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Abstract

Speciation of Cu?" with Humic acid (HA) was studied by Cu-lon Selective Electrode (ISE) potentiometry. Free Cu
concentration was measured directly from the Cu-ISE titration data, and the bound Cu?* was calculated from the mass
balance of total copper added [Cu?"].. The titration data were analyzed and compared with six data reduction models:
Scatchard, Ruzi¢, Buffle Y function (BYF), Klotz and Hunston (KH), Discrete Binding Model (DBM), Continuous
Binding Model (CBM), and the Computational Chemical Equilibrium Model (MINTEQA). All models yielded complexing
capacity of HA and the binding constant, K. The models were primarily validated by residual plots. Only CBM gave
statistically validated values for two binding sites. The effective molecular weight of HA and the binding constant of metal
with protonated ligand HA were determined only by BYF. It is clear from this study that all models except KH and CBM
are valid for 1:1 complex within a limited portion of the data, while CBM, a non-linear model, is valid for the entire data,
therefore, yields a robust estimate of the parameters and their uncertainties for two binding sites of HA in CuHA complex.
The model predictions are further validated by MINTEQA, a chemical reaction model firmly based on the reaction

2+

stoichiometry and thermodynamics.
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|. Introduction

The organic complexation and speciation of trace metals
like Cu, Cd, and Zn is of great environmental health
significance because it controls their bioavailability and
toxicity.!™ Copper(Il) is a critical water quality regulating
element, essential for living systems at trace level but toxic
at higher concentrations, depending on factors like pH.>,°
Humic acids (HAs), on the other hand, constituting about
50% of all dissolved organic matter in natural waters,’
contain numerous binding sites (e.g., hydroxyl, carboxylic,
amino) that form strong complexes with metal ions.® These
metal-humic complexes could be either soluble, potentially
contaminating groundwater, or insoluble, reducing metal
bioavailability.¢,°

In the past decades, research has been focused on
determining physicochemical parameters like the binding
constant (K) and ligand concentration (L) for these
interactions. However, reported K values show wide
variations due to differing methodologies and HA sources.'°
Data is typically collected via electroanalytical methods
like stripping voltammetry or ion-specific electrode (ISE)
potentiometry,** but complex data requires specialized
treatment procedures for accurate interpretation.’? While
different methods can yield similar K values within an
order of magnitude, calculated ligand concentrations may
vary significantly.’® Studies have also shown that binding
constants can decrease with increasing metal-to-ligand
ratios," and models like MINTEQA are used to predict
speciation.'> Assuming the formation of ML, (metal-first

ligand site) and ML, (metal-second ligand site) complexes
has been found to yield better results in data analysis.”>"’
Here, the ligand (HA) is assumed to have two binding sites
(L; and L,) are independent and chemically distinct from
each other.

In this study, we investigated Cu?*-HA complexation at pH
5 using Cu-ISE (lon Selective Electrode) titrations and six
data reduction models: Scatchard'®, Ruzic,”® Buffle Y
Function (BYF)', Klotz and Hunston (KH)* ?* Discrete
Binding Model (DBM), Continuous Binding Model
(CBM)*Y and MINTEQA?* to calculate the binding
constant and complexation capacity. Only the KH model
yielded the effective molecular weight of HA and its proton
binding constant to Cu-HA. These models were validated
by residual plots and other numerical fitting criteria.

Il. Experimental
Materials and Methods
Reagents

Humic acid with 20% ash content and Fluka certified
molecular weight (600-1000) (Fluka-Aldrich, Germany)
was used in this work. Cupric nitrate (Cu(NO3),.3H,0) (E.
Merck) with 99.5% purity was used as the standard (in
1% HNOj) to calibrate Cu-lon-selective electrode (Cu-
ISE). Orion ionic strength adjuster, KNO3; (ATI-Orion,
USA) (Original stock solution. 5 M KNO3) was used for all
potentiometric measurements. All other reagents (HNOg,
NaOH, KNO3) were of AnalaR grade purity (99.5%).
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Milli-Q 18 MQ water (Barnstead System, USA) was used
for reagent preparation and rinsing of volumetric wares and
Cu-ISE. The glassware, titration cell and high-density
polyethylene and polypropylene wares were cleaned in acid
bath at least 24 hours, first washed with distilled deionized
water, then finally with Milli-Q water.

Preparation of Humic acid (HA) solution

A standard solution of Humic acid (HA) (29.5 mg L™) was
prepared in Milli-Q water in a Pyrex flask (250 mL) after
filtering through 0.45pM acetate membrane filter
(Millipore, USA), with Millipore pressurized filtering setup
and stored in dark at room temperature (26° C). Analytical
standards of Cu?* solution were prepared in 0.1M KNO;
after appropriate dilution of the standard stock solution and
preserved at 4° C in a refrigerator until use.

Methodology and Instrumentation

Cupric ion-selective electrode (Cu-ISE) potentiometry was
applied in this study. An Orion digital lon Analyzer Model
720 A equipped with auto temperature controller (ATC)
(Orion, MA, USA), Cu-ISE (Orion Model 94-29), Double
junction reference electrode (Ag/AgCl) (3 M KCI) (Orion
Model 90-02) and a Ross Combination pH electrode
(Orion Model 8102 BNC) were used in all potentiometric
measurements. The crystal membrane of Cu-ISE was
polished with Al,O5 polishing strip (Orion Cat No. 948201)
before each titration, rinsed with Milli-Q water and
preserved in 0.1M KNOj before use. The titration cell (100
mL) was made of Pyrex glass with a plastic cover with
holes for electrode entry. A magnetic stirrer with a Teflon
coated bar magnet was used to equilibrate the test solutions.
During titration the cell was covered with aluminum foil to
avoid electrode response to any stray light. The standard
solutions and the titrant were dispensed with Eppendorf
micropipettes and a Microburette (5 mL). All measurements
were done at ambient temperature 30.7 °C.

Calibration of Cu®* lon-selective electrode (Cu-ISE)

The Cu-ISE was calibrated in a test solution of 25 mL taken
in a 100 mL Pyrex titration cell, at pH 5 and ionic strength |
= 0.1M KNO;. Cu?" standard solution (ImM) was used to
calibrate the electrode, covering the range of 0.1— 200 uM.
After each addition of the titrant, the solution was
equilibrated for 1-2 min and after 1-min stop time,
potentials were recorded to an accuracy of + 0.1 mV. The
electrode was calibrated afresh each day for new
measurements at the experimental pH. The calibration
equation: E (mV) = (-31.1; + 0.2) log [Cu*"] + (304.5 +0.9),
n = 23, r* =0.9994, where the standard errors were
calculated with 95% CL and random residuals.

Titration of Humic acid (HA) with Cu?*

The methodology of complexometric titration of Humic
acids (HA) for chemical speciation by Cu-ISE
potentiometry was established in an earlier work from this
laboratory.” Briefly, all Cu-ISE titrations of HA standard
(29.5 mg/L) with Cu*" standard solution (1 mM) were

carried out in a test solution of 25 mL taken in a 100 mL
Pyrex titration cell, at pH 5 and ionic strength 0.1M
KNO;. Dissolved oxygen and other dissolved gases were
removed by purging with 99.987 % pure N, while stirring
for about 25 min. During titration, positive pressure of N,
was maintained. Therefore, no ambient CO, was present.
After each addition of the titrant, the test solution was
equilibrated by stirring for about 1-2 min and after 1 min of
stop time, potentials were recorded to an accuracy of + 0.1
mV. During titration, pH was maintained at 5.0 with 0.1M
NaOH. The concentration range of the titrant was 2.4-138
uM Cu®*. Free Cu* concentration was directly measured
from the calibration equation. The complexation capacity
(CuL or ML) was calculated from the mass balance. The
results are shown in Table 1.

Table 1. Calculated values of total, free, and bound Cu®*
from the titration of a known concentrations of Humic acid
(L) and measured by Cu-ISE. Temp 30.7°C. | = 0.1 M
KNO;, pH = 5.0. The experimental data was used for the
computation of binding constants, binding capacity, and
other parameters outlined later. Concentrations were
calculated with a precision of £ 0.2 uM.

Total [Cu®], uM [Cu®], uM [CuL], uM
2.4 0.1 2.3
3.2 0.2 3.0
4.0 0.4 3.6
4.8 0.6 4.2
5.6 0.8 4.7
6.8 0.9 5.8
7.9 1.3 6.7
9.9 1.6 8.3
11.9 2.4 9.5
15.7 4.0 11.8
19.6 5.8 13.9
234 6.9 16.5
31.0 10.5 20.5
38.5 14.1 243
56.6 25.1 315
74.1 33.1 40.9
90.9 43.7 473
107.1 52.5 54.6
122.8 61.7 61.1
137.9 70.8 67.1

I11. Results and Discussion

In this section we evaluate and critically compare the six
models- Scatchard, Ruzic, Buffle Y Function (BYF), Klotz
and Hunston (KH) discrete, Continuous Binding Model
(CBM), and MINTEQA to calculate and validate the ligand
binding constants (K; and K,) and the binding capacities
[L]. We consider here binding of a free metal ion, M (Cu*
in this case) with humic acid (HA) having two independent
and chemically distinct binding sites with molar_capacities
L, and L, in agueous media. The following equilibrium and
mass balance equations can be expressed as:
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M+L; = MLy; Ky = [MLJ/([M] [L4]) (1)
M+ L, = MLy, Kz = [MLo)/([M] [L2]) (2
M= [M] + [ML] + [ML,] 3)
L= [Li] + [L2] 4)
[ML]; = [ML4] + [MLy] 5)

where, M,, L;, and [ML]; are the total concentrations of
metal, ligands, and metal-ligand complexes, respectively.
Equations 1-5 can be used to find the binding constants K,
and K, and their binding capacities, L, and L,, respectively.
Table 2 shows the various models used to find these
constants. Majority of the models were used to find K; and

3

L, from a limited range of experimental data. To extract K
and L, we need the total concentration of M, and the free
metal ion concentration, M, where the bound M as ML can
be found by equations 3 and 5. Experimentally, finding free
metal ion concentrations (M™) was not simple, until the
availability of modern ion selective electrodes. This study
involves the measurement of free Cu®* in presence of HA
over a wide range of total Cu®* ion concentrations. Thus, it
is possible to critically test the models in Table 2 for their
validity. As shown in Table 2, most of the models consider
one ligand site, L,, as the dominant site. We have tested
these models with the data shown in Table 1 and the final
results of the parameters are shown in Table 3.

Table 2. Metal binding equations for six models described in the text.

Models Equations Scope and limits
Scatchard: Linearized graphical method for 1:1
Linearized ML;/M = K;. L; — K;. ML, complex: Limiting model. Error inherent in
Discrete Ligand ML;=M;-M fitting to a non-linear data, equal weights of
Model all data.
Ruzié¢ M/ML; = M/L; +1/(Ky. Ly) Linearized and transformed parameters.
Model fits a limited data range.
Buffle Y (L /My(o/ (o0 -1)) = (MWIKy) (1+ (H™ / By) (/M) Linear 1:1-Limiting model. Model allows

function, BYF o =M/M

Bi= MLy Y H™ /(M. LiH,")

Klotz and Refer to Figure on the right

estimation of molecular weight, M,,, and B;
of protonated L; or L;.H,.

ML, complex, limiting model reduces to

Hunston (KH) - Scatchard
Discrete, — non- iercent1= Ky,
linear, 1
L; only Intercept 2= L,

Intercept 3= (KoL) I(Kq2. Ly) _§-

Intercept 4= L 2/(L/Ky) s

3 ML 2

KH-Discrete _ ML, and ML, complexes due to the
Non-linear Intercept 1= KilitKel, presence of two chemically independent
Lyand L, Intercept 2= Li+Ly sites, Ly and L,

Intercept 3= (Kp.Ly Ko L)(Kq2 L+ K, L)

Intercept 4= (Li+Lp)? 1 (Lo/Kq+Lo/Ks)
Continuous Non-linear. Uses all data and able to
Binding [ML]; = (L. Ky.[M]) / (1+K1.[M]) estimate several independent binding

+ (L2.Ko. [M]) / (14K, [M]) + .. equilibria.
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Table 3. Values of K, L, and other parameters form binding models in Table 2.

Models Binding Constants, Binding Capacity Correlation ~ Comments

Ky, Ky M Ly, Ly, pM Coefficient,

RZ

Scatchard (limited data) K; = (1.65 + 0.6) x 10° 123.3+20 0.787 NL, NRR, poor
Linear fit, ([Cu?*] >10 pM), fit
Scatchard (all data) K;=(2.3+0.01) x 10° 7282+ 1. 0.887 NL, NRR,
MCMC, non-linear fit poor fit
Scatchard ([Cu?] >10 pM), limited, K;=(1.6+1)x10° 98.2+33 0.981 L, NRR
MCMC, non-linear fit
Ruzié ([Cu?"1 >10 pM), linear fit, limited ~ K;=(4.1£1)x 107 2.34+05 0.924 L, NRR
Ruzi¢ (all data) Ki=(1.3£0.15) x 10* 10754, 0.992 NL, NRR
MCMC, non-linear fit
Ruzi¢ ([Cu?] >10 puM), MCMC, non- K;=(1.4£0.2)x 10° 104.7 £ 7. 0.988 L, NRR
linear fit,
limited
Buffle Y Function (BYF) Initial slope, K;=(5.45+0.2)x 10° 229.4 5 0.9939 L, R
limited data, MW= 534 g/mol

x= 0.5 (power of H+)

B:1=49.4 [uM
Discrete Binding Model (DBM) Ki=(1.0£0.2) x 10° 229.7+10 0.9879 NRR
Linearized one site, limited
Discrete Binding Model (DBM) K,=(8.0%0.3) x 10* L;:229.6 £0.3 0.9824 RR
Non-linear, two sites, limited data

K, = (3. +0.02) x 10° L,: 2.02£0.04 0.989 RR
Continuous Binding Model (CBM)- One K, =(1.3+0.1) x 10° 75.1+2. 0.9993 NL, NRR
site,
hyperbolic linearly transformed
Continuous Binding Model (CBM)- One K, =(2.95 +0.4) x 10° 232.8 + 6. 0.9994 NL, NRR
site,
hyperbolic non-linear fitting
Continuous Binding Model (CBM)- Non-  K; = (3.0 +0.2) x 10° L;:298.1+2 0.9992 R, best fit
linear, two sites, all data, SOLVER non-
linear fit K, =(9.3+0.4) x 10° L,: 10.7+£0.3

Notes: L: linear or linearized, NL: Non-linear, R: Random residual, NRR: Non-random residual.
Residual = Model predicted value — Experimental value

Scatchard model

The Scatchard Model assumes a simple system with only
one type of binding site. The analysis involves a linear fit of
[ML1)/[M] versus [ML,]. As seen in the Figure 1 below, the
data points clearly form a curve, not a straight line. Forcing
a linear fit onto this curved data (R®=0.7876) is
inappropriate and produces unreliable parameters. The
inadequacy of the Scatchard Model is confirmed by its
residual plot. This non-random (V-shaped) pattern is clear
evidence that the linear model is a poor fit. Therefore, a

non-linear fit by using the Markov Chain Monte
Carlo (MCMC) method was used to fit the data.”* MCMC is
a computational technique used to determine the probability
distribution of model parameters. Instead of just finding a
single "best-fit" line, it explores all plausible lines that
could fit the data. Even with this data reduction technique,
the residual plot (Figure 1c) is not random for a robust
estimate of the parameters and their uncertainties.
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Fig. 1. (a) Data plot using Scatchard equation, (b) Linear section to obtain K; and L,, (c) Non-random residual plot with a V-shape.

Ruzié¢ model

Like Scatchard, the Ruzi¢ Model is a graphical method that
use linearized equations to determine a system's
complexing capacity (ML) and binding constant (K;) from
experimental data. It assumes a continuous distribution of
binding affinities and linearizes the data using the equation
shown in Table 2. Here, a plot of M/ML; vs. M vyields a
slope 1/L; and an intercept 1/(K;. L;) with R* = 0.924. The
Ruzi¢ Model, like the Scatchard Model is also non-linear
for the experimental data even with the limited data when

1.2 1.2
1.0 1.0
0.8 _, 038
)
~ 06 S 06
2 o4 =04 |
S
02 | 0.2
0.0 0.0
-25.0 25.0 75.0 0.0
M, uM
(@
Fig. 2.

straight-line shape.

Buffle Y Function (BYF)

Another model equation based on the Buffle Y Function
(BYF) is the left-hand side of equation 6 written as:

(Le/Mp(o/ (o -1)) = (MW/Ky) (1+ (H™/ 1) (o/My)) (6)
a=M{/M @)
Bl = ML]_ H+X / (M.L1H+x) (8)

where, L is the total concentration of ligand L, in pM, Mw
is the average molecular weight of the ligand in g/mol, H™
is the proton concentration with an exponent x, and B is the
binding constant of metal with protonated ligand. Other

M>10 uM. The poor data fitting is also characterized by the
non-random residual plot (Figure 2c¢). With MCMC non-
linear data fitting procedure, the results are comparable to
that of Scatchard, but yielded a non-random residual plot
(not shown). These results indicate that the system is non-
linear, and may have more than a single binding site. Also,
the data weighting factors are uncertain in linearized and
transformed equations. Most importantly, Table 3 also
shows that data fitting technique can alter the parameter
values significantly.

0.50 o
. ® .
e 0.00 . °
[ 00 o* 1000
° =}
y = 0,0105x +0.4271 2 -0.50 s
R?=0.924 2 °
-1.00 ®
-1.50
50.0 100.0 M, uM
M, uM
(b) (c)

(a) Non-linear Ruzi¢ plot, (b) Limited linear section (M=10-70 uM) to obtain K; and Lj, (c) Non-random residual plot with a

parameters are described earlier. Equation 6 is valid only in
the initial portion of the curve in Figure 3 (a). Figure 3(b)
shows the fit of equation 6 and the residual plot is shown in
Figure 3(c). The best fit parameters are listed in Table 3
with excellent R? 0.9939. The BYF shows random residual
for a limited data fit. BYF is the only model that yielded the
molecular weight of the ligand, Mw 534 g/mol, which is
within the range 400-1000 g¢/mol given by the
manufacturer. The value p;= 4.9 x 10° M™ and log (By/H") =
6.7 indicates the monoprotic (x=1) HA has a moderately
strong H" affinity at pH 5. These later results are in fair
agreement with that of the Buffle’s study of Cu®* - HA
system.™®
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Fig. 3. (a) Plot of Buffle Y function, (b) Limited linear section (M=10-90 uM) to obtain K; and L, (c) Random residual plot

Klotz and Hunston (KH) discrete Model

The KH model is a graphical model based on equations
shown in Table 2. This is a general discrete model which
can be extended to i ligand. Here, the intercepts of limited
initial and final data for a plot of ML/M vs. ML are related
to four equations for the parameters K, L;, K, and L,. It
shows that intercept 2 is equal to L; and K; is related to
intercept 1. For two sites, four simultaneous equations have
to be solved. The final results for one and two site models
are shown in Table 3. The consistency of the model is
proven by fair agreements of K; and L; from the two
models. The results show that K, is an order of magnitude
higher than Ky, and more than 99% of binding sites are L.
This is indicative of high-affinity L, sites (phenolic type)
saturate at low metal concentrations and low-affinity L;
sites dominate at high concentrations. Thermodynamically,
weaker and non-specific binding sites (-COOH type) in
humic substances provide high capacity enabling buffering,
detoxification, and metal transport over a wide
concentration range.?* Strong binding (Cu?" to phenolic
sites) is enthalpically driven (AH < 0), while weak binding
(to carboxylates) has smaller AH but less negative AS,
therefore, entropically favored for multiple binding sites.?
It shows values for strong sites: log K, ~ 6-9, L, ~ 0.5-1.5

inear Fit of Transformed Data (LML vs. 1/M0)

Neninear Hyperblic Fit to Original Data (ML vs. Mt)

mmol/g, and weak sites: log K; ~ 3-5, L; ~ 4-6 mmol/g.
Our values are in the range of lower limits (log K 4.9 -6.5).

Continuous Binding Model (CBM)

CBM can be used to extract equilibrium parameters from
multiple independent binding sites and uses all the
experimental data for M and ML;. The CBM equation is
shown in Table 2. For one site, L;, the CBM can be
transformed to a hyperbolic equation, which can be
linearized or a direct non-linear fitting can be used. For two
sites, L, and L,, optimized parameter values for Ky, K, Ly,
and L, can be obtained by using MS Excel SOLVER. In
SOLVER the sum of the squares of the residuals (SSQR)
and the standard deviation, i ([ML]yexpt - [ML]t,Ca.c)2 /
n)“2, are minimized until the values of the two parameters,
Ki.L; and K; (i= 1 or 2), are optimized. Table 3 shows the
best fit values. It shows that K; and L; values obtained with
two methods are different, although the fitting R® exceed
0.999 for both. Figure 4 shows the two fitting results and
the residual plot for the ML vs. M fitting. The residuals are
non-random with a clear pattern. The overriding conclusion
from this exercise is that linearization of a non-linear
equation does not guarantee reliable parameter values when
the residual has a non-random shape.

Resicuais Plot (Observed - Predicted)

(@)

0) ©

Fig. 4. (a) Fit of the linearized hyperbolic equation, 1/ML vs. 1/M, (b) CBM: ML vs. M fitted to one site hyperbolic equation with non-
linear SOLVER, (c) Residual plot of data in b shows non-random shape.

Therefore, a two site CBM should be considered. Table 3
shows the best values for K, K,, L, and L, obtained with
SOLVER for the two site CBM. Figure 5 shows the fitted
data and the random residual confirming the validity of this

model without a systemic bias. Results in Table 3 show that
96.5% of the sites have lower binding constant compared to
that of 3.5% with a higher binding constant.
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Fig. 5. (a) Fit of two site CBM. Dots are experimental and line is the SOLVER fitted data, (b) Residual plot shows random distribution.

The KH-DBM and CBM vyields K;, K, L;, and L.
However, the results are significantly different in K; and K,
values by nearly an order of magnitude, while the values for
L; and L, are comparable. While binding parameters
obtained from KH-DBM used only the intercept values,
which are sensitive to extrapolation of initial and terminal
data points, the CBM model used all data points, and,
therefore, inherently more accurate.

MINTEQA Model

Computational speciation by Minimization of Total
Equilibrium Activity (MINTEQA) is based on known
reactions of the metal ions, M (Cu?*) in solution in presence
of all other ligands (HA) and ions, ionic strength, pH, and
temperature. Unlike other models, MINTEQA is entirely
based on reaction stoichiometry and a thermodynamic data
base for the reactions. Here, we used the U.S. EPA model
MINTEQAZ2. The open source program, Visual MINTEQA
3.1, and extensive documentation can be found elsewhere.?®
The total ion (or component) concentrations in MINTEQA
is based on the experimental values. The input DOM
(dissolved HA) is 309 uM, which is the sum of L; and L,
obtained from CBM, and its MW 534 g/mol is obtained
from BYF model to have about 50% organic carbon as
mentioned by the manufacturer of HA.

Table 4 shows that 85.4% of total Cu®* is bound to DOM
and 13% Cu*" is free. Only 2.4 % of the total DOM is
bound to Cu?". The later increases with the increase of
total Cu** or M,. To simulate the experimental data, we

ran MINTEQA with different M, keeping other
components fixed to find the distribution of M and ML.
Figure 6a shows the experimental ML (Cu(DOM)) vs. M,
(Cu®*-total) and those calculated by MINTEQA and CBM.
The species distribution is shown in Figure 6b. The
agreement among experimental ML, MINTEQA and CBM
calculated ML are excellent over 80% of the data at lower
M. The species distribution shows that the system is non-
linear with two approximately linear portions in the low
and high total Cu®* concentrations as indicated by all
models with one ligand site.

Table 4. Distribution of species from components obtained
from MINTEQA calculation. Input: Total [Cu?'] = 2.4
UM, DOM = 308.8 uM, [K*] = 0.1 M, [NO5] =0.1 M,
pH =5, Temp =30.7 °C, and free from dissolved

COx(9).
Component % of total concentration  Species name
DOM (L;+L,)  76.3 DOM
213 H DOM
24 Cu DOM
Cu®* 13.1 Cu®*
0.011 Cu(NO»), (aq)
85.4 Cu DOM
0.026 CuOH"*
1.43 CuNO;*
K* 96.7 K*
3.3 KNO; (aq)
NO,* 96.7 NO, !
3.3 KNO; (aq)
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Fig. 6. (a) Comparison of experimental ML (or Cu(DOM)) vs. M, (Cu*-total) and those calculated by MINTEQA and CBM Models. (b)

Species distribution vs. M, (Cu*-total).
V. Conclusions

Rigorous validation of physicochemical models is essential
for accurately describing the complex interactions between
free and bound metals in the presence of natural dissolved
organic matter (or DOM) like humic and fulvic acids.
While high correlation coefficients (R? >0.99) are often
cited as proof of a good fit, this research confirms that such
metrics can be misleading. The ultimate criterion of an
unbiased model and its validity is the randomness of its
pattern-free residual plot, which serves as the only true
diagnostic for experimental data.

Historically, linearized models such as the Scatchard, Ruzi¢
and other discrete binding models were instrumental, yet
they are inherently limited to the linear section of the data
(<20% data). As demonstrated in this work, these models
frequently fail the critical residual test over a broad range of
concentrations, typically producing distinct, non-random
patterns. This systematic deviation reveals that their
underlying assumptions—such as a single class of binding
sites or a simplified affinity distribution—are insufficient to
capture the multiple binding sites of DOM. While these
models may appear to fit a limited portion of the data, they
provide an incomplete and potentially biased understanding
of the system's overall binding capacity and affinity. A
simple one site, two-parameter linear model s
fundamentally inadequate for describing a complex system
with two distinct and chemically independent binding sites.

With the advent of modern computational techniques,
solving complex, multiparameter non-linear models is not
only feasible but necessary. This research shows that a non-
linear continuous binding model (CBM) successfully
overcomes the limitations of its predecessors. The CBM
provides an excellent fit to the entire dataset, and most
importantly, it yields a randomly distributed residual plot,
confirming its statistical validity and lack of systemic bias.
The model predictions are further validated by MINTEQA,

a chemical reaction model firmly based on the reaction
stoichiometry and thermodynamics.

The significance of this finding extends beyond superior
statistical performance. The parameters obtained from the
CBM are physically and chemically meaningful, offering a
more profound insight into the binding mechanism. This
detailed characterization is crucial for accurately predicting
the speciation, bioavailability, and environmental fate of
heavy metals, thereby providing a more robust foundation
for ecological risk assessment and environmental
remediation strategies.

References

1. Bruland, K. W., R. John Donat, A. David Hutchins, 1991.
Interactive influences of bioactive trace metals on biological
production in oceanic waters. Limnol. Oceanogr. 36(8),
1555-1577.

2. Morel, Francois M. M., J. Robert M. Hudson and M. Neil
Price, 1991. Limitation of productivity by trace metals in the
sea. Limnol. Oceanogr., 36(8), 1742-1755.

3. 3, Van den C.M. G., Berg, 1984. Determination of the
Complexing Capacity and Conditional Stability Constants of
Complexes of Copper(ll) with Natural Organic Ligands in
Seawater by Cathodic Stripping Voltammetry of Copper -
Catechol Complex lons. Marine Chemistry, 15, 1-18.

4. Stockdale, A., E., Tipping, S., Lofts, R. J. G., Mortimer,
2016. Effect of Ocean Acidification on Organic and
Inorganic Speciation of Trace Metals, Environ. Sci. Technol.,
50, 1906—1913. DOI: 10.1021/acs.est.5b05624

5. Thomas, M.C., Gretel Waugh, Inka Vanwonterghem , Nicole
S. Webster, Christian Rinke, Rebecca Fisher, Heidi M.
Luter, Andrew P. Negri, 2023. Protecting the invisible:
Establishing guideline values for copper toxicity to marine
microbiomes. Sci.Total Environ. 904, 166658. www.elsevier.
com/locate/scitotenv

6. Kostic, I. S., D. Tatjana Andelkovi¢, S. Ruzica Nikoli¢, P.
Tatjana Cvetkovi¢, D. Dusica Pavlovi¢, Lj. Aleksandar Boji¢,


http://www.elsevier.com/locate/scitotenv
http://www.elsevier.com/locate/scitotenv

A Multi-Model Assessment of Copper(I1)-Humic Acid Binding

10.

11.

12.

13.

14.

15.

2013. Comparative study of binding strengths of heavy
metals with humic acid. Hem. Ind. 67 (5). 773-779. doi:
10.2298/HEMIND121107002K

Thurman, E. M., R. and L. Malcolm, 1981. Preparative
Isolation of Aquatic Humic Substances, Environ. Sci.
Technol. 15, p 463. https://doi.org/10.1021/es00086a012

Liu, Aigu and Richard D. Gozalez, 2000. Modeling of
Adsorption of Cu(ll), Cd (Il) and Pb(ll) on Humic acid.
Langmuir, 26, 3902- 3909.

Iglesias, A., R. S. Lopez, J.M. Fiol, F. Antelo, Arce, 2003.
Analysis of copper and calcium—fulvic acid complexation and
competition effects. Water Research. 37, 3749 —-3755.

Buffle, J. , P. F. L. Deladoey, Greter and W. Hxerdi, 1980.
Study of the Complex Formation of Copper(H) by Humic
and Fulvic Substances. Anal. Chim. Acta. 116, 255-274.

Tim F. Rrozan and Gaboury Benot, 1999. Intercomparison of
DPASV and ISE for the Measurement of Cu Complexation
Characteristics of NOM in Freshwater.  Environ. Sci.
Technol. 33, 1766-1770.

Laglera, L. M., Javier Downes and Juan Santos-Echeandia, 2013.
Comparison and combined use of linear and non-linear fitting for
the estimation of complexing parameters from metal titrations of
estuarine samples by CLE/AdCSV, Marine Chemistry. 155 ,102—
112. http://dx.doi.org/10.1016/j.marchem.2013.06.005

Lund ,W., Ivan A. Helback and Hans M. Seip,1990. Studies
of the Complexation Properties of Aquatic Humic Material
by Differential Pulse Polarography. Sci. Total Environ. 92,
269-281.

Town, R. M. and H. Kipton J. Powell, 1993. lon-selective
electrode potentiometric studies on the complexation of
copper(ll) by soil-derived humic and fulvic acids. Anal.
Chim. Acta. 279, 221-233.

Nabi, M., Abul Hussam, and Amir H. Khan, 2025. lonic
Speciation of Ecotoxic Lead (2+), Cadmium (2+), and
Naturally Occurring lons with Dissolved Organic Matter in
Seawater from the Bay of Bengal by Differential Pulse
Anodic Stripping Voltammetry, Continuous Binding Model,
and Computational Chemical Equilibria: Effect of Global
Warming. Water. 17, 1470-1488. https://doi.org/10.3390/
w17101470

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

9

Buffle, J., France-Line Greter, and Werner Haerdi, 1977.
Measurement of Complexation Properties of Humic and
Fulvic Acids in Natural Waters with Lead and Copper lon-
Selective Electrodes. Anal. Chem., 49 (2), 216-222.
https://doi.org/10.1021/ac50010a012

Hossain, M. Md., Electrochemical Sensors as a Methodology
for the Study of Chemical Complexation and Speciation in
Aquatic Media. Master’s Dissertation, Department of
Chemistry, University of Dhaka, Bangladesh, 1997.

Scatchard, G. The Attractions of Proteins for Small
Molecules and lons, 1949. Ann N Y Acad. Sci., 51, 660-672.
http://dx.doi.org/10.1111/j.1749-6632.1949.th27297 .x

Ruzi¢, 1., 1962, Theoretical aspects of the direct titration of
natural waters and its information yield for trace metal
speciation, 1982, Anal. Chim. Acta, 140, 99-113.
doi:10.1016/S0003- 2670(01)95456-X

Irving M., Klotz and Donald L. Hunston, 1971. Properties of
Graphical representations of Multiple Classes of Binding
sites, Biochemistry, 10 (16), 3065- 3069.

David A, Dzombak and Francois M. Morel, 1986. Metal-
Humate Interaction 2:  Applications and Comparison,
Environ. Sci. Technol., 20 (7), 676 -683.

Felmy, A.R., D.C., Girvin, E.A., Jenne, 1984. MINTEQ - a
computer program for calculating aqueous geochemical
equilibria.  EPA-600/3-84-031. U.S.  Environmental
Protection Agency, Athens, GA.

Gemini 2.5 Pro, https://cloud.google.com/vertex-
ai/generative-ai/docs/models/gemini/2-5-pro. Wikipedia
(en.wikipedia.org/wiki/Markov_chain_Monte_ Carlo) and
Markov Chain Monte Carlo sampling - University of
Maryland; Accessed August 27, 2025.

Town, R. M., and M., Filella, 2000. Analytical approaches to
the speciation of trace metals in natural waters — metal-
organic complexation. Anal. Chim. Acta, 405(1-2), 1-12.
DOI: 10.1016/S0003-2670(99)00678-3.

M. Plaschke, T. Bundschuh, T. H. Tran, J. I. Kim, R. Knopp,
and H. Geckeis., 2000. Thermodynamic characterization of
humic acid—metal ion interactions. Journal of Colloid and
Interface Science, 227(1), 164-171. DOI: 10.1006/jcis.
2000.6874.


https://doi.org/10.1021/es00086a012
http://dx.doi.org/10.1016/j.marchem.2013.06.005



