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Abstract

In modern times, industrial automation has made significant progress by reducing human labour and speeding up
manufacturing processes. However, limitations in traditional manipulators have led to restricted workspaces and time-
consuming repetitive tasks, making the implementation of flexible manipulators with increased freedom highly beneficial.
Regardless, the deformation of the soft manipulator poses a challenge to its actuation, resulting in undesired vibrations.
Additionally, the actuation process itself, characterised by the utilisation of pumping power, represents a significant factor
contributing to the observed vibrations. This research focuses on the deformations and vibration analysis of the soft
manipulator through experiments. The vibration is characterised by the ripple factor obtained from the fluctuation of the
linear and angular positions with respect to changing velocity and time. Initially, an optimised prototype is constructed
based on geometric parameters to maximise deflection. Subsequently, vibration analysis is conducted on the optimised
prototype with three different test fluids: water, engine oil, and mustard oil with large viscosity differences at the same
temperature, to identify the most suitable fluid in terms of viscosity for actuation. Based on experimental analysis, engine
oil is selected as the most suitable fluid due to its deformation capability at low Reynolds numbers, as well as its vibration
control characteristics. This optimal fluid is then used for various test scenarios involving the geometric model. Finally,
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numerical results are validated with experimental data.
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l. Introduction

In the context of the industry 4.0, robotics is transforming
the manufacturing landscape, thereby enhancing efficiency
to unprecedented levels. Soft robotics, a new area of
research, uses flexible materials to excel in complex
environments and master the delicate manipulation of
objects. It has a wide-ranging impact, from changing the
way healthcare®™ and manufacturing®*® work to making
human-robot interactions safer'*® as well as exploring
maritime industries®’?’.

Soft fluidic actuators are potential candidates for these
types of tasks due to their high power-to-weight ratio. Their
safety features®® along with versatile and diverse functions
such as soft interactions®®, durability®®*, inventive design®
¥ and energy efficiency®, have a huge effect on
healthcare, exploration, and many other fields.

Numerous studies have been conducted on the manipulation
of objects using soft robots with the objective of reducing
cost, achieving the maximum bending angle, increasing
speed and precision, and reducing energy consumption. A
low-cost bending actuator for flexible robotic applications
was proposed by She et al.**. The actuator was able to attain
a bending angle of 90 degrees and a bending radius of 9.6
mm with a response time of less than 5 seconds, as
evidenced by the results. Giannaccini et al.* introduced a
variable compliance, flexible gripper (VCSG) that is
capable of grasping objects of varying shapes and sizes.
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Shintake et al.*” developed a soft robotic gripper that is
capable of delicate and precise object manipulation. The
gripper is made of silicon rubber material and is
pneumatically controlled. Manti et al.®® proposed a
bioinspired soft robotic gripper for adaptable and effective
grasping. The gripper mimics the functionality of an
octopus tentacle, which can adapt its shape to grasp objects
of different sizes and shapes. Wang et al.*® created a
flexible gripper that is capable of operating at a rapid pace
and consumes minimal energy.

Despite of numerous advantages, soft fluidic actuators
encounter obstacles such as vibration* and fluid leakage™.
Current research works did not address vibration modelling,
which makes it harder to define control strategies that are
needed to make these robots more precise and perform
better.

This paper focuses on the vibration analysis of a soft
hydrodynamic manipulator through experiments. In this
regard, a soft manipulator has been fabricated and a test
setup has been developed. Three separate test fluids with
large viscosity differences - water, engine oil, and mustard
oil, were used in the experiment. The vibration is
characterized by ripple factor, calculated from temporal
changes in linear and angular displacements in various
planes.
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I1. Materials and Methods
Experimental setup

A single-link robotic manipulator was fabricated with soft
silicon rubber Ecoflex 00-50. The manipulator with all the
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dimensional parameters is shown in Fig. 1. Dimensional
values are given in Table I. A DC pump, connected to the
inlet through a 0.5-inch diameter flexible PVC pipe, is used
to deliver fluid. The pump motor speed can be controlled by
a motor speed controller. Flow rate is measured by a Hall-
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Fig.1. (a) CAD design of the manipulator with external dimensions, (b) CAD design of the manipulator with cross-sectional dimensions.

Dimensional parameters Values (mm)

Total length (L) 94.50
Channel length (L) 89.15
Clearance (c) 5.35
Channel diameter (d) 12.028
Upper thickness (u) 2.686-3.686
Lower thickness (/) 3.686-4.686
Total thickness (7) 19.4
Inlet and outlet diameter (D) 6
Inlet and outlet channel 24
length (L)

Table I. Dimensions of single link robotic manipulator

effect flow meter sensor. The outlet pressure is measured
using an electronic industrial pressure sensor. A 10 DOF
gyro sensor from SparkFun is used to measure the deflection
and acceleration of the manipulator. Among the 10 DOF,
three measure acceleration, three for magnetic field, three
measure orientation and one is for temperature. However,
only accelerations along the X, Y, and Z axes and
orientations about the Y and Z axes are useful for this study.
The schematic diagram of the setup is shown in Fig. 2.

It is noted that when the channel diameter and total
thickness are constant, the ratio of upper to lower thickness
is defined as follows:

d

Upper to lower thickness ratio, a = IZL; (D)
42
2

Again, for a constant total thickness, clearance to channel
length ratio is defined as:

clearance to channel length ratio, § = Lc—l 2)
ch

Finally, channel diameter to total thickness ratio, u = % 3)

The manipulator is fabricated with optimised o, B, and p
obtained from numerical simulation following equations
(1)-(3). However, it is not the scope of this paper. Hence,
details are excluded.
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Fig. 2. Schematic diagram of the test setup.

When the fluid flows into the channel through the inlet at a
specific flow rate, the manipulator deforms because of the
pressure exerted at the outlet. When the outlet pipe is
clenched, pressure increases, resulting in higher deflections.
In this study, the outlet is fully closed so that maximum
pressure develops for a certain flow rate. The bending of
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the manipulator body can be represented with the diagram
shown in Fig.3.
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Fig. 3. lllustration of the bending of the manipulator.

The initial position of point A on the manipulator body is A
(X1, Y1, Z1). After bending, the point moves to A (X, Va2, Z).
The coordinate values are obtained from gyro sensor from
which bending angles 6, and 6, are calculated using
following equations:

— -1227%1
0, = tan pa— 4)
9 — tan_l ﬂ 5
z Y2=V1 ( )

Vibration analysis

The vibration is characterised by a ripple factor (Y'). The
ripple factor signifies the extent of fluctuation in the
amplitude of a periodic waveform. It measures the presence
of harmonics or higher-frequency components in the signal.
A low ripple factor indicates a more consistent and
smoother waveform, whereas a high ripple factor suggests a
greater degree of distortion or non-linearity. The ripple
factor can be determined by calculating the ratio between
the root mean square (RMS) value of the AC component
and the DC component of the signal.

If the deflection signal comprises M components, namely
X1, X, X3, ..., Xu, then the AC component of the signal can
be represented as Xs, and the DC component of the signal
can be represented as X,

2, y20...1v2
AC component of the signal, X,..,,, = /W (6)

89
DC component of the signal, X,, = W ©)
So, ripple factor, y = % (8)

m

I11. Results and Discussion
Elasticity analysis

Fig. 4 represents the outlet pressure vs. Reynolds number
curve. It can be concluded from the graph that the
maximum developed pressure is approximately 2 MPa. This
pressure is in the elastic limit of the Ecoflex 00-50.
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Fig. 4. Pressure vs. Reynolds number.
Vibration analysis in the velocity domain

Fig. 5 represents the linear and angular displacements vs.
Reynolds number (Re) plot for three different test fluids.
These figures show that water reaches its maximum
deflection point at a much higher Reynolds number (Re >
100) than the engine oil (Re = 9.3) and mustard oil (Re =
8.31). After analysing the above results, it can be concluded
that, to reach the maximum deflection, the flow rate needs
to be high for water because water is less viscous than the
other two test fluids.

From Fig. 5, it is observed that in most cases the ripple
factor (Y) is minimum for either engine oil or the mustard
oil. Vibration for displacement along the Z-axis as well as
rotation about the Z-axis is well controlled by the mustard
oil. In all other cases engine oil shows better performance
in vibration control than the other two test fluids.
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Fig. 5. Displacements vs. Reynolds number (Re) plot for three different test fluids when, o= 0.964, =0.060, p= 0.62.

From Fig. 6 it is observed that in most of the cases the oil. Hence, it can be concluded that among the three test
ripple factor is minimum for engine oil except for fluids, engine oil and mustard oil are more suitable for
translation along the Z axis, for which at a particular deflection as well as vibration control of the manipulator
Reynolds number (Re = 9.31), it is minimum for mustard compared to water.
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Fig. 6. Ripple factor (Y)) vs. Reynolds number (Re) plot for three different test fluids when o= 0.964, p= 0.060, p= 0.62.

Vibration analysis in the time domain

Fig. 7. shows that, in the time domain, minimum ripple
factor is obtained for engine oil except displacement and
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rotation about Z-axis. For later cases, minimum ripple

factor is calculated for mustard oil.
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V. Conclusions

This study characterises vibrations and explores viscosity’s
role in control, recommending specific oils. However,
challenges exist, including dimensional variations and
limited experimental dimensions. Future enhancements
involve theoretical modelling, utilising electrorheological
and magnetorheological fluids for vibration control, and
developing dynamic control systems.
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