

Synthesis of Ethyl 3,5-(Disubstituted Phenyl)-2-Isocyano-5-Oxopentanoate

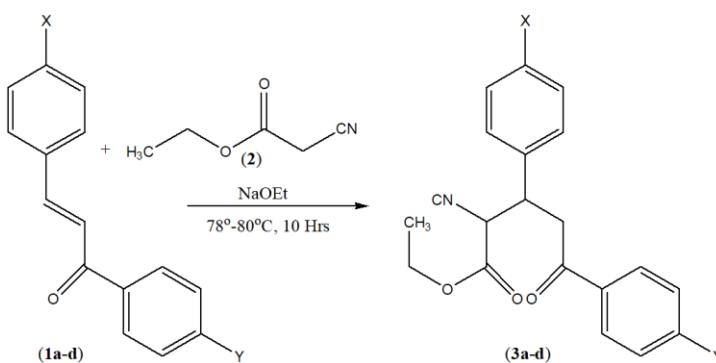
Kawsari Akhter^{1*}, Roksana Akhter¹, S. Mosaddeq Ahmed², and Md. Ershad Halim¹

¹Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh

²Department of Natural Science (Chemistry), American International University – Bangladesh (AIUB)
408/1 Kuratoli, Khilkhet, Dhaka-1229, Bangladesh

(Received : 4 August 2025; Accepted : 1 January 2026)

Abstract


The reactions between substituted chalcones 1a-d with ethyl cyanoacetate 2 were carried out in 1:1 molar ratio in the presence of sodium ethoxide as catalyst under refluxing condition to synthesize few chalcone derivatives, ethyl 3,5-(disubstituted phenyl)-2-isocyano-5-oxopentanoate, 3a-d. The structure of the compounds was determined by their chemical properties, UV, FT-IR, 1H-NMR, 13C-NMR, mass spectral data and elemental analyses.

Keywords: Chalcones, ethyl cyanoacetate, sodium ethoxide, Michael addition

I. Introduction

Chalcones are a large family of natural compounds that are commonly found in fruits, vegetables, spices, tea, and meals based on soy. Because of their intriguing pharmacological properties, chalcones have recently been the focus of extensive research¹⁻³. Chemically, they are made up of open-chain flavonoids with a three-carbon α , β -unsaturated carbonyl system connecting the two aromatic rings. It is a distinct template molecule connected to multiple biological processes. Interest in using chalcones or chalcone-rich plant extracts as medications or food preservatives has increased due to the phenolic groups' capacity to quench radicals⁴. Benzaldehyde and acetophenone typically undergo an aldol condensation to produce chalcones, which are significant and potentially physiologically active substances⁵. Numerous beneficial qualities of chalcones have been reported, such as their anti-inflammatory⁶⁻⁷, antifungal⁸⁻¹⁰, antioxidant¹¹, cytotoxic¹², and anticancer¹³⁻¹⁶ actions.

On the other hand, because of its range of functional groups and chemical reactivity, ethyl cyanoacetate is a valuable starting material for synthesis¹⁷. The versatile synthetic building block ethyl cyanoacetate has three distinct reactive centers: nitrile, ester, and acidic methylene site. This allows it to use to create a wide range of functional and pharmacologically active compounds. Moreover, it can be utilized to create nitriles, acids, amides, and esters¹⁸. It can be employed in condensation reactions such as the Michael addition¹⁹⁻²⁰ or the Knoevenagel condensation²¹⁻²² because it has an acidic methylene group that is bordered by both nitrile and carbonyl. This reactivity is comparable to malonic acid esters. Diethyl malonate is produced from cyanoacetic acid ethyl ester by reacting with ethanol in the presence of strong acids, serving as an illustration of reactivity with nitrile²³. This produces the dimeric 3-amino-2-cyano-2-pentendiacididethyl ester when heated in the presence of sodium ethoxide²⁴.

Products	X	Y
3a	4-OCH ₃ 4-Br	
3b	4-OCH ₃ 4-Cl	
3c	4-CH ₃	4-Cl
3d	4-Cl	4-Cl

Scheme 1. Synthesis of compounds, 3a-d using sodium ethoxide as a catalyst.

In addition to their biological significance, several chalcone derivatives have been shown to be antimitotic agents due to their ability to prevent tubulin from polymerizing into microtubules²⁵⁻²⁸. Chalcone derivatives are also effective in

slowing the progression of multiple sclerosis because they prevent the disease's myelin sheath from being destroyed in

the central nervous system of affected individuals²⁹. Numerous studies have observed at the Michael addition reactions of chalcones with active methylene compounds like 1,3-dicarbonyls³⁰⁻³³ and ethyl acetoacetate³⁴.

The synthesis of a few chalcone derivatives (3a-d) in the presence of sodium ethoxide is presented in this study. The

produced molecules are thought to be helpful intermediates in synthetic organic chemistry and may have a range of chemical uses.

II. Materials and Methods

The mp, UV, IR, ¹H-NMR, ¹³C-NMR, mass spectra and elemental analyses were used to characterize each product. All the chemicals were bought from E. Merck. On plates that had been percolated with silica gel 60 F₂₅₄, thin layer chromatography (TLC) was done, and spots were found using iodine vapor. Uncorrected melting points were determined using an Electro Thermal Micro Melting Point equipment. The IR spectra of the samples were recorded between 4000 and 400 cm⁻¹ on a Shimadzu IR 470A spectrophotometer. The ultraviolet spectra of the samples were captured using a Shimadzu UV-160A spectrometer with an 800-200 nm scanning range. Chloroform solution was used to record the spectra for solid materials. The ¹H-NMR and ¹³C-NMR spectra of the samples were measured using DMSO-d₆ as the solvent and tetramethylsilane (TMS) as an internal standard on a Bruker 400 MHz spectrophotometer.

General Procedure

A mixture of substituted chalcones (0.005M) and ethyl cyanoacetate (0.005M) were taken in sodium ethoxide (25 mL) in a round bottomed flask to carry out reaction under refluxing condition (78°-80°C) on a magnetic stirrer for 10 hours. The progress of the reactions was followed by TLC and the mixture was cooled and neutralized with 0.1N HCl. The solid product was filtered off and recrystallized from absolute alcohol. The pure product was filtered off and washed with ice cold absolute alcohol. Then it was dried first in the air and then in a vacuum desiccator.

Ethyl 5-(4-bromophenyl)-2-isocyano-3-(4-methoxyphenyl)-5-oxopentanoate, 4a: Yield 26%; white crystalline solid; mp 114-116°C; R_f value in TLC: 0.67 (chloroform: pet-ether, 3:2); UV (λ_{max} in nm): 257 ($\pi\rightarrow\pi^*/n\rightarrow\pi^*$ of C=O), 223 ($\pi\rightarrow\pi^*$ of C=C-C=O); IR (KBr) (ν_{max} in cm⁻¹): 3010, 2931 (C-H stretching), 2244 (-CN stretching), 1745, 1679 (-C=O stretching), 1585, 1515 (C=C stretching of arom.), 1399 (-CH₃ bending), 1183, 1032 (C-O-C stretching), 882, 827, 797 (=C-H of aromatic ring), 590 (C-Br stretching); ¹H-NMR (δ in ppm): 7.78 (d, J=7.6 Hz, 2H, C-2',6'), 7.58 (d, J=7.6 Hz, 2H, C-3',5'), 7.26 (d, J=7.2 Hz, 2H, C-2'',6''), 6.84 (d, J=7.6 Hz, 2H, C-3'',5''), 4.26 (q, J=7.2 Hz, 2H, -OCH₂CH₃), 4.09-4.03 (m, 1H, C-3), 3.84 (s, 3H, Ar-OCH₃), 3.71 (d, J=4.8 Hz, 1H, C-2), 3.58-3.52 (m, 2H, C-4), 1.20 (t, J=7.2 Hz, 3H, -OCH₂CH₃); ¹³C-NMR (δ in ppm): 195.80 (C-5), 165.16 (C-1), 159.29 (C-4''), 135.14 (1''), 132.05 (1''), 131.85, 129.89 (C-3',5''), 129.74, 129.43 (C-2', 6'), 127.85 (4''), 127.52, 127.33 (C-2'',6''), 115.79 (-CN), 114.34, 114.21 (C-3'', 5''), 63.02 (CH₃CH₂O-), 55.27 (Ar-OCH₃), 44.27 (C-2), 38.14 (C-4), 26.55 (C-3), 13.91 (CH₃CH₂O-); MS: m/z 431.06 (100.0%), 429.06 (99.4%), 430.06 (22.9%), 432.06 (22.6%), 433.06 (3.3%); Anal.

Found: C, 61.86; H, 6.21; N, 9.45; Calc. for C₂₁H₂₀BrNO₄: C, 58.62; H, 4.68; N, 3.26%.

Ethyl 5-(4-chlorophenyl)-2-isocyano-3-(4-methoxyphenyl)-5-oxopentanoate, 4b: Yield 25%; white crystalline solid; mp 162-164°C; R_f value in TLC: 0.45 (chloroform: pet-ether, 3:2); UV (λ_{max} in nm): 260 ($\pi\rightarrow\pi^*/n\rightarrow\pi^*$ of C=O), 228 ($\pi\rightarrow\pi^*$ of C=C-C=O); IR (KBr) (ν_{max} in cm⁻¹): 3008, 2931 (C-H stretching), 2248 (-CN stretching), 1745, 1680 (-C=O stretching), 1588, 1502 (C=C stretching of arom.), 1401 (-CH₃ bending), 1185, 1114 (C-O-C stretching), 875, 816, 789 (=C-H of aromatic ring), 750 (C-Cl stretching); ¹H-NMR (δ in ppm): 7.93 (d, J=7.2 Hz, 2H, C-2',6'), 7.51 (d, J=7.2 Hz, 2H, C-3',5''), 7.44 (d, J=7.2 Hz, 2H, C-2'',6''), 6.92 (d, J=7.2 Hz, 2H, C-3'',5''), 4.27 (q, J=8.8 Hz, 2H, -OCH₂CH₃), 3.98-3.93 (m, 1H, C-3), 3.79 (s, 3H, Ar-OCH₃), 3.73 (d, J=7.2 Hz, 1H, C-2), 3.59-3.52 (m, 2H, C-4), 1.30 (t, J=8.4 Hz, 3H, -OCH₂CH₃); ¹³C-NMR (δ in ppm): 196.87 (C-5), 166.25 (C-1), 158.28 (C-4''), 138.85 (1''), 130.57, 130.36 (C-3',5''), 134.98 (1''), 128.67, 128.32 (C-2', 6'), 129.88 (4''), 127.86, 127.43 (C-2'',6''), 116.83 (-CN), 114.46, 114.28 (C-3'', 5''), 61.32 (CH₃CH₂O-), 55.89 (Ar-OCH₃), 45.63 (C-2), 38.54 (C-4), 26.81 (C-3), 13.27 (CH₃CH₂O-); MS: m/z 385.11 (100.0%), 387.11 (35.3%), 386.11 (23.5%), 388.11 (7.4%), 389.11 (1.1%); Anal. Found: C, 61.86; H, 6.21; N, 9.45; Calc. for C₂₁H₂₀ClNO₄: C, 65.37; H, 5.22; N, 3.63%.

Ethyl 5-(4-chlorophenyl)-2-isocyano-3-(4-methylphenyl)-5-oxopentanoate, 4c: Yield 28%; white crystalline solid; mp 170-172°C; R_f value in TLC: 0.55 (chloroform: pet-ether, 3:2); UV (λ_{max} in nm): 263 ($\pi\rightarrow\pi^*/n\rightarrow\pi^*$ of C=O), 221 ($\pi\rightarrow\pi^*$ of C=C-C=O); IR (KBr) (ν_{max} in cm⁻¹): 3029, 2926 (C-H stretching), 2249 (-CN stretching), 1739, 1660 (-C=O stretching), 1590, 1516 (C=C stretching of arom.), 1402 (-CH₃ bending), 1181 (C-O-C stretching), 892, 813, 790 (=C-H of aromatic ring), 745 (C-Cl stretching); ¹H-NMR (δ in ppm): 7.99 (d, J=7.6 Hz, 2H, C-2',6'), 7.48 (d, J=7.6 Hz, 2H, C-3',5''), 7.19-7.13 (m, 4H, C-2'',3'',5'',6''), 4.28 (q, J=7.2 Hz, 2H, -OCH₂CH₃), 3.99-3.94 (m, 1H, C-3), 2.46 (s, 3H, Ar-CH₃), 3.71 (d, J=7.6 Hz, 1H, C-2), 3.61-3.55 (m, 2H, C-4), 1.31 (t, J=7.6 Hz, 3H, -OCH₂CH₃); ¹³C-NMR (δ in ppm): 197.65 (C-5), 164.72 (C-1), 138.64 (C-1''), 135.83 (C-4''), 131.45 (C-4''), 130.48, 130.26 (C-2', 6'), 128.84, 128.62 (C-3',5''), 134.88 (C-1''), 128.53, 128.26 (C-3'', 5''), 126.63, 126.27 (C-2'',6''), 116.87 (-CN), 61.28 (CH₃CH₂O-), 20.85 (Ar-CH₃), 45.78 (C-2), 38.82 (C-4), 23.69 (C-3), 13.43 (CH₃CH₂O-); MS: m/z 369.11 (100.0%), 371.11 (32%), 370.12 (23.1%), 372.11 (7.4%), 371.12 (3.2%); Anal. Found: C, 61.86; H, 6.21; N, 9.45; Calc. for C₂₁H₂₀ClNO₃: C, 68.20; H, 5.45; N, 3.79%.

Ethyl 3,5-bis(4-chlorophenyl)-2-isocyano-5-oxopentanoate, 4d: Yield 23%; white crystalline solid; mp 160-162°C; R_f value in TLC: 0.61 (chloroform: pet-ether, 3:2); UV (λ_{max} in nm): 263 ($\pi\rightarrow\pi^*/n\rightarrow\pi^*$ of C=O), 235 ($\pi\rightarrow\pi^*$ of C=C-C=O); IR (KBr) (ν_{max} in cm⁻¹): 3025, 2935 (C-H stretching), 2245 (-CN stretching), 1740, 1660 (-C=O stretching), 1585, 1515 (C=C stretching of arom.), 1401

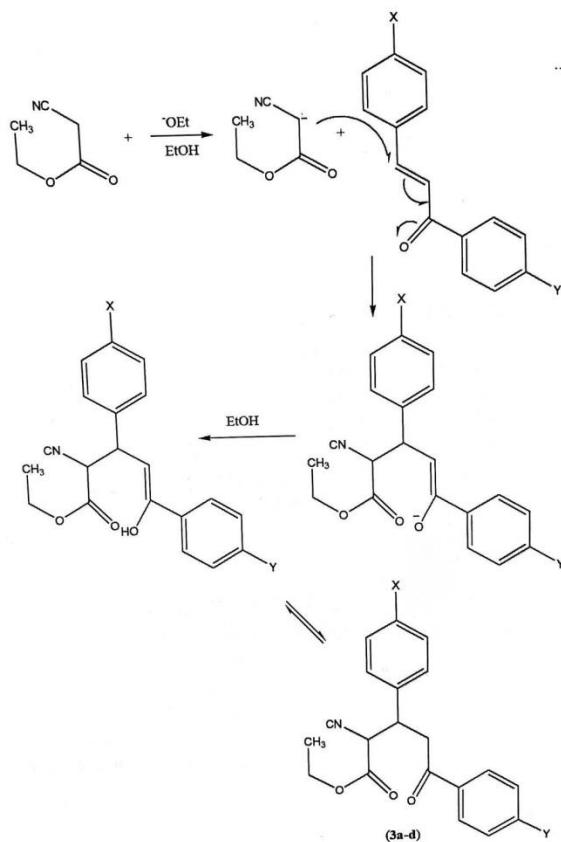
(-CH₃ bending), 1185 (C-O-C stretching), 892, 813, 790 (=C-H of aromatic ring), 747 (C-Cl stretching); ¹H-NMR (δ in ppm): 7.98 (d, $J=7.6$ Hz, 2H, C-2',6'), 7.56 (d, $J=7.6$ Hz, 2H, C-3',5'), 7.40 (d, $J=7.6$ Hz, 2H, C-3",5"), 7.22 (d, $J=7.6$ Hz, 2H, C-2",6"), 4.27 (q, $J=8.4$ Hz, 2H, -OCH₂CH₃), 3.99-3.93 (m, 1H, C-3), 3.72 (d, $J=7.2$ Hz, 1H, C-2), 3.58-3.53 (m, 2H, C-4), 1.32 (t, $J=8.4$ Hz, 3H, -OCH₂CH₃); ¹³C-NMR (δ in ppm): 198.45 (C-5), 164.68 (C-1), 138.88 (C-1"), 135.64 (C-4'), 134.78 (C-1'), 131.71 (C-4"), 130.66, 130.24 (C-2', 6'), 128.89, 128.78 (C-3', 5'), 128.55, 128.43 (C-3", 5"), 127.54, 127.32 (C-2",6"), 116.57 (-CN), 61.56 (CH₃CH₂O-), 45.68 (C-2), 37.43 (C-4), 26.24 (C-3), 13.36 (CH₃CH₂O-); MS: m/z 389.06 (100.0%), 391.06 (64.6%), 390.06 (22.3%), 392.06 (14%), 393.05 (10.2%), 394.06 (2.3%), 393.06 (1.9%); Anal. Found: C, 61.86; H, 6.21; N, 9.45; Calc. for C₂₀H₁₇Cl₂NO₃: C, 61.55; H, 4.39; N, 3.59%.

III. Results and Discussion

A small amount of crystalline solid of each of the compounds, **3a-d** was dissolved in chloroform and then 2,4-dinitrophenylhydrazine (2,4-DNP) solution was added to it drop wise. A yellow or orange precipitate was formed upon heating which indicated the presence of carbonyl group [>C=O].

The reaction of substituted chalcones, **1a-d** with ethyl cyanoacetate, **2** in presence of sodium ethoxide were conducted to synthesize ethyl 3,5-(disubstituted phenyl)-2-isocyano-5-oxopentanoate, **3a-d** in an analogous way reported previously³⁵ (**Scheme 1**). The structures of the compounds, **3a-d** were elucidated based on their UV, FT-IR, ¹H-NMR, ¹³C-NMR, mass spectral data and elemental analyses which were comparable to the reported data³⁶⁻⁴⁰.

The compounds **3a-d** agree well to the expected λ_{\max} values in their UV spectra. The absorption bands in the range 263-257 nm and 235-223 nm are assigned to the $\pi \rightarrow \pi^*$ of C=O and C=C of aromatic rings respectively in these compounds.


The IR spectral data of the compounds **3a-d** shows the wave number (ν_{\max}), where the functional groups of the compounds have been confirmed by their characteristic peaks. The broad bands in the range (ν_{\max}) 3029-2926 cm⁻¹ and 2250-2245 cm⁻¹ indicates the stretching of C-H and C-N respectively. Non-conjugated C=O stretching were found in between 1745-1660 cm⁻¹. The C=C of aromatic rings were found in the range 1590-1502 cm⁻¹, -CH₃ bending were found in between 1402-1399 cm⁻¹ and C-Br/Cl were

found in the range 751-590 cm⁻¹ for these halogenated aromatic compounds.

In their ¹H-NMR of compounds **3a-d**, methylene protons attached to a methyl group at one end and to an electronegative oxygen of ester part at another end gave a quartet at δ 4.28-4.26 ppm in a deshielded region. The methyl groups linked to the above methylene group showed a triplet in a shielded region at δ 1.32-1.20 ppm. In the compounds **3a-d**, the proton at position 3 showed multiplet at δ 4.09-3.93 ppm due to the vicinal coupling with the protons at position 2 and 4, the proton at position 2 showed doublet at δ 3.73-3.71 ppm due to the coupling with the protons at position 3, and the proton at position 4 showed multiplet at δ 3.61-3.52 ppm due to the coupling with the protons at position 3. In the compounds **3a**, and **3b**, the protons of methoxy group attached to aromatic rings showed peak at slightly deshielded region (δ 3.84-3.79) because of the bonded electronegative oxygen atom. In the compound **3c**, the protons of methyl group attached to aromatic ring showed peak at slightly shielded region (δ 2.46). All aromatic protons of these compounds gave peaks in their expected region.

The structure of the compounds, **3a-d**, were further confirmed with their ¹³C-NMR spectra. In case of the carbonyl carbon (C-5) gave peak at a deshielded region of δ 198.45-195.80 ppm due to of the polarizability of oxygen atom in these compounds. The carbonyl carbon in ester group (C-1) showed signal also at a deshielded region of δ 166.25-164.68 owing to the presence of neighboring electronegative oxygen atom. The chemical shift of carbon of the cyano-group (-CN) were observed at δ 116.87-115.79 ppm. The methylene carbons in an ester group being attached to an oxygen atom are shielded and peak were observed at δ 63.02-61.28 ppm. The methoxy and methyl substituents in benzene ring showed peaks at δ 55.89-55.27 and 20.83 ppm respectively. Moreover, the methyl carbon attached to the ester group showed peak at δ 13.91-13.27 ppm. The carbons at position C-2, C-4 and C-3 showed their expected peak at δ 45.78-44.27, 38.82-37.43 and 26.81-23.69 ppm respectively. All aromatic carbons of these compounds gave peaks in their expected region.

A base catalyzed mechanism of Michael addition as donor component is believed to proceed by the mechanism (**Scheme 2**):

Scheme 2. A plausible mechanism for the synthesis of compounds, **3a-d**.

IV. Conclusion

The process of reacting to acyclic active methylene molecule with a chalcone in the presence of catalytic sodium ethoxide is relatively straightforward, requires no expensive catalysts or high boiling solvents, and is completely environmentally friendly. The synthesized compounds may have a variety of chemical applications and are regarded as useful intermediates in synthetic organic chemistry.

Acknowledgement

The authors are gratefully acknowledging the kind support of Professor Teruo Shinmyozu, Department of Molecular Chemistry, Institute of Materials Chemistry & Engineering (IMCE), Kyushu University, Fukuoka, Japan for the elemental analyses and mass spectral data of the synthesized compounds.

References

1. Rammohan A., J. S. Reddy, G. Sravya, C. N. Rao, and G. V. Zyryanov, 2020. Chalcone synthesis, properties and medicinal applications: A review, *Environmental Chemistry Letters*, **18**(2), 433–458.
2. Elkanzi N. A. A., H. Hrichi, R. A. Alolayan, W. Derafa, F. M. Zahou, and R. B. Bakr, 2022. Synthesis of chalcones derivatives and their biological activities: A review, *ACS Omega*, **7**(32), 27769–27786.
3. Shalaby M. A., S. A. Rizk, and A. M. Fahim, 2023. Synthesis, reactions and application of chalcones: a systematic review, *Organic & Biomolecular Chemistry*, **21**(26), 5317–5346.
4. Dhar D. N., 1981. The Chemistry of Chalcones and Related Compounds, John Wiley, New York.
5. Kohler E. P., and H. M. Chadwell, 1922. Benzalacetophenone. *Organic Syntheses*, **2**, 1.
6. Nowakowska Z., 2007. A Review of Anti-infective and Anti-inflammatory Chalcones, *Eur. J. Med. Chem.* **42**, 125-137.
7. Yalçın E., S. Sevin, R. Uyar, and F. Ayaz, 2024. Anti-Inflammatory activities of novel chalcone derivatives, *Russian Journal of Bioorganic Chemistry*, **50**(2), 432–443.
8. Lopez S. N., M. V. Castelli, S. Zacchino, and J. N. Dominguez, 2001. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. *Bioorg. Med. Chem.* **9**(8), 1999-2013.
9. Boeck P., P. C. Leal, R. A. Yunes, V. C. Filho, S. López, and M. Sortino, 2005. Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. *Arch Pharm (Weinheim)*, **338**, 87–95.

10. ElSohly H.N., A. S. Joshi, A. C. Nimrod, L. A. Walker, and A. M. Clark, 2001. Antifungal Chalcones from Macluratinctoria. *Plantamedica*, **67**, 87-89.
11. Nurettin Y., U. Osman, E. Aydin, G. Yaşar, Y. Ahmet, B. Cemalettin, Y. and Murat, 2005; Stereoselective photochemistry of heteroaryl chalcones in solution and the antioxidant activities, *J. Photochem. Photobiol.* **169**(3), 229-234.
12. Reddy M. V. B, C. R. Su, W. F. Chiou, Y. N. Liu, R. Y. H. Chen, F. B. Kenneth, K. H. Lee, and T. S. Wu, 2008. Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. *Bioorg. Med. Chem.* **16**(15), 7358-7370.
13. SaydamG., H.H. Aydin, F. Sahin, O. Kucukoglu, E. Erciyas, E. Terzioglu, F. Buyukkececi, and S. B. Omay, 2003. Cytotoxic and inhibitory effects of 4,4'-dihydroxy chalcone (RVC-588) on proliferation of human leukemic HL-60 cells, *Leukemia Research*, **27**(1), 57-64.
14. Cabrera M., M. Simoens, G. Falchi, M. L. Lavaggi, O. E. Piro, E. E. Castellano, A. Vidal, A. Azqueta, A. Monge, A. L. de Ceráin, G. Sagrera, G. Seoane, H. Cerecetto, and M. González, 2007. Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure-activity relationships, *Bioorg. Med. Chem.* **15**(10), 3356-3367.
15. Nakamura C., N. Kawasaki, H. Miyataka, E. Jayachandran, I. H. Kim, K. L. Kirk, T. Taguchi, Y. Takeuchi, H. Hori, and T. Satoh, 2002. Synthesis and biological activities of fluorinated chalcone derivatives, *Bioorg. Med. Chem.* **10**(3), 699-706.
16. Modzelewska A., C. Pettit, G. Achanta, N. E. Davidson, P. Huang, and S. R. Khan, 2006. Anticancer activities of novel chalcone and bis-chalcone derivatives, *Bioorg. Med. Chem.* **14**(10), 3491-3495.
17. Freeman, F. 2001. "Ethyl Cyanoacetate". *Encyclopedia of Reagents for Organic Synthesis*. ISBN 0471936235.
18. Xu L., Y. Guohua, W. Jinhua, 2016. Fine and special chemicals, **24**, 35.
19. Jones G., 2004. "The Knoevenagel Condensation". Organic Reactions. pp. 204-599.
20. Knoevenagel E., 1898. Condensation of malonic acid with aromatic aldehydes via ammonia and amines. Berichte der deutschen chemischen Gesellschaft. **31** (3): 2596-2619.
21. Little R. D., M. R. Masjedizadeh, O. Wallquist, and J. I. McLoughlin, 1995. The Intramolecular Michael Reaction. *Org. React.*, **47**, 315-552.
22. Mather B., K. Viswanathan, K. Miller, and T. Long, 2006. Michael addition reactions in macromolecular design for emerging technologies. *Progress in Polymer Science*. **31** (5): 487-531.
23. Inglis J. K. H., 1928. Ethyl Cyanoacetate, *Org. Synth.*, **8**, 74.
24. Dorokhov V. A., S. V. Baranin, A. Dib, and V. S. Bogdanov, 1992. "Codimers' of N-(pyrid-2-yl) amides and ethyl cyanoacetate". *Russ. Chem. Bull.* **41** (2): 287-291.
25. Kerr D. J., E. Hamel, M.K. Jung, and B.L. Flynn, 2007. The concise synthesis of chalcone, indanone and indenone analogues of combretastatin A4, *Bioorg. Med. Chem.* **15**(9), 3290-3298.
26. Kim D. Y., K. H. Kim, N. D. Kim, K. Y. Lee, C. K. Han, J. H. Yoon, S. K. Moon, S. S. Lee, and B. L. Seong, 2006. Design and Biological Evaluation of Novel Tubulin Inhibitors as Antimitotic Agents Using a Pharmacophore Binding Model with Tubulin, *J. Med. Chem.* **49**(19), 5664.
27. Lawrence N. J., R. P. Patterson, L. L. Ooi, D. Cook, and S. Ducki, 2006. Effects of α -Substitutions on Structure and Biological Activity of Anticancer Chalcones. *Bioorg. Med. Chem. Lett.* **16**, 5844-5848.
28. J. A. Hadfield, S. Ducki, N. Hirst, and A.T. McGown, 2003. Tubulin and microtubules as targets for anticancer drugs, *Prog. Cell Cycle Res.* **5**, 309-325.
29. M. L. Edwards, S. P. Sunkara, and D. M. Stemmerick, US Patent No. 4863968, 1989.09.05.
30. Helmkamp R. W., L. J. Tanghe, J. T. Plati, 1940. Some Michael Condensations Involving Benzyl Cyanide, *J. Am. Chem. Soc.*, **62**, 3215-3219.
31. Kohler E.P. and C.S. Dewey, 1924. The Addition Reactions of certain Pentadienones II. Addition of Malonic Esters, *J. Am. Chem. Soc.*, **46**, 1267-1271.
32. Reddy D. B., M.V.R. Reddy and V. Padmavathi, 1997. *Indian J. Chem.*, **36**B, 923-927.
33. Reddy D. B., V. Padmavathi, B. Seenaiah, and M. V. R. Reddy, 1992. Synthesis of Some Spiro-Isoxazolidine-3,5-Diones, *Org. Prep. Proc. Int.*, **24**, 21-26.
34. Budak Y., E. Findik and M. Ceylan, 2010. Cyclohexenones through addition of ethyl acetoacetate to 3-aryl-1-(thiophen-3-yl)prop-2-en-1-one derivatives, *S. Afr. J. Chem.*, **63**, 1-5.
35. M.G. Ahmed, S.A. Ahmed, G. Rasul and M. H. Bahar, 1988. *J. Bangladesh. Chem. Soc.*, **1**, 45. *Chem. Abstr.* 114 42 186 (1991)
36. Levy G. C. and G. L. Nelson, 1972. *Carbon-13 Nuclear Magnetic Resonance for Organic Chemists*, John Wiley & Sons, New York.
37. Kemp W.1991. *Organic Spectroscopy*, 3rd edition, Macmillan, London.
38. Silverstein R. M., G. C. Bassler and T. C. Morill TC,1991. *Spectroscopic Identification of Organic Compounds*, 5th edition, John Wiley & Sons, New York.
39. Ahmed M. G., U. K. R. Romman, S. M. Ahmed, K. Akhter and M. E. Halim, 2007. Synthesis and correlation of spectral properties of some substituted 1,3-diphenyl-2-propen-1-ones, *Bangladesh J. Sci. Ind. Res.*, **42**(1), 45-52.
40. Ahmed S. M., M. G. Ahmed, S. A. Ahmed, U. K. R. Romman, K. Akhter, M. M. Hossain and A. Hussam, 2009. Synthesis of substituted 5-(1,3-diaryl-1-oxopropyl) pyrimidine (1H, 3H, 5H)-2,4,6-triones; *Dhaka Univ. J. Sci.*, **57**(1), 43-46 and references therein.