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Abstract: The proliferation of high-dimensional data has heightened challenges posed by cellwise outliers, 
where contamination in individual cells distorts analyses more pervasively than traditional rowwise outliers. 
This study conducts a comprehensive comparison of robust variable selection methods under cellwise 
contamination, evaluating four rank-based techniques (ALGR, ALRP, LGR, LRP) against traditional 
approaches (Lasso, Adaptive Lasso, sLTS). Simulations under varying correlation structures, contamination 
rates (2%, 5%, 10%), and outlier magnitudes (γ = 2, 6, 10) demonstrate that Gaussian Rank correlation-based 
methods (ALGR, LGR) achieve superior F1 scores, balancing high true positives and low false positives. 
Real-data applications on life expectancy and crime datasets corroborate these findings, with ALGR and LGR 
maintaining robustness in low- and high-dimensional settings. Results emphasize the critical need for 
methods resilient to cellwise contamination in fields reliant on accurate high-dimensional data analysis, such 
as healthcare and genomics. 

Keywords: Cellwise contamination, Robust variable selection, Gaussian Rank correlation, High-dimensional 
regression, independent contamination model, Sparse robust regression. 

I. Introduction 

The rise of Big Data brings challenges like contamination 
from outliers—data points that skew traditional analyses. 
These outliers distort statistical models, risking severe 
consequences: flawed financial risk assessments, 
compromised healthcare diagnoses, and misleading 
genomic patterns. Neglecting them leads to inaccurate 
predictions, misinformed decisions, and hindered progress. 
Robust solutions include outlier detection algorithms to 
identify anomalies and statistical methods resistant to 
contamination. Addressing outliers ensures reliable 
models, accurate insights, and better outcomes in fields like 
finance, healthcare, and bioinformatics. Proactive data 
cleaning and robust modeling are vital for trustworthy 
analyses and informed decision-making in the era of Big 
Data. It is widely acknowledged that raw datasets often 
include about 1% to 10% outliers, as noted by Hampel1. 
Typically, when we refer to “outliers,” we are discussing 
rowwise outliers. These outliers are characterized by entire 
rows in a dataset being flagged as anomalous, as depicted 
in the left panel of Figure 1. The foundational principles of 
classical robust statistics are rooted in the concept of 
rowwise contamination, where each observation is 
considered either entirely uncontaminated or wholly 
outlying. By focusing only on the uncontaminated 
observations, such as by down-weighting rows identified 
as outliers, robust estimates can be derived that withstand 
the influence of these anomalies.  

                                                
* Author for correspondence. e-mail: karami.stat@du.ac.bd 

 
Fig. 1. Rowwise and cellwise outliers: The outlying cells are 

rendered in white, and the uncontaminated cells are 
shown in gray. For both panels, 20% of the cells are 
contaminated. However, the left panel has 4 out of 20 
rows outlying while the right panel has 18 rows outlying. 

The Tukey-Huber contamination model (THCM), 
proposed by Tukey and Huber2,3, is frequently used to 
model rowwise outliers. In this model, we observe 𝑛𝑛 
independent observations 𝐱𝐱𝑖𝑖 ∈ ℝ𝑝𝑝 for 𝑖𝑖 = 1, … , 𝑛𝑛, which 
may include outliers. This model can be expressed as: 

𝐱𝐱𝑖𝑖 = (1 − 𝑏𝑏𝑖𝑖)𝐱𝐱𝑖𝑖clean + 𝑏𝑏𝑖𝑖𝐱𝐱𝑖𝑖contam, 

where 𝑏𝑏𝑖𝑖 follows a Bernoulli distribution with 
contamination probability 𝑒𝑒, 𝐱𝐱𝑖𝑖clean ∈ ℝ𝑝𝑝 represents a clean 
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observation following a multivariate distribution 𝐹𝐹, and 
𝐱𝐱𝑖𝑖contam ∈ ℝ𝑝𝑝 represents a contaminated observation 
following a multivariate distribution 𝐻𝐻. The indicator 
variable 𝑏𝑏𝑖𝑖 is independent of both 𝐱𝐱𝑖𝑖clean and 𝐱𝐱𝑖𝑖contam.  

However, this traditional paradigm of rowwise outliers is 
increasingly viewed as overly restrictive4. Recent research 
has shifted towards the concept of cellwise outliers, which 
focuses on individual cells within an observation. Unlike 
rowwise outliers, where an entire row is contaminated, 
cellwise outliers may affect only a small subset of cells 
within a row or column. 

This distinction is significant because it provides a more 
nuanced understanding of outliers and their impact on the 
dataset. As shown in the right panel of Figure 1, cellwise 
outliers illustrate that for a given observation, only specific 
cells may be contaminated, while the rest remain clean and 
informative. 

Cellwise outliers can be modeled using the independent 
contamination model (ICM) as described by Alqallaf5. In 
this model, we observe independent observations of a 
random vector 𝐱𝐱𝑖𝑖 given by: 

𝐱𝐱𝑖𝑖 = (𝐈𝐈 − Diag(𝐛𝐛𝑖𝑖))𝐱𝐱𝑖𝑖clean + Diag(𝐛𝐛𝑖𝑖)𝐱𝐱𝑖𝑖contam, 

where 𝐛𝐛𝑖𝑖 = (𝑏𝑏𝑖𝑖1, … , 𝑏𝑏𝑖𝑖𝑖𝑖)
⊤

 and 𝑏𝑏𝑖𝑖1, … , 𝑏𝑏𝑖𝑖𝑖𝑖 are 
independently drawn from a Bernoulli distribution.  

Cellwise outliers pose a significant challenge compared to 
the traditional approach of identifying and down-weighting 
outlying rows. Even a small percentage of contaminated 
cells can affect many rows, dramatically altering the 
overall dataset. Moreover, down weighting such 
observations may lead to the loss of valuable information 
in the uncontaminated cells. 

To better comprehend this phenomenon, Alqallaf5 describe 
the propagation of cellwise outliers under the independent 
contamination model. For a contamination rate 𝑒𝑒 of cells, 
the expected proportion of contaminated observation rows 
is 1 − (1 − 𝑒𝑒)𝑝𝑝. This proportion rapidly exceeds 50% as 
the dimension 𝑝𝑝 increases, highlighting the significant 
impact of cellwise contamination on high-dimensional 
data. 

Traditional methods often focus on detecting outliers at the 
row level, identifying entire observations that deviate from 
expected patterns. The Detect Deviating Cells (DDC) 
technique6 identifies cellwise outliers in multivariate data 
through robust standardization of variables, univariate 
outlier flagging using z-score thresholds, and analysis        
of bivariate relationships to compute correlations and 
regression slopes. Predicted cell values are derived from 
connected variables, adjusted via de-shrinkage to avoid 
underestimation, and compared to observed values through 
residual analysis to flag outliers. Rows with excessive 
flagged cells are marked as rowwise outliers, and detected 
anomalies are replaced with imputed predictions, ensuring 

data integrity. Traditional robust regression estimators, 
such as the M-estimator3 and the MM-estimator7, are 
designed to mitigate the impact of these outliers by down-
weighting the observations that deviate substantially from 
the model. 

the M-estimator of 𝛽𝛽 is obtained by solving: 

𝛽̂𝛽𝑀𝑀 = argmin
𝛽𝛽

∑𝜌𝜌
𝑛𝑛

𝑖𝑖=1
(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖⊤𝛽𝛽

𝜎̂𝜎𝜖𝜖
), 

where 𝜌𝜌(⋅) is a loss function that grows slower than the 
quadratic function used in ordinary least squares (OLS), 
making the estimator less sensitive to large residuals. A 
common choice for 𝜌𝜌 is Huber’s loss function. 

The Least Absolute Shrinkage and Selection Operator 
(LASSO), a regression method proposed by Tibshirani8, is 
designed to improve the predictive power and 
interpretability of statistical models by concurrently 
conducting variable selection and regularization. This 
constraint leads to the shrinkage of some coefficients to 
exactly zero, effectively eliminating the corresponding 
variables from the model and thereby achieving variable 
selection. The Lasso estimator is defined as the solution to 
the following optimization problem: 

𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = argmin
𝛽𝛽

( 12𝑛𝑛 ∥ 𝑦𝑦 − 𝑋𝑋𝑋𝑋 ∥22+ 𝜆𝜆 ∥ 𝛽𝛽 ∥1), 

where ∥ 𝛽𝛽 ∥1= ∑ |𝛽𝛽𝑗𝑗|𝑝𝑝
𝑗𝑗=1  is the 𝐿𝐿1 norm of 𝛽𝛽, and 𝜆𝜆 ≥ 0 is 

a tuning parameter that controls the amount of 
regularization. The term 𝜆𝜆 ∥ 𝛽𝛽 ∥1 acts as a penalty, 
shrinking the coefficients towards zero. When 𝜆𝜆 is large, 
more coefficients are set to zero, resulting in a simpler 
model with fewer predictors. 

The Adaptive LASSO, introduced by Zou9, is an 
enhancement of the standard LASSO method designed to 
improve variable selection consistency and predictive 
performance. The Adaptive LASSO modifies the penalty 
applied to the coefficients by incorporating adaptive 
weights, thereby addressing some of the limitations of the 
traditional LASSO, particularly its tendency to select only 
one predictor from a group of highly correlated predictors. 

The Adaptive Lasso estimator is defined by modifying 
Lasso’s objective function to include adaptive weights 𝜔𝜔𝑗𝑗 
for each coefficient 𝛽𝛽𝑗𝑗: 

𝛽̂𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = argmin
𝛽𝛽

( 1
2𝑛𝑛 ∥ 𝑦𝑦 − 𝑋𝑋𝑋𝑋 ∥22+ 𝜆𝜆∑𝜔𝜔𝑗𝑗

𝑝𝑝

𝑗𝑗=1
|𝛽𝛽𝑗𝑗|), 

where the weights 𝜔𝜔𝑗𝑗 =
1

|𝛽̂𝛽𝑗𝑗
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)|

𝛾𝛾 are derived from initial 

estimates 𝛽̂𝛽𝑗𝑗
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) of the coefficients, and 𝛾𝛾 > 0 is a tuning 

parameter. These weights allow the penalty to adapt based 
on the initial estimates, reducing the bias for larger 
coefficients and improving the selection of relevant 
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variables. The initial estimates 𝛽̂𝛽𝑗𝑗
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) can be obtained 

using various methods, such as the ordinary least squares 
(OLS) if 𝑝𝑝 < 𝑛𝑛, the Ridge regression, or even the standard 
Lasso. 

The Sparse Least Trimmed Squares (sLTS) estimator, 
introduced by Alfons10, is a robust regression technique 
designed to handle high-dimensional data with outliers. 
sLTS combines the principles of robust regression with 
sparsity-inducing penalties to provide reliable parameter 
estimates in the presence of contamination, while 
simultaneously performing variable selection. The sLTS 
estimator aims to minimize the sum of the smallest squared 
residuals while imposing an 𝐿𝐿1 penalty to induce sparsity: 

𝛽̂𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = argmin
𝛽𝛽

∑(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖⊤𝛽𝛽)2
𝑖𝑖∈𝐻𝐻

+ 𝜆𝜆 ∥ 𝛽𝛽 ∥1, 

where 𝐻𝐻 is a subset of indices corresponding to the ℎ 
smallest residuals, and 𝜆𝜆 is a tuning parameter that controls 
the amount of regularization. 

We aim to conduct a comprehensive comparative analysis 
of robust variable selection techniques in the presence of 
cellwise contaminated data, with a particular focus on 
contrasting rank-based and pairwise methods against 
traditional approaches. The main objective is to assess the 
effectiveness of the two-rank based and pairwise methods 
Adaptive Lasso estimator based on Gaussian rank 
correlation (ALGR) and Adaptive Lasso estimator based 
on pairwise correlation (ALRP)11, we compare its 
performance against several established methods: Lasso8 
adaptive Lasso (ALasso)9 and sparse least trimmed squares 
(sLTS)10. 

II. Methodology 

A robust estimator is the Gaussian Rank (GR) correlation, 
introduced by Boudt12.  

For a data matrix 𝑍𝑍 = (𝑦𝑦, 𝑋𝑋), given a pair of observation 
vectors for variables 𝑧𝑧𝑗𝑗 and 𝑧𝑧𝑘𝑘, where 𝑧𝑧𝑗𝑗, 𝑧𝑧𝑘𝑘 ∈ ℝ𝑛𝑛 and 1 ≤
𝑗𝑗, 𝑘𝑘 ≤ (𝑝𝑝 + 1), an efficient and robust correlation 
estimator is the Gaussian rank (GR) correlation. The GR 
correlation is defined as the sample correlation estimated 
from the normal scores of the data. For 𝑧𝑧𝑖𝑖𝑖𝑖 , the 𝑖𝑖-th 
observation of the 𝑗𝑗-th variable, we compute: 

𝑧̃𝑧𝑖𝑖𝑖𝑖 = 𝛷𝛷−1 (
Rank(𝑧𝑧𝑖𝑖𝑖𝑖)
𝑛𝑛 + 1 ). 

After constructing a pseudo dataset 𝑍𝑍 = (𝑧̃𝑧𝑖𝑖𝑖𝑖)𝑛𝑛×(𝑝𝑝+1), we 
derive the GR correlation matrix by calculating the Pearson 
correlation matrix of 𝑍𝑍. This estimated correlation matrix 
is necessarily positive semi-definite, even in high-
dimensional settings, ensuring that the subsequent 
regression optimization process remains convex. 

Once robust estimates of the scale parameters are obtained 
using Qn estimators13 and the correlation matrix 𝑅̂𝑅, the 
robust empirical covariance matrix 𝛴̂𝛴 is computed as: 

𝛴̂𝛴 = 𝑆̂𝑆𝑅̂𝑅𝑆̂𝑆, 

where 𝑆̂𝑆 = Diag (𝜎̂𝜎𝑧𝑧1, … , 𝜎̂𝜎𝑧𝑧𝑝𝑝+1) is a diagonal matrix 
consisting of the robustly estimated scale parameters using 
Qn estimators. Compared to other nonparametric 
correlation estimators, the GR correlation demonstrates 
strong robustness, consistency, and significant 
efficiency12,14. Owing to these excellent properties, the GR 
correlation has been considered a reliable plug-in estimator 
for covariance matrix estimation15. 

In the context of robust variable selection under cellwise 
contamination, we also explore various pairwise 
techniques to estimate correlations. These techniques are 
known for their robustness but often sacrifice efficiency to 
some extent. One such method is the Gnanadesikan-
Kettenring (GK) pairwise estimator16, which lean on the 
identity: 

𝑟̂𝑟𝐺𝐺𝐺𝐺(𝑥𝑥𝑗𝑗, 𝑥𝑥𝑘𝑘) =
𝜎̂𝜎2(𝑥̃𝑥𝑗𝑗 + 𝑥̃𝑥𝑘𝑘) − 𝜎̂𝜎2(𝑥̃𝑥𝑗𝑗 − 𝑥̃𝑥𝑘𝑘)
𝜎̂𝜎2(𝑥̃𝑥𝑗𝑗 + 𝑥̃𝑥𝑘𝑘) + 𝜎̂𝜎2(𝑥̃𝑥𝑗𝑗 − 𝑥̃𝑥𝑘𝑘), 

where 𝜎̂𝜎(⋅) is a robust estimator of scale, 𝑥̃𝑥𝑗𝑗 = 𝑥𝑥𝑗𝑗

𝜎̂𝜎𝑗𝑗
, and 𝜎̂𝜎𝑗𝑗 =

𝜎̂𝜎(𝑥𝑥𝑗𝑗). This estimator is utilized by Raymaekers and 
Rousseeuw4 for quickly obtaining robust correlations. 
Once the correlation coefficients are estimated, they are 
assembled into an empirical correlation matrix 𝑅̂𝑅 =
(𝑟̂𝑟(𝑥𝑥𝑗𝑗, 𝑥𝑥𝑘𝑘))

𝑝𝑝×𝑝𝑝
, following the approach used by Tarr17. 

In line with the work of Loh and Wainwright18, the 
objective loss function for a linear regression model is 
given by: 

𝛽̂𝛽𝐿𝐿𝐿𝐿 = argmin
𝛽𝛽
{𝛴̂𝛴𝑦𝑦𝑦𝑦 + 𝛽𝛽⊤𝛴̂𝛴𝑥𝑥𝑥𝑥𝛽𝛽 − 2𝛽𝛽⊤𝛴̂𝛴𝑥𝑥𝑥𝑥}, 

where 𝛴̂𝛴𝑦𝑦𝑦𝑦 denotes the estimated variance of 𝑦𝑦, 𝛴̂𝛴𝑥𝑥𝑥𝑥 
represents the estimated covariance matrix between 𝑥𝑥 and 
𝑦𝑦, and 𝛴̂𝛴𝑥𝑥𝑥𝑥 is the estimated covariance matrix of 𝑥𝑥. These 
components form the estimated covariance matrix 𝛴̂𝛴 
among the predictors and the response variable: 

𝛴̂𝛴 = (
𝛴̂𝛴𝑦𝑦𝑦𝑦 𝛴̂𝛴𝑥𝑥𝑥𝑥⊤
𝛴̂𝛴𝑥𝑥𝑥𝑥 𝛴̂𝛴𝑥𝑥𝑥𝑥

). 

The solution to the above optimization problem can be 
expressed as 𝛽̂𝛽𝐿𝐿𝐿𝐿 = 𝛴̂𝛴𝑥𝑥𝑥𝑥−1𝛴̂𝛴𝑥𝑥𝑥𝑥 . 

The objective loss function can be rephrased in a more 
elegant form. Given that 𝛴̂𝛴 is positive semi-definite, we 
define (𝑣𝑣,𝑊𝑊) = 𝛴̂𝛴1/2 as the square root of 𝛴̂𝛴, where 𝑣𝑣 is 
the first column of 𝛴̂𝛴1/2 and 𝑊𝑊 is a matrix composed of the 
remaining columns. Considering the relationships 𝑣𝑣⊤𝑣𝑣 =
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𝛴̂𝛴𝑦𝑦𝑦𝑦, 𝑊𝑊⊤𝑣𝑣 = 𝛴̂𝛴𝑥𝑥𝑥𝑥 , and 𝑊𝑊⊤𝑊𝑊 = 𝛴̂𝛴𝑥𝑥𝑥𝑥, we rewrite the 
objective loss as: 

𝛽̂𝛽 = argmin
𝛽𝛽
{𝑣̂𝑣 − 𝑊̂𝑊𝛽𝛽 ∥22}, 

which is a classic quadratic optimization problem.  

To ensure effective variable selection, one can integrate the 
adaptive Lasso penalty, leading to a regularized objective 
loss function. Given the adaptive Lasso's consistency, 
utilizing its penalty allows for the formulation of this 
regularized objective loss function11. 

𝛽̂𝛽𝑅𝑅𝑅𝑅𝑅𝑅−ALasso = argmin
𝛽𝛽

{∥ 𝑣̂𝑣 − 𝑊̂𝑊𝛽𝛽 ∥22+ 𝜆𝜆∑𝜔𝜔𝑗̂𝑗
𝑝𝑝

𝑗𝑗=1
|𝛽𝛽𝑗𝑗|}, 

where 𝜆𝜆 is a tuning parameter, 𝜔𝜔𝑗𝑗 =
1
𝛽̃𝛽𝑗𝑗

, and 𝛽𝛽𝑗𝑗 is an initial 

robust estimate of 𝛽𝛽𝑗𝑗. While there are many criteria that 
could be applied to determine the tuning parameter λ, we 
have selected the BIC because of its ease of 
implementation and good performance. 

 

III. Simulation Study 

Data is generated from a linear regression model with 
number of observations n = 100, number of variables p = 
20  (low-dimensional) and  p = 200  (high-dimensional), 
where predictors follow a correlation structure 𝛴𝛴𝑖𝑖𝑖𝑖 = 𝑟𝑟|𝑖𝑖−𝑗𝑗| 
with varying r over 𝑟𝑟 ∈ {0.1,0.3,0.5,0.7,0.9}. Regression 
Coefficients are set as β = (1,2,1,2,1, 015⊤ )⊤.To introduce 
outliers, we consider contamination proportions 𝑒𝑒 of 2%, 
5%, and 10% for all predictors separately. The outlying 
cells, 𝑥𝑥𝑖𝑖𝑖𝑖contam, are generated randomly from 0.5𝒩𝒩(𝛾𝛾, 1) +
0.5𝒩𝒩(−𝛾𝛾, 1) , where 𝛾𝛾 ∈ {2,6,10} simulates outliers of 
varying magnitudes. These represent small, medium and 
large magnitude of outliers respectively. Each scenario is 
repeated 200 times. For every iteration, the entire dataset, 
including the design matrix, is regenerated. The 
performance of each method in variable selection is 
evaluated using the true positive rate (TPR), the false 
positive rate (FPR).  

 

Fig. 2. Selection results as summarized by the F1 score over 200 simulation runs when p = 20.

The F1 Score is calculated as: 

F1 Score = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 1

2 (𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 

Where TP denotes the true positive number, FP the false 
positive number and FN the false negative number. 

Figure 2 shows the F1 score of low dimensional setting for 
various robust variable selection methods under different 
conditions of cellwise contamination. X-axis represents the 



147Robust Variable Selection in High-Dimensional Data

correlation coefficient (r), which indicates the degree of 
correlation among variables, ranging from 0.1 to 0.9. Y-
axis represents the F1 score, ranging from 0 to 1. Columns 
represent different contamination rates (e = 0.02, 0.05, 0.1). 
Rows represent different magnitudes of outliers (gamma = 
2, 6, 10). 

ALGR remains the most reliable method in maintaining 
high F1 scores across varying contamination rates, outlier 

magnitudes, and correlation coefficients. sLTS performs 
well at lower gamma values but is sensitive to higher 
outlier magnitudes and contamination rates. ALRP is 
effective in specific scenarios with lower contamination 
and better handling of higher correlations. ALasso, Lasso, 
and LRP are less robust, showing higher sensitivity to 
challenging conditions.

 

Fig. 3. Selection results as summarized by the F1 score over 200 simulation runs for various contamination rates when p = 200. 

Figure 3 shows the F1 score for various robust variable 
selection methods under different conditions of cellwise 
contamination in a high-dimensional setting. ALGR and 
also LGR remain really reliable methods in maintaining 
high F1 scores across varying contamination rates, outlier 
magnitudes, and correlation coefficients. ALRP performs 
well in specific scenarios with lower contamination and 
better handling of higher correlations. ALasso, Lasso, and 
LRP are less robust, showing higher sensitivity to 
challenging conditions. sLTS is less robust, showing a 
noticeable decline in F1 score with increasing outlier 
magnitudes and contamination rates, though it performs 
better with increasing correlation. 

IV. Real Data Application 

For the low-dimensional scenario, we use a dataset 
concerning life expectancy available on 
https://www.kaggle.com/datasets/kumarajarshi/life-
expectancy-who. 

Low-Dimensional Setting Using life expectancy Data 

 

Fig. 4. Correlation map of variables in the life expectancy dataset. 
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Figure 4 illustrates the correlation between various 
predictors of life expectancy. Dark blue indicates strong 
positive correlations, such as between ‘Income 
Composition of Resources’ and ‘Schooling’, and between 
‘BMI’ and ‘Diphtheria’ immunization rates. Measles cases 
show weak negative correlations with other predictors, 
indicating that higher immunization rates correspond to 
fewer Measles cases. Overall, the plot highlights how some 
predictors are closely related, while others contribute 
unique information, aiding in robust model building and 
variable selection for predicting life expectancy.  

To rigorously evaluate the robustness of the compared 
variable selection methods in a real-world context, we 
intentionally introduce two common challenges: redundant 
predictors and cellwise contamination. This approach 
serves several key purposes: 

Assessing Specificity and Resilience to Irrelevant 
Information: In real datasets, it's common to have many 
potential predictors, not all of which are truly influential. 
By adding known redundant predictors (variables that, by 
design, should not be related to the outcome), we test the 
ability of each method to correctly identify and discard 
these irrelevant variables, thus minimizing false positives. 
A truly robust method should maintain its focus on the 
genuine predictors even in the presence of such noise. 

Evaluating Performance Under Data Imperfection: Real-
world data is rarely perfect and often suffers from various 
forms of errors or outliers. Introducing cellwise 
contamination simulates this scenario, allowing us to 

observe how each method's variable selection stability and 
parameter estimation are affected by corrupted individual 
data points. This directly tests the core claim of robustness. 
The ability to provide reliable results despite deviations 
from ideal data conditions. 

By systematically manipulating the real-data environment 
in these ways, we can more comprehensively assess how 
well each method performs under conditions that mimic the 
complexities and imperfections often encountered in 
practical data analysis. This provides a more nuanced 
understanding of their true robustness beyond what can be 
observed from the original dataset alone, thereby 
strengthening the justification for their application in 
challenging scenarios. 

To assess the robustness of these methods, we introduce 10 
additional random variables as redundant predictors. These 
variables are generated from a multivariate normal 
distribution with a correlation structure 𝛴𝛴𝑖𝑖𝑖𝑖 = 0.5|𝑖𝑖−𝑗𝑗|. The 
19 predictors are then standardized using robust estimators 
of location (median) and scale (Qn). Subsequently, 10% of 
the cells in these predictors are replaced by cellwise 
outliers, generated from a mixture of two normal 
distributions, 0.5N(10,1) + 0.5N(-10,1). As a comparison, 
we will also run simulations without any contamination to 
investigate how stable the various methods are when 
known outliers are present in the data. We repeat this 
process of adding ten redundant variables followed by 
generating 10% of outliers in the 19 explanatory variables 
1,000 times and then compute the selection rate of each 
variable. 

 

Table 1. Variable selection rates for life expectancy data over 1,000 simulation runs. 

Method 
Contamination 
(e) 

Income Composition of 
Resources 

Hepatitis 
B Measles BMI Polio Diphtheria 

Thinness 1-19 
Years 

Thinness 5-9 
Years Schooling FPR 

ALRP 0.0 1.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.001875 

ALRP 0.1 0.479 0.118 0.001 0.299 0.382 0.275 0.298 0.299 0.399 0.016500 

LRP 0.0 1.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.002625 

LRP 0.1 0.433 0.124 0.000 0.297 0.333 0.253 0.287 0.269 0.369 0.023875 

ALGR 0.0 1.000 0.000 0.000 0.020 0.000 0.000 0.000 0.025 0.000 0.002500 

ALGR 0.1 0.993 0.051 0.009 0.313 0.418 0.318 0.535 0.676 0.952 0.004875 

LGR 0.0 1.000 0.001 0.000 0.292 0.000 0.000 0.986 0.000 0.000 0.005000 

LGR 0.1 0.997 0.156 0.037 0.496 0.629 0.568 0.720 0.857 0.985 0.018500 

Lasso 0.0 1.000 0.000 0.000 0.017 0.018 0.000 0.000 0.000 0.007 0.000000 

Lasso 0.1 0.980 0.052 0.013 0.221 0.412 0.369 0.436 0.611 0.899 0.003625 

ALasso 0.0 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000375 

ALasso 0.1 0.901 0.017 0.002 0.055 0.171 0.124 0.172 0.271 0.647 0.002375 

sLTS 0.0 1.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.178000 

sLTS 0.1 1.000 0.349 0.027 0.371 0.326 0.357 0.315 0.328 0.327 0.371000 

The sparse regression model used for variable selection is: 
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Life Expectancy = 𝛽𝛽0
+ 𝛽𝛽1(Income Composition of Resources)
+ 𝛽𝛽2(Hepatitis B) + 𝛽𝛽3(Measles)
+ 𝛽𝛽4(BMI) + 𝛽𝛽5(Polio) + 𝛽𝛽6(Diphtheria)
+ 𝛽𝛽7(Thinness 1-19 Years)
+ 𝛽𝛽8(Thinness 5-9 Years) + 𝛽𝛽9(Schooling)
+ 𝜖𝜖 

The results of the variable selection methods, both with and 
without cellwise contamination, are summarized in Table 1.  

The results indicate that the performance of variable selection 
methods varies significantly with the presence of cellwise 
contamination. We assess each method’s consistency based 
on its ability to maintain high selection rates for relevant 
predictors while minimizing false positives, particularly in 
the presence of contamination. Among the methods 
evaluated, ALGR stands out as the most consistent and robust 
in the presence of cellwise contamination. They maintain 
high selection rates for relevant predictors and low false 
positive rates, making suitable choices for real-world 
applications involving contaminated data 

High-Dimensional Setting Using Communities and Crime 
Unnormalized Dataset 

For the high-dimensional setting, we utilize the Communities 
and Crime Unnormalized dataset available on: 

https://archive.ics.uci.edu/dataset/211/communities+and+c
rime+unnormalized 

 

Fig. 5. Application of the Detect Deviating Cells (DDC) method on 
Crime dataset to identify cellwise outliers. Outlier cell map 
for 100 selected variables on 70 patients from the 
Communities and Crime Unnormalized Dataset. Most cells 
are yellow, showing they are not detected as outliers. A red 
cell means the observed value is larger than the predicted 
value and a blue cell means the observed value is smaller 
than the predicted value significantly. 

Table 2. Model sizes, RMSPEs, MAPEs and RTMSPEs of the compared 
methods for the Communities and Crime Unnormalized Dataset with 
post-MM-estimator and Leave-One-Out Cross-Validation. 

Method Size RMSPE MAPE RTMSPE 
ALRP 4 5.743212 1.978014 1.828408 
LRP 10 6.219900 2.298627 2.205932 
ALGR 5 1.897773 0.864743 0.824961 
LGR 6 1.681322 0.739802 0.651681 
ALasso 3 2.696067 1.168824 1.079631 
Lasso 4 1.756885 0.883119 0.900543 
sLTS 20 58.012661 18.361718 14.349794 

The results for each method are summarized in Table 2. The 
table presents the size of the model (number of selected 
variables) and the three-evaluation metrics for each method. 

Here, the Gaussian Rank correlation (LGR) method proves to 
be the best and most consistent approach for robust variable 
selection. 

V. Conclusion 

Both in simulated and real-world data analyses, methods 
employing Gaussian Rank Correlation (ALGR and LGR) 
consistently demonstrated superior performance across 
varying levels of contamination, outlier magnitudes, and 
correlation coefficients. These methods maintained high True 
Positive Rates and low False Positive Rates, high F1 score 
indicating their robustness in variable selection under 
challenging conditions. 
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