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Abstract

This study compares the performance of link functions for diagnostic methods to diagnose influential observations in the
Gamma-Pareto regression model (G-PRM). Three link functions, i.e. inverse, identity, and log are considered to identify
which link function gives the best results. For our investigation, we employed standardized pearson residuals (SPR) and
adjusted pearson residuals (APR). We used Cook’s distance (CD) and Difference of fit (DIFFITS) as diagnostic methods.
We compare the performance of influence diagnostics with the link functions using the simulation study and a real-life
application. Results show that the CD with the log link function is a good method for small dispersion. For large dispersion
and small sample sizes, the performance of the DIFFITS with inverse and identity link functions is better than the CD
method. Similarly, for large dispersion and sample sizes, the CD (with identity and log link functions) and DFFITS with

inverse link function give the same performance.

Keywords: Cook’s Distance; DFFITS; Link functions; Invers; Identity; Log; Gamma-Pareto, Regression Model;
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l. Introduction

The gamma-Pareto distribution (G-PD) is invented by
Ayman Alzaatreh and further extend in a form of Gamma-
Pareto regression model (G-PRM) by Herlina Hanum. A
phenomenon (the response variable) is explained by the
regression model using other phenomena (explanatory
variables). The development of a classical regression model
is predicated on the normality of the response variables.
This assumption applies to the model’s parameters as well
as the test's validity. The response variable is not always
normally distributed in real data. An extended generalized
linear model (GLM) is developed for data with an
exponential family distribution. The mean of the response
variable is connected to the linear form of the explanatory
variables using the GLM link function. According to
(Dobson and Barnett, 2002) the link functions is a
monotone differentiable function. The form of the link
function depends on the response variables probability
distribution, which is the basis for the development of
GLM.

Regression analysis results can be greatly impacted by a
single observation. It may result in a misleading covariance
matrix and inaccurate coefficient estimates. For the
regression models to produce accurate estimates, these
observations must be located and eliminated. In order to
diagnostic a model and evaluate how well it fits, residuals
are important. Only raw residuals are used by the linear
model (LM) to evaluate the model diagnostics. In contrast,
the GLM provides a variety of residual structures, including
the working, Pearson, deviance, Anscombe, and likelihood
residuals. In order to affect GLM influence diagnostics, the
Pearson and deviance and likelihood residuals are the most
often utilized residuals. There are different in probability
distributions for these residuals.

“Author for correspondence. e-mail: nasirsaleem160@gmail.com

Alzaatreh et al. (2012) developed the G-PD. The exponential
family distribution is a member represented by the G-PD
Hanum et al. (2016). Consequently, GLM could be used to
develop the regression modeling for the Gamma-Pareto
regression model (G-PRM). GLM G-PD is analytically
developed by Hanum et al. (2016). The gamma distribution
(GD) is the basis for GLM gamma, which is applied
frequently. When GLM gamma is used for analysis, the
right skew data are frequently fit. The mathematical
relationship between G-PD and GD was mentioned by
Alzaatreh et al. (2012). Hanum et al. (2015) employed G-PD
to model and forecast extreme monthly rainfall, so this
makes sense given that the G-PD evolved from the GD. The
G-PD based regression model. Regression models for non-
normal response variables usually take the form of GLM.
Hanum et al. (2016) examined the relationship between the
explanatory variable and the distributed response variable
in a simulated G-PD using GLM gamma. The application of
modeling gamma-Pareto distributed data with GLM gamma
in monthly rainfall estimation with TRMM data was
covered by Hanum et al. (2017). In order to map the safety
continuum and estimate crashes, Zheng et al. (2014)
discussed the Shifted Gamma-Generalized Pareto
Distribution model. The new Log-Gamma-Pareto
Distribution is created by Ashour et al. (2014). A new
Gamma-Pareto (V) distribution and its uses were presented
by Alzaatreh and Ghosh (2016). The gamma generalized
pareto distribution and its applications in survival analysis
were covered by De Andrade et al. (2017). Exponentiated
gamma-Pareto distribution was applied to bladder cancer
susceptibility by Alzaghal (2020). The weighted gamma-
pareto distribution and its use were covered by Dar et al.
(2020). The introduction of generalized linear models
(GLMs) allows for the investigation of dependent variable
dependence on two independent variables. Another
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variation of the GLM was discussed by McCullagh and
Nelder (1989). According to Hardin and Hilbe (2012), the
GLM in fact goes against the non-influential observation
assumption. Influence diagnostics were first introduced for
linear models (LMs) by Cook (1977). These impact
diagnostics were covered by Belsley et al. (1980) in a
number of dimensions. According to Preisser and Qagish
(1996), Pregibon (1981), and Williams (1987), influence
diagnostics in the GLM continue to be the main topic of
debate. When evaluating influential observations in
influence diagnostics, the Pearson residuals are frequently
used. Additionally, Williams (1987) demonstrated the use of
deviance residuals in influence diagnostics. The two
primary theories of adjusted residuals still in use are the
adjusted deviance residuals provided by Pierce and Schafer
(1986) and the adjusted Pearson residuals suggested by
Cordeiro (2004) based on Cox and Snell (1968). The aim of
these theories is to attain normality. Simas and Cordeiro
(2009) found that an examination of the adjusted Pearson
residuals (APR) in the exponential family of nonlinear
models yields comparable outcomes. Several methods have
been put forth in the literature to diagnose significant
observations or points for the LM, including Cook and
Weisberg (1982), Atkinson (1985), Cook (1986), and
Chatterjee and Hadi (1988). Conversely, Lee (1986)
provided a method for evaluating partial influence in the
GLM. One approach to evaluating the impact on the GLM
regression coefficients was suggested by Thomas and Cook
(1989).

We found from the literature that the majority of
researchers used an identity link function with Pearson
residuals to focus on G-PRM diagnostics. But not focused
on other link functions and pearson residual form like SPR
and APR. There are various link functions such as identity,
inverse and log, and diagnostic methods are Cook's
distance and DFFITS which can be applied to evaluate the
model's performance more effectively. Therefore, the
purpose of this study is to compare the effectiveness and
performance of various link functions for identifying
influential observations as well as the diagnostic processes
methods for identifying influential observations using SPR
and APR.

This paper is organized as follows: In Section 2 discussed
methodology, Section 2.1 the G-PRM and its estimation
methods, Section 2.2 presents the G-PRM residuals with
derivation of standardized and adjusted pearson residuals,
Section 2.3 describe the influence diagnostics methods in
G-PRM. In Section 3 defined a Monte Carlo simulation,
Section 3.1 a Simulation design and Section 3.2 present a
simulation result. In Section 4 present an application:
Reaction rate dataset. Finally, Section 5 gives away
conclusion of the research work.
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1. Methodology
Gamma-pareto regression model and estimation methods

The probability density function of the gamma-pareto
response variable y is given by Alzaatreh et al. (2012).
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The mean and variance of y are, E(a(y)) = ap,
V(a(y) )= afs? respectively.

According to Hanum et al. (2016), Eq. (2.1) can be
modified with parameters a = i and B = u¢. Under these

parameters, the gamma-pareto density for y is given by
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with y >0, u>0and ¢ > 0.
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It may also be noted that the mean and variance of y are
given by

E(y) = pand V(y)= ¢V () = pu®.

For the ith observation, let x;;, x;,, ..., x;, represent the p
non-stochastic regressors. According to Hanum et al.
(2016), link function of the G-PRM for the mean of the
given response variable y is given by

o) =n;=X,"B, i=12,....n.

T — T — H
where x;" = (1, X1, Xy ooes Xip)s B = (Bo, Brs -»Bp) IS @
vector regression coefficient including intercept. And
Xi1, Xiz, -+, Xip rEPresent the p non-stochastic regressors.

For the G-PRM, this link function is either identity link
function g(u;) = 1; = X;" B,
inverse link function g(y;) = n; = ﬁ, and log link

functiong(u;) =n; = log(XiTﬂ)-

Finding the likelihood function's derivative with respect to
p; is the first step in estimating the parameter f; using
maximum likelihood. By Eq. (2.2)
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Where % based on the GLM link function. So, the score

ni

for g; in GLM Gamma-Pareto is

Finally, jth score is presented.
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The variance U; is
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Since the estimators of f;is not in close form.

Iterative weighted least squares (IWLS) were proposed by
(Dobson et al, 2002) as a method for estimating ;.

It's the IWLS.

XTWX b™ = XTWz
b = (XTWX ) 1(XTWz) (2.5)
And now, Using W and var(U;) for G-P and obtained the

iteration for g; as
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Gamma-Pareto regression model, residuals

Many types are available of GLM residuals in literature
(Hardin and Hilbe, 2012). But we used only pearson
residual and its types standardized pearson residual and
adjusted pearson residual form.

The Pearson residuals in the G-PRM are given by

_Yithi _ yicBi (2.6)

For the G-PRM, this link function is either identity link
function 9(u) = n; = X" B,

inverse link function g(w;,) =n; = ﬁ and link function

g(w;) = n; = log(X,"B) are fitted model 4; = ;.

The standardized Pearson residuals are present by using Eq.
(2.6)
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Since h;; is the ith diagonal element of the hat matrix
H:W%X(XTWX)‘lXTW%

The adjusted Pearson residuals is defined by using Eq. (2.6)
_ Rpr—E(Rpr) 2.8)

Rap?‘ Py

V(Rpr)

The adjusted Pearson residuals approximately follow a
normal distribution (Cordeiro, 2004).

2.3. Influence diagnostics, Gamma-Pareto regression model

A bad value in the LM has an impact on the model
estimates and inferences, as noted by (Atkinson, 1981).
These poor values could be influential that have an impact
or be outliers. An outlier is produced by an extreme value in
the response variable, whereas an influential observation is
produced by an extreme value in the explanatory variable.
A portion of these is covered here for the G-PRM influence
diagnostics since the GLM employing pearson residuals
(standardized and adjusted) has not yet any attention. The
reason for this is that the GLM influence diagnostics under
various GLM residuals have received little consideration.
(Pregibon, 1981) was the first to study residuals in the
GLM. Different GLM residuals are used to compute the
GLM influence assessment tools.

A diagnostic measure known as influence that has received
a lot of attention in the literature, DFFITS is defined as the
scaled difference between the fitted value of the complete
data set and the fitted value following the deletion of the i
observation.

DFFITS; = 2k (2.9)
/<7>i Rij

Eg. (2.9) can also be written as

1
V2 T (vieiis
DFFITS; = Y QCr) (2.10)
b hy;
DFFITS; = |t;| |- (2.11)

The DFFITS for standardized pearson residuals used Eg. (2.7)

DFFITS; = |t;] |- (2.12)
-p-1
ti = Repr /#’;pf (2.12.1)

The DFFITS for adjusted pearson residuals used Eqg. (2.8)

DFFITS; = |t;| |-

(2.13)
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_ n-p-1
t; = Rapr ’n_p_(Rapr)Z (2131)
whereni = diag(H) is the ith hat matrix H diagonal
element for the G-PRM McCullagh and Nelder (1989),

1 1
H =Wz X(X"WX) X"Wz. These diagonal elements are
utilized for influence diagnostics and are also referred to as
leverages. In order to influence additional diagnostic
measures, the leverages serve as an indicator. If the data is
small, then an observation is considered influential if the
DFFITS value is greater than one (Chatterjee and Hadi,
1988). In the case of large data sets, an observation is
considered influential when the ith value of DFFITS

exceeds 2 222 (Belsley et al, 1980). The impact of the ith
n

influential observation on the fitted and estimated values is
measured using DFFITS. Similarly, we can substitute other
forms of standardized and adjusted G-PRM residuals for the
purpose of detection influential observations. We apply the
same cut-off point for the DFFITS computation with
standardized and adjusted G-PRM residuals in order to
compare the outcomes with the conventional use of
standardized and adjusted residuals.

Here is second diagnostic measure, the most widely used
measures, such as Cook’s distance (CD), are included. Cook
(1977) first proposed the CD; statistic for the LM to
quantify the impact of the influential observation on the LM
estimates. When the ith observation is removed from the
model, CD; calculates the overall change in the fitted
model. For the G-PRM case, CD; is given

_ (BB x™Wx (B-By)
Cb; = P+
After simplification, Eqg. (2.14) becomes

(2.14)

The cook’s distance for standardized pearson residuals used
eq. (2.7)

2
_ (Repr)” hy

CDiyrgpy = P+1) (hyp) (2.15)

The cook’s distance for adjusted pearson residuals used eq. (8)

2
_ (Rapr)”  hy

(P+1) (1-hy) (2.16)

CDeyrapr
According to Ullah and Pasha (2009), this diagnostic is used
to assess the impact of an influential observation solely on
B. When CD; is large, it means that the ith observation has
influential. Cook (1977) proposed that the use of a cut point
is another method for detecting the influential observation.
ie.,

CD; > Fa, (p + 1, n — p — 1). Influential observations are
not detected by this cut point in certain GLM cases. An
additional cut-off points in the GLM for identifying

influential observations is ﬁ, as discussed by Hardin and

Hilbe (2012). We employ an identical cut-off point for CD;
for all forms of the GPRM residuals in our comparison of
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standardized and adjusted GPRM residuals for the
identification of influential observations.

I11.Monte Carlo Simulation

This section will compare, using a Monte Carlo simulation
study, the performance influence diagnostics under various
link functions, as well as the SPR and APR residuals. In our
study, we compared the effectiveness of Gamma-Pareto
regression diagnostics by taking into account different
sample sizes with different dispersion parameters.

Simulation design

The purpose of this section is to demonstrate the efficacy of
the G-PRM standardized and adjusted pearson residuals for
influence diagnostics through simulation. The independent
variables comprise four influential points. To compare the
performance of identity, inverse and log link functions of
the G-PRM residuals with diagnostic methods Cook's
distance and DFFITS, we take into consideration the
following Monte Carlo scheme. We used algorithm of
Hanum et al. (2016) to generate response variable which
follows a gamma- Preto regression model and data
generation is as follows: y;~G — P(a,B,y), wWwhere
Y. = EQi) = (Bo + B1Xix + B2 Xiz + B3X;3) identity,

Y = EWy) = (Bo + BiXix + B2Xiz + B3Xi3) ™" inverse and
Y = E(v) =10g(Bo + f1Xiz + B2Xiz + B3Xi3) log  link
function, i = 1, 2, ..., n is mean function and ¢ is dispersion
parameter ¢ = 0.04, 0.11, 0.17, 0.33, 0.67, 2, 5, 10 which is
thought to have arbitrary values. For the true parameters,
we choose the following arbitrary values as g, =
0.05, 8, = 0.0025, B, = 0.005 and B; = 0.0001 (Amin et
al, 2016 and 2017) and y is minimum value of response
variable. In this case, the design matrix X has no influential
points of sample sizes n = 25, 50, 100 and 200 generated
asX;~N(-1,1), i = 1,2,..,n; and j = 1,2,3, and then
we make 10", 15", 20", 25™, points in the X as X;; = a, +
Xij, @ =10,15,20 and 25,and j = 1,2,3, where a, =
X, +100. For the estimation of G-PRM, the link functions
used is inverse, identity and log link functions. These
simulation results are perform using the R software. The
simulation is run 10000 times to test the influential
observation detection percentages for each of the G-PRM
under different link functions.

Simulation results

Tables 1-8 present the simulation results of the Gamma-
Pareto regression influence diagnostics under various link
functions. Here is a summary of the simulation's findings.

1. when dispersion level is ¢=0.04 the Cook’s distance
and DFFITS diagnostic methods performance with log
link function for both SPR and APR are larger
diagnostics  influential ~ observations  detection
percentages as compare to the inverse and identity link
functions. All sample sizes yield the same results as
those mentioned above. These results are also verified
and prominent with index plot in figure 1.
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2.

It is interesting to note that, when dispersion level is
increase as ¢=0.11 the Cook’s distance and DFFITS
diagnostic methods performance with inverse link
function for both SPR and APR are larger diagnostics
influential observations detection percentages as
compare the identity and log link functions for all
sample sizes. These results are also verified and
prominent with index plot in figure 2.

While dispersion level is further increase as ¢=0.17 and
¢=0.33 the results is almost same as when dispersion is
¢=0.11 in favor of inverse link function. These results
are also verified and prominent with index plot in figure
3 and 4 respectively.

when dispersion level is ¢=0.67 the Cook’s distance
and DFFITS diagnostic methods performance with
inverse, identity and log link function for both SPR and
APR are almost same diagnostics influential
observations detection percentages are true for all

sample sizes. These results are also verified and
prominent with index plot in figure 5.

For dispersion level is ¢=2 the Cook’s distance and
DFFITS diagnostic methods performance with identity
link function for both SPR and APR are larger
diagnostics influential observation detection percentages
as compare to the inverse and log link functions. But on
the other hand, DFFITS with inverse link function better
diagnose as compare to the identity and log link
function with all sample sizes. These results are also
verified and prominent with index plot in figure 6.

For large dispersion level are ¢=5, 10 the Cook’s
distance and DFFITS diagnostic method's performance
with inverse link function for both SPR and APR are
larger diagnostics influential observations detection
percentages as compare to the identity link and log link
functions for all sample sizes. These results are also
verified and prominent with index plot in figure 7 and 8
respectively.

Table 1. Performance of different link functions with standardized and adjusted pearson residuals for the detection of

influential observations when ¢ =0.04

Sample Influential
size n observation Cook’s Distance DFFITS
¢ =0.04 ¢ =0.04
Inverse ldentity Log Inverse ldentity Log
SPR APR SPR APR SPR APR SPR APR SPR APR SPR APR
25 10 84.9 80.7 82.8 775 83.5 78.8 84.1 79.9 84.7 80.6 83.9 79.3
15 74.4 70.8 73.8 68.9 72.3 68 75.4 717 735 69.6 73.5 70.2
20 63 56.9 61.4 57.4 60.5 57.5 61 56.7 60.5 57 60.2 56.3
25 47.6 44.2 475 44.8 455 43 45.1 42.4 47.2 445 47.1 44.3
50 10 87.3 81.8 87.4 83.1 88.7 83.9 88.1 84.8 88.7 85.2 89.3 84.9
15 82.8 79.4 84.1 80.2 83.8 80.9 84.3 81.3 83.1 80.3 84.1 814
20 77.2 74.6 78.9 76.8 78.7 76.8 77.9 74.9 78.3 76.2 76.6 73.7
25 70.6 67 71.3 69.1 73.6 71.6 72.2 69.6 715 69.2 74.4 715
100 10 91.7 89.3 91.7 88.1 91.2 87.9 92.8 89.7 90.8 87.9 91.7 87.8
15 87.7 85.4 88 85.6 87.6 84.7 88.6 87 88.5 85.9 88.2 85.9
20 83.9 81.9 85.9 83.5 84.3 82.3 85.4 83.6 83.7 81.4 86.3 84.4
25 79.6 77.9 81.7 80.2 83.1 81.1 82.8 81.1 85 83.2 80.2 78.2
200 10 92.9 90.8 95 93.2 93.2 91.2 92.9 90.9 93.4 91.1 94.2 919
15 89.9 88.3 93.2 92.2 91 89.6 91.1 89 92 90.7 91.1 89.2
20 88.8 86.6 90.5 89.5 90.3 89.4 89.4 88.1 90.8 89.8 90.2 88.6
25 88.3 86.5 88.2 87 89.4 87.7 88.6 88.2 87.9 87.1 88.9 87.2
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Cook's Distance
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DFFITS

{a} Inverse, ¢=0.04
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— SR R
--- APR T
. /
= -~
8 et
b e
8 = /;" -
F rd
[=]
£ /
g &+ Pt
s
Pt
T 1 T
25 50 100 200
n n
(c) Log, $=0.04 - {d} Inverse, ¢=0.04
& J—
g
E e
@ [
=
[™
[=} =
=
Z
T T T
25 50 100 200
n n
(e} Identity, $=0.04 < (f) Log, $=0.04
— SPR PSS — SFR R
AFR e R AFR e
T 2 T
g 7 /,
i .
o .
2 / .
= // ]
.I. T .I T T
25 100 200 25 50 100 200

Fig.1. Index plots of Cook’s distance and DFFITS under different link functions with ¢ =0.04

Table 2. Performance of different link functions with standardized and adjusted pearson residuals for the detection
of influential observations when ¢ =0.11

Sample size n

25

50

100

200

Influential
observation

10
15
20
25
10
15
20
25
10
15
20
25
10
15
20
25

Cook’s Distance DFFITS
¢ =0.11 ¢ =0.11

Inverse Identity Log Inverse Identity Log

SPR. APR SPR APR SPR APR |SPR APR SPR APR SPR APR
84 799 8.6 818 835 778 |8L7 757 856 802 851 7938
75 704 733 698 742 709 |742 701 757 72 741 698
608 576 606 56.7 604 57 637 59.7 59 548 604 57
471 447 476 435 44 42 44 413 464 438 487 457
883 84 889 849 894 857 [881 841 901 858 887 846
842 8.2 815 779 8.7 793 |842 815 81 777 817 7715
78 757 763 738 762 739 |788 762 785 765 785 757
698 672 721 694 694 679 |705 685 736 715 718 69.1
909 878 923 887 917 89 91.8 893 906 868 908 878
884 8.7 837 862 878 846 |838 83 879 857 878 849
879 84 851 835 865 84 836 82 839 82 841 823
811 797 836 817 819 808 |828 804 821 803 836 817
932 907 927 913 942 921 |93 90.2 924 905 916 894
92 904 927 915 929 907 |89.7 886 912 893 907 895
905 89 885 871 897 832 |95 892 91 899 907 893
871 8.1 8.1 842 873 851 |876 866 88 86.3 873 86.6
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Fig. 2. Index plots of Cook’s distance and DFFITS under different link functions with ¢ =0.11

influential observations when ¢ =0.17
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Performance of different link functions with standardized and adjusted pearson residuals for the detection of

Sample size n

25

50

100

200

Influential

observation Cook’s Distance DFFITS
¢ =0.17 ¢ =0.17

Inverse Identity Log Inverse Identity Log

SPR_ APR SPR APR SPR APR |SPR APR SPR APR SPR APR
10 874 809 841 799 846 801 |846 794 85 758 868 817
15 775 686 72 686 73 69.1 | 746 701 763 719 751 717
20 629 57 615 579 626 593 | 609 58 631 594 621 595
25 49.0 422 485 455 463 426 | 48 448 489 458 464 429
10 86.6 83 868 831 876 837 |882 845 872 817 891 86
15 839 813 845 815 817 789 |837 803 804 778 8.2 821
20 793 768 757 728 757 727 | 747 712 767 735 761 728
25 70 67 727 701 723 699 | 718 695 748 729 715 687
10 914 832 922 889 902 877 |912 883 909 883 90.7 875
15 865 847 894 872 878 845 |888 856 831 861 893 86.7
20 836 824 864 846 837 813 |828 803 832 813 841 823
25 809 789 834 815 828 811 |81 798 825 801 808 79.6
10 924 91 932 914 908 888 |921 901 935 917 931 915
15 918 905 935 919 917 908 |909 889 92 89.6 928 908
20 888 872 91 897 891 875 |89 873 908 892 884 863
25 872 86 879 866 88 868 |891 875 899 838 883 876
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Fig. 3. Index plots of Cook’s distance and DFFITS under different link functions with ¢ =0.17

Table 4. Performance of different link functions with standardized and adjusted pearson residuals for the detection of
influential observations when ¢ =0.33

Sample size n  Influential

observation Cook’s Distance DFFITS
¢ =0.33 ¢ =0.33
Inverse Identity Log Inverse Identity Log
SPR  APR SPR APR SPR APR |SPR APR SPR APR SPR APR
25 10 88.8 79.2 84 78.5 84.5 79.2 84.9 78.8 84.3 79.8 84.6 80.2
15 74.8 70.8 72.8 69.4 74.2 68.9 73.4 69.2 73 69.1 70.5 66.8
20 56.5 52.8 59.9 55 62.8 59.1 59.6 56.4 60.4 57.1 63.6 61
25 47 44.9 47.3 44.6 47.2 45 46.5 43.7 46.5 44.2 45.7 42.5
50 10 866 828 884 847 895 859 |894 83 898 8.8 901 857
15 836 809 827 802 836 807 |848 82 824 801 819 789
20 774 74.3 78.9 76.3 79.6 77.8 77.3 735 78.6 76.6 77.8 745
25 70.7 68.9 72.4 69.4 69.5 66.5 71.2 68.7 70.2 67.6 741 72
100 10 92.3 89.4 91 87.5 92.4 88.8 91.4 88.6 91.3 88.8 91.8 88.7
15 88.1 86.1 89.5 87.3 87.1 85.1 89.6 87.1 88.2 854 86.5 84.5
20 84.4 82.5 83.6 81.4 83.6 81.9 84.8 83.5 85.9 83.8 86.1 84.1
25 80.7 78.4 82.8 81.2 82.4 80.7 82 80.4 82.2 80.4 81.7 80.1
200 10 939 913 94 917 926 90.2 | 931 894 93 90.7 94 91.2
15 909 893 91 89 90.7 888 |918 903 905 888 91 89.4
20 91.7 90 905 839 898 835 |89.7 883 836 87 90.6 893
25 87 85.3 88.1 87.2 89.3 87.9 86.6 85.2 89.9 88.3 88.6 87.6
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Table 5. Performance of different link functions with standardized and adjusted pearson residuals for the detection of
influential observations when ¢ =0.67

Sample size n

25

50

100

200

Influential
observation

10
15
20
25
10
15
20
25
10
15
20
25
10
15
20
25

Cook’s Distance DFFITS
¢ =0.67 ¢ =0.67

Inverse Identity Log Inverse Identity Log

SPR APR SPR APR SPR APR |SPR APR SPR APR SPR APR
837 783 845 791 8.3 807 |84 802 89 79 838 79
736 69 742 696 732 692 | 735 698 733 696 743 701
59.2 559 609 568 59 558 | 61.3 56.7 62 565 604 56.6
50.2 471 459 43 508 472 | 459 434 487 46 47 44.2
892 846 888 848 869 832 |90 855 867 829 832 847
812 771 836 813 834 801 |85 781 829 793 826 798
777 739 773 749 76 73 782 756 789 755 791 76.1
719 703 723 695 714 692 |694 667 712 70 686 67
905 87 926 895 904 883 |937 907 92 89.3 91 88
886 869 882 8.1 895 865 |89 867 831 859 911 882
845 828 861 836 849 83 841 822 85 828 873 857
838 828 817 796 83 818 |81 79.1 817 803 822 799
933 906 939 915 942 917 |931 916 933 918 927 902
909 894 906 89 914 893 |925 911 912 892 899 883
90.3 89 902 886 90 892 |88 874 902 889 896 886
875 857 889 88 894 882 |88 86.7 877 866 882 873
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Fig. 5. Index plots of Cook’s distance and DFFITS under different link functions with ¢ =0.67

Performance of different link functions with standardized and adjusted pearson residuals for the detection of
influential observations when ¢ =2

Sample size n

25

50

100

200

Influential Cook’s Distance DFFITS
observation ¢ =2 ¢ =2

Inverse Identity Log Inverse Identity Log

SPR APR SPR APR SPR APR |SPR APR SPR APR SPR APR
10 85.2 80.7 84.1 80.3 83.6 78.6 84 78.9 82.5 78.9 85.4 80.6
15 75 70.1 73.3 69.4 76.2 72.4 75.2 72.3 71.9 68.2 75 68.3
20 601 566 598 568 593 559 |599 563 607 578 609 564
25 46 434 47.1 44 46.5 42.5 47.5 45.7 48.3 454 48 47.8
10 895 85 892 848 8.2 827 |876 835 88 842 89.1 855
15 821 784 835 805 8.3 821 (832 809 846 812 83 79
20 77.6 74.5 76.8 74.8 79.7 76.7 79.1 76.3 77.4 75.1 78.9 75
25 72.8 70.1 72.9 70.6 72.1 69.9 73 70.5 73.7 70.5 75.1 70.9
10 92.7 90.5 91.7 89.5 90.4 87.3 90.3 87 89.9 86.7 90.4 87.8
15 88.4 85.5 90 87.5 87.8 85.6 88.2 86.3 87.4 84.9 89.1 87
20 85.2 83.2 85.2 83.6 86.8 85 85.2 83.1 84.2 82.4 83.9 82
25 822 803 807 79 812 79 81.3 80 82 809 821 793
10 93 906 944 918 933 905 | 953 932 93 904 93 90.3
15 916 898 927 91 90.7 895 |925 909 908 893 90.7 896
20 904 896 897 882 908 895 |894 881 896 884 899 885
25 87.1 85.1 88.7 87.5 88 86.2 89.9 88.9 88.3 87.4 86.3 85
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Table 7. Performance of different link functions with standardized and adjusted pearson residuals for the detection of

influential observations when ¢ =5

Sample size n

25

50

100

200

Influential Cook’s Distance DFFITS
observation ¢ =5 ¢ =5

Inverse Identity Log Inverse Identity Log

SPR APR SPR APR SPR APR |SPR APR SPR APR SPR APR
10 82.1 76.7 84.8 79.6 84 78.5 84.4 79.2 85.2 79.6 82.4 77.1
15 75.7 70.4 76.1 717 73 68.8 74.4 70.7 73.4 69.9 735 69.9
20 617 581 60 571 635 589 |618 579 613 581 608 572
25 48.6 451 50.3 46.7 45.8 42.5 44.8 41.6 47.2 44 46.1 42.5
10 894 854 833 848 833 85 902 87 882 834 909 877
15 834 808 818 786 8.1 825 |845 814 818 784 829 80
20 77.9 4.7 75.8 72.9 75 71.6 78 74.4 77.2 4.7 77.1 74.5
25 2.7 69.9 70.6 68.7 72.8 70.9 74.5 71.1 72.6 70.1 74 72.2
10 92.7 89.2 89.2 86.7 91.7 88.7 90.2 87 90.5 88 90.1 86.7
15 89 87 87.2 85 89.2 87.1 87.9 85.5 87.9 86 87.6 85.5
20 853 835 835 821 843 823 |848 827 854 84 86 834
25 822 807 829 805 827 814 |843 817 833 812 819 802
10 943 916 929 908 94 921 |91 90.1 937 911 922 896
15 917 898 898 884 931 911 |91 895 898 879 92 90.3
20 89.2 88.5 88.7 87.4 90.5 89.1 91.6 89.9 89.4 87.6 90.4 89.2
25 88.4 87.7 88.2 86.6 86.6 85.3 89.8 88.2 89.4 88.4 88.2 86.7
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Fig. 7. Index plots of Cook’s distance and DFFITS under different link functions with ¢ =5

Table 8. Performance of different link functions with standardized and adjusted pearson residuals for the detection of

influential observations when ¢ =10

Sample size n

25

50

100

200

Influential

observation Cook’s Distance DFFITS
¢ =10 ¢ =10

Inverse Identity Log Inverse Identity Log

SPR  APR SPR APR SPR APR |SPR APR SPR APR SPR APR
10 938 919 824 762 847 793 |85 819 829 794 825 774
15 91.7 897 757 727 752 713 |729 684 732 685 75 713
20 878 8.4 607 574 604 571 |614 581 618 583 601 554
25 898 887 478 452 477 446 | 464 437 465 433 50 47
10 949 933 881 844 831 849 |86 841 88 848 892 841
15 912 898 825 791 83 795 | 83 799 817 795 818 791
20 91 893 759 731 788 759 |772 741 793 761 765 743
25 899 894 73 708 708 681 |693 667 729 703 697 66.1
10 936 909 909 877 913 883 |92 886 902 868 918 884
15 924 91 884 861 876 858 | 896 88 872 8.2 833 871
20 917 906 849 826 841 824 |84 838 831 859 862 84
25 90.3 894 82 803 794 774 |808 785 817 80 833 813
10 933 917 93 906 925 901 | 947 916 932 907 948 932
15 926 914 919 899 912 894 |902 888 917 894 917 904
20 921 914 903 894 836 874 |903 894 899 884 898 89
25 885 879 905 893 88 872 |832 868 832 87 878 86.6
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Fig. 8. Index plots of Cook’s distance and DFFITS under different link functions with ¢ =10

1V. Application: Reaction Rate Dataset

Now, we will illustrate the performance of the different link
functions for G-PRM with the help of real-life application.
We applied reaction rate data set is taken from Huet et al.
(2004) and (2006). Then Amin et al. (2019 a, b & 2022) and
Yasin et al. (2022) utilized this data set. Data set consist of
24 observations and provide the reaction rate (y) as
dependent variable. Three independent variables (p= 3) are
used to speed up the reaction rate, which are partial
pressure of hydrogen (x,), partial pressure of n-pentane (x,)
and partial pressure of iso-pentane (x3). As it is mentioned
by Yasin et al. (2022), response variable follows a G-PD is
required by following Hanum et al. (2016). However,
because of the positively skewed trend of the dependent
variable, this data set is not well fitted to the normal
distribution. We found that the G-PRM fits this data set
well based on the fitting test distribution the findings are
shown in Table 9. In Table 11,12 and 13 are present a
model coefficient summary as inverse, identity and log link
function respectively and with and without influential
observation.

The G-PRM is an appropriate regression model for this set
of data. Influential observations have an impact on the G-
PRM estimates just like they do on the other models.
Therefore, identifying these important observations under
various link functions is our primary concern. We have
calculated the cook's distance and DFFITS and fitted the G-
PRM under various link functions. In Table 10, present an
influential observations summary. The diagnostic measures
cook’s distance and DFFITS under different link functions

with SPR and APR respectively. we observe that the
Cook’s distance with SPR under inverse link function
diagnosed 5,6,11 is influential observations. while, on the
other hand the Cook’s distance with APR under inverse link
function diagnosed 5,6 is influential observations.
Similarly, we observe that the Cook’s distance with SPR
under identity link function diagnosed only 22 is influential
observation while, on the other hand the Cook’s distance
with APR under identity link function does not diagnosed
any influential observations. It is interesting to note that the
Cook’s distance with SPR and APR under log link function
diagnosed same observation 5,6,22,24 is influential
observation. Now we discussed second diagnostic measure
is DFFITS under different link functions and pearson
residual form such SPR and APR. For DFFITS with SPR
under inverse link function diagnosed only 10 is influential
observation. while, on the other hand DFFITS with APR
under inverse link function diagnosed 14,19 is influential
observations. Similarly, for DFFITS with SPR under
identity link function diagnosed only 19 is influential
observation while, on the other hand the DFFITS with APR
under identity link function does not diagnosed any
influential observations. It is interesting to note that the
DFFITS with SPR under log link function diagnosed
observation 20,21,23 is influential observation. But
DFFITS with APR under log link function diagnosed 22, 24
is influential observation. We now identify the observations
that affect the G-PRM estimates and confirm the influence
of the diagnostic process and the link function. To do this,
we calculate the percentage change in the G-PRM estimates
following the removal of any influential observations that
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we find. The results are shown in Table 14. Table 14
presents a comparison of the various diagnostic techniques
under various link functions, allowing us to determine
which technique correctly identifies the influential
observations. We can see from Table 14 that the sixth
observation is the most influential value. With the
excluding of the identity link function, only the Cook's
distance method was able to identify this observation under
the inverse and log link functions with G-PRM estimates of
B, and pB; are impacted by this finding. The fifth
observation is the second most important one. This
observation was diagnosed by the cook's distance using

Atif Akbar, and Nasir Saleem

only the inverse and log link functions, leaving out the
identity link function. The G-PRM estimates of 8, and f3;
are impacted by this finding. Likewise, under various link
functions 24, 22, 11 influential observations, the cook's
distance also affects the G-PRM estimate that is indicated
in Table 14 with bold values. It has been observed that the
tenth observation holds the most influence. The G-PRM
estimate of g, is affected by the influential observation,
which is only detected by the DFFITS method under the
inverse link function and excludes the identity and log link
functions.

Table 9. Goodness of fit distribution tests for Reaction Rate Data

Goodness of fit

Probability Distribution

tests (GFT) Gamma Exponential Gamma-Pareto ~ Weibull Uniform Normal Log-Normal
Anderson-Darling ~ Statistic 0.2519 3.1872 0.3299 0.2943 0.9912 1.2462 0.8055
(AD) P-value 0.7538 0.5881 0.8103 0.6288 0.2033 0.0027 0.0390
Cramer-von Mises  Statistic 0.0432 0.4570 0.2797 0.0521 0.2392 0.2127 0.1865
(CVM) P-value 0.6259 0.0067 0.6922 0.4772 0.3143 0.0033 0.0051
Pearson chi- Statistic 2.0000 14.880 24.774 6.0000 9.6522 10.667 17.995
square (PCS) P-value 0.8491 0.0033 0.9605 0.3062 0.2071 0.0584 0.0949

Gamma-Pareto Distribution (G-PD).

Table 10. Detect influential points (IP) with Gamma-Pareto regression model (G-PRM), Residuals (Under different
link functions with diagnostic methods)

IP detection methods G-PRM
Inverse link function Identity link function Log link function
Index plots standardized Pearson 5,6,11 22 5,6,22,24
residuals (Cook’s Distance)
Index plots adjusted Pearson 5,6 -- 5,6,22,24
residuals (Cook’s Distance)
Index plots standardized Pearson 10 19 20,21, 23
residuals (DFFITS)
Index plots adjusted Pearson 14,19 -- 22,24
residuals (DFFITS)

Influential points (IP), Gamma-Pareto regression model (G-PRM)

Table 11. The G-PRM summary with and without influential points. (Inverse link function)

Variables Full data After deleting, IP
Estimate SE Z P-value Estimate SE Z P-value
Constant -3.175 0.382 4375 0.000 1.695 0.383 4.429 0.000
X 0.059 0.011 -3.039 0.006 -0.002 0.001 -2.705 0.014
Xz -0.067 0.005 13.489 0.000 0.034 0.003 13.630 0.000
X 0.004 0.002 -12.333 0.000 -0.031 0.003 -11.723 0.000
Table 12. The G-PRM summary with and without influential points. (Identity link function)
Variables Full data After deleting, IP
Estimate SE Z P-value Estimate SE Z P-value
Constant 0.178492 0.093265 1.913822 0.070063 | 0.1846 0.087571 2.108005 0.048538
X1 0.000407 0.000219 1.85882 0.077832 0.000462 0.000223 2.074656 0.051847
X; -0.00109 0.000262 -4.17186 0.000471 -0.00118 0.000278 -4.24206 0.000441
X3 0.003005 0.000756 3.97718 0.000742 0.002872 0.000786 3.651584 0.001697




Influential Observations Detection in the Gamma-pareto Regression Model Under Different link Functions: 109

Table 13. The G-PRM summary with and without influential points. (Log link function)

Variables Full data After deleting, IP
Estimate SE Z P-value Estimate SE Z P-value
Constant 0.946834 0.343443 2.75689 0.012161 0.87562 0.330174 2.651997 0.015733
X -0.00143 0.00075 -1.90964 0.070629 -0.0016 0.00073 -2.19714 0.040614
X, 0.009494 0.001181 8.035421 0.710090 0.01065 0.001257 8.474713 0.002501
X -0.01139 0.001656 -6.88204 0.611011 0.01181 0.001594 -7.41159 0.041191

Table 14. Absolute percentage relative change in the G-PRM estimates after deleting IP and Réfron (Under different

link functions)

Influential points

Percentage relative change in the G-PRM estimates

Rify0n(0.7856)

Bo B B2 B3
5 39.257 79.556 4.789 8.483 0.3723
6 45,567 6.406 2.906 66.850 0.1622
10 3.7850 45.208 4.621 9.012 0.8357
11 24.858 10.717 5.091 3.210 0.3701
14 0.5774 2.8475 0.385 3.875 0.9845
19 0.3876 0.8677 -0.384 0.783 0.1274
20 0.2158 0.0459 -0.123 0.943 0.2737
21 4.8348 12.478 0.784 3.478 0.3478
22 55.2314 0.0002 -0.001 0.003 0.6754
23 0.8934 0.0004 -0.001 0.002 0.7437
24 62.1846 0.0007 -0.001 0.002 0.8876
(0. 7856) represent the R,f-fm of the full data
Influential points (IP), Gamma-Pareto regression model (G-PRM)
V. Conclusion References
Influential observations influence the G-PRM estimates just 1. Alzaatreh, A., & Ghosh, I. (2016). A study of the Gamma-

like they do for other models. We estimate the G-PRM
under different link functions. Therefore, in order to
identify an appropriate diagnostic method and a link
function in the G-PRM, we compare the performance of
two influence diagnostic methods with different link
functions in this study. We take into consideration the
inverse, identity, and log link functions for these reasons.
We diagnose the influential observations with taken into
account link functions using the two influence diagnostic
methods, namely Cook's distance and DIFFITS. The G-
PRM diagnostic techniques' effectiveness with various link
functions should be assessed. We employ a real application
along with the Monte Carlo simulation. The results of the
simulation indicate that the cook’s distance and DFFITS
with log link functions perform better than the inverse and
identity link functions for small dispersion and all sample
sizes. The cook's distance and DIFFITS with inverse link
function perform better than the identity and log link
function for large dispersion and small sample sizes.
Similarly, the cook's distance and DFFITS with all link
functions yield nearly identical results of influence
diagnostics performance for large dispersion and all sample
sizes.
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