

 

RR 

 

Continuous Binding Model (CBM)- One 

site, 

hyperbolic linearly transformed  

K1 = (1.3 ± 0.1) x 106 75.1 ± 2.   0.9993 NL, NRR 

 

Continuous Binding Model (CBM)- One 

site, 

hyperbolic non-linear fitting 

K1 = (2.95 ± 0.4) x 103 232.8 ± 6.   0.9994 NL, NRR 

 

Continuous Binding Model (CBM)- Non-

linear, two sites, all data, SOLVER non-

linear fit 

K1 = (3.0 ± 0.2) x 103 

 

K2 = (9.3 ± 0.4) x 105 

 

L1: 298.1 ± 2 

 

L2: 10.7 ± 0.3  

0.9992 

 

 

R, best fit 

 

 

 

Notes: L: linear or linearized, NL: Non-linear, R: Random residual, NRR: Non-random residual. 

Residual = Model predicted value – Experimental value 

Scatchard model 

The Scatchard Model assumes a simple system with only 

one type of binding site. The analysis involves a linear fit of 

[ML1]/[M] versus [ML1]. As seen in the Figure 1 below, the 

data points clearly form a curve, not a straight line. Forcing 

a linear fit onto this curved data (R
2
=0.7876) is 

inappropriate and produces unreliable parameters. The 

inadequacy of the Scatchard Model is confirmed by its 

residual plot. This non-random (V-shaped) pattern is clear 

evidence that the linear model is a poor fit. Therefore, a 

non-linear fit by using the Markov Chain Monte 

Carlo (MCMC) method was used to fit the data.
23 

MCMC is 

a computational technique used to determine the probability 

distribution of model parameters. Instead of just finding a 

single "best-fit" line, it explores all plausible lines that 

could fit the data.
 
Even with this data reduction technique, 

the residual plot (Figure 1c) is not random for a robust 

estimate of the parameters and their uncertainties.  
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(a) 

 

(b) 

 

 

(c) 

Fig. 1. (a) Data plot using Scatchard equation, (b) Linear section to obtain K1 and L1, (c) Non-random residual plot with a V-shape. 

Ružić model 

Like Scatchard, the Ružić Model is a graphical method that 

use linearized equations to determine a system's 

complexing capacity (ML1) and binding constant (K1) from 

experimental data. It assumes a continuous distribution of 

binding affinities and linearizes the data using the equation 

shown in Table 2. Here, a plot of M/ML1 vs. M yields a 

slope 1/L1 and an intercept 1/(K1. L1) with R
2
 = 0.924.  The 

Ružić Model, like the Scatchard Model is also non-linear 

for the experimental data even with the limited data when 

M>10 µM. The poor data fitting is also characterized by the 

non-random residual plot (Figure 2c). With MCMC non-

linear data fitting procedure, the results are comparable to 

that of Scatchard, but yielded a non-random residual plot 

(not shown). These results indicate that the system is non-

linear, and may have more than a single binding site. Also, 

the data weighting factors are uncertain in linearized and 

transformed equations. Most importantly, Table 3 also 

shows that data fitting technique can alter the parameter 

values significantly.  

 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.  (a) Non-linear Ružić plot, (b) Limited linear section (M=10-70 µM) to obtain K1 and L1, (c) Non-random residual plot with a 

straight-line shape. 

 
Buffle Y Function (BYF) 

Another model equation based on the Buffle Y Function 

(BYF) is the left-hand side of equation 6 written as: 

(Lt /Mt)(α/ (α -1)) = (Mw/K1) (1+ (H
+x

 / β1) (α/Mt))  (6) 

α = Mt/M (7) 

β1 =   ML1. H
+x

 / (M.L1H
+

x) (8) 

where, Lt is the total concentration of ligand L1 in µM, Mw 

is the average molecular weight of the ligand in g/mol, H
+x

 

is the proton concentration with an exponent x, and β1 is the 

binding constant of metal with protonated ligand. Other 

parameters are described earlier. Equation 6 is valid only in 

the initial portion of the curve in Figure 3 (a). Figure 3(b) 

shows the fit of equation 6 and the residual plot is shown in 

Figure 3(c). The best fit parameters are listed in Table 3 

with excellent R
2
 0.9939. The BYF shows random residual 

for a limited data fit. BYF is the only model that yielded the 

molecular weight of the ligand, Mw 534 g/mol, which is 

within the range 400-1000 g/mol given by the 

manufacturer. The value β1= 4.9 x 10
5
 M

-1
 and log (β1/H

+
) = 

6.7 indicates the monoprotic (x=1) HA has a moderately 

strong H
+
 affinity at pH 5. These later results are in fair 

agreement with that of the Buffle’s study of Cu
2+

 - HA 

system.
16
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(a) 

 
(b) 

 
(c) 

Fig. 3. (a) Plot of Buffle Y function, (b) Limited linear section (M=10-90 µM) to obtain K1 and L1, (c) Random residual plot 

Klotz and Hunston (KH) discrete Model      

The KH model is a graphical model based on equations 

shown in Table 2. This is a general discrete model which 

can be extended to i
th

 ligand. Here, the intercepts of limited 

initial and final data for a plot of ML/M vs. ML are related 

to four equations for the parameters K1, L1, K2 and L2. It 

shows that intercept 2 is equal to L1 and K1 is related to 

intercept 1. For two sites, four simultaneous equations have 

to be solved. The final results for one and two site models 

are shown in Table 3. The consistency of the model is 

proven by fair agreements of K1 and L1 from the two 

models. The results show that K2 is an order of magnitude 

higher than K1, and more than 99% of binding sites are L1. 

This is indicative of high-affinity L2 sites (phenolic type) 

saturate at low metal concentrations and low-affinity L1 

sites dominate at high concentrations. Thermodynamically, 

weaker and non-specific binding sites (-COOH type) in 

humic substances provide high capacity enabling buffering, 

detoxification, and metal transport over a wide 

concentration range.
24

  Strong binding (Cu²⁺ to phenolic 

sites) is enthalpically driven (ΔH < 0), while weak binding 

(to carboxylates) has smaller ΔH but less negative ΔS, 

therefore, entropically favored for multiple binding sites.
25 

 

It shows values for strong sites: log K2 ~ 6–9, L2 ~ 0.5–1.5 

mmol/g, and weak sites: log K1 ~ 3–5, L1 ~ 4–6 mmol/g. 

Our values are in the range of lower limits (log K 4.9 -6.5).  

Continuous Binding Model (CBM) 

CBM can be used to extract equilibrium parameters from 

multiple independent binding sites and uses all the 

experimental data for M and MLt. The CBM equation is 

shown in Table 2. For one site, L1, the CBM can be 

transformed to a hyperbolic equation, which can be 

linearized or a direct non-linear fitting can be used. For two 

sites, L1 and L2, optimized parameter values for K1, K2, L1, 

and L2 can be obtained by using MS Excel SOLVER. In 

SOLVER the sum of the squares of the residuals (SSQR) 

and the standard deviation, Ʃi ([ML]t,expt -  [ML]t,calc)
2
 / 

n)
1/2

, are minimized until the values of the two parameters, 

Ki.Li and Ki (i= 1 or 2), are optimized. Table 3 shows the 

best fit values. It shows that K1 and L1 values obtained with 

two methods are different, although the fitting R
2
 exceed 

0.999 for both. Figure 4 shows the two fitting results and 

the residual plot for the ML vs. M fitting. The residuals are 

non-random with a clear pattern. The overriding conclusion 

from this exercise is that linearization of a non-linear 

equation does not guarantee reliable parameter values when 

the residual has a non-random shape.  

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  (a) Fit of the linearized hyperbolic equation, 1/ML vs. 1/M, (b) CBM: ML vs. M fitted to one site hyperbolic equation with non-

linear SOLVER, (c) Residual plot of data in b shows non-random shape. 

Therefore, a two site CBM should be considered.  Table 3 

shows the best values for K1, K2, L1, and L2 obtained with 

SOLVER for the two site CBM. Figure 5 shows the fitted 

data and the random residual confirming the validity of this 

model without a systemic bias. Results in Table 3 show that 

96.5% of the sites have lower binding constant compared to 

that of 3.5% with a higher binding constant.  
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(a) 

 

(b) 

Fig. 5. (a) Fit of two site CBM. Dots are experimental and line is the SOLVER fitted data, (b) Residual plot shows random distribution. 

The KH-DBM and CBM yields K1, K2, L1, and L2. 

However, the results are significantly different in K1 and K2 

values by nearly an order of magnitude, while the values for 

L1 and L2 are comparable. While binding parameters 

obtained from KH-DBM used only the intercept values, 

which are sensitive to extrapolation of initial and terminal 

data points, the CBM model used all data points, and, 

therefore, inherently more accurate. 

MINTEQA Model  

Computational speciation by Minimization of Total 

Equilibrium Activity (MINTEQA) is based on known 

reactions of the metal ions, M (Cu
2+

) in solution in presence 

of all other ligands (HA) and ions, ionic strength, pH, and 

temperature. Unlike other models, MINTEQA is entirely 

based on reaction stoichiometry and a thermodynamic data 

base for the reactions. Here, we used the U.S. EPA model 

MINTEQA2. The open source program, Visual MINTEQA 

3.1, and extensive documentation can be found elsewhere.
26 

The total ion (or component) concentrations in MINTEQA 

is based on the experimental values. The input DOM 

(dissolved HA) is 309 µM, which is the sum of L1 and L2 

obtained from CBM, and its MW 534 g/mol is obtained 

from BYF model to have about 50% organic carbon as 

mentioned by the manufacturer of HA.  

Table 4 shows that 85.4% of total Cu
2+

 is bound to DOM 

and 13% Cu
2+

 is free.  Only 2.4 % of the total DOM is 

bound to Cu
2+

. The later increases with the increase of 

total Cu
2+

 or Mt. To simulate the experimental data, we 

ran MINTEQA with different Mt, keeping other 

components fixed to find the distribution of M and ML. 

Figure 6a shows the experimental ML (Cu(DOM)) vs. Mt 

(Cu
2+

-total) and those calculated by MINTEQA and CBM. 

The species distribution is shown in Figure 6b. The 

agreement among experimental ML, MINTEQA and CBM 

calculated ML are excellent over 80% of the data at lower 

Mt. The species distribution shows that the system is non-

linear with two approximately linear portions in the low 

and high total Cu
2+

 concentrations as indicated by all 

models with one ligand site.  

Table 4. Distribution of species from components obtained 

from MINTEQA calculation. Input: Total [Cu2+] = 2.4 

µM, DOM = 308.8 µM, [K+] = 0.1 M, [NO3
-] =0.1 M, 

pH =5, Temp =30.7 oC, and free from dissolved 

CO2(g). 

Component % of total concentration Species name 

DOM (L1+L2) 76.3 DOM 

 

21.3 H DOM 

 

2.4 Cu DOM 

Cu2+ 13.1 Cu2+ 

 

0.011 Cu(NO3)2 (aq) 

 

85.4 Cu DOM 

 

0.026 CuOH+ 

 

1.43 CuNO3
+ 

K+ 96.7 K+ 

 

3.3 KNO3 (aq) 

NO3
-1 96.7 NO3

-1 

 

3.3 KNO3 (aq) 
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(a) 

 

(b) 

Fig. 6.  (a) Comparison of experimental ML (or Cu(DOM)) vs. Mt (Cu2+-total) and those calculated by MINTEQA and CBM Models. (b) 

Species distribution vs. Mt (Cu2+-total). 

IV. Conclusions 

Rigorous validation of physicochemical models is essential 

for accurately describing the complex interactions between 

free and bound metals in the presence of natural dissolved 

organic matter (or DOM) like humic and fulvic acids. 

While high correlation coefficients (R
2
 >0.99) are often 

cited as proof of a good fit, this research confirms that such 

metrics can be misleading. The ultimate criterion of an 

unbiased model and its validity is the randomness of its 

pattern-free residual plot, which serves as the only true 

diagnostic for experimental data.  

Historically, linearized models such as the Scatchard, Ružić 

and other discrete binding models were instrumental, yet 

they are inherently limited to the linear section of the data 

(<20% data). As demonstrated in this work, these models 

frequently fail the critical residual test over a broad range of 

concentrations, typically producing distinct, non-random 

patterns. This systematic deviation reveals that their 

underlying assumptions—such as a single class of binding 

sites or a simplified affinity distribution—are insufficient to 

capture the multiple binding sites of DOM. While these 

models may appear to fit a limited portion of the data, they 

provide an incomplete and potentially biased understanding 

of the system's overall binding capacity and affinity. A 

simple one site, two-parameter linear model is 

fundamentally inadequate for describing a complex system 

with two distinct and chemically independent binding sites. 

With the advent of modern computational techniques, 

solving complex, multiparameter non-linear models is not 

only feasible but necessary. This research shows that a non-

linear continuous binding model (CBM) successfully 

overcomes the limitations of its predecessors. The CBM 

provides an excellent fit to the entire dataset, and most 

importantly, it yields a randomly distributed residual plot, 

confirming its statistical validity and lack of systemic bias. 

The model predictions are further validated by MINTEQA, 

a chemical reaction model firmly based on the reaction 

stoichiometry and thermodynamics.  

The significance of this finding extends beyond superior 

statistical performance. The parameters obtained from the 

CBM are physically and chemically meaningful, offering a 

more profound insight into the binding mechanism. This 

detailed characterization is crucial for accurately predicting 

the speciation, bioavailability, and environmental fate of 

heavy metals, thereby providing a more robust foundation 

for ecological risk assessment and environmental 

remediation strategies. 
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