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Abstract

The study aimed to generate weather forecasts for the Rohingya camps in Ukhia and Teknaf by employing a Recurrent 
Neural Network (RNN) with a Long Short-Term Memory (LSTM) layer alongside a Vector Autoregressive (VAR) 
model. It utilized six meteorological variables-temperature, humidity, precipitation, surface pressure, wind speed, and 
wind direction-sourced from NASA’s POWER project. The analysis focused on two sets of areas: control regions in 
Ukhia and Teknaf that are not impacted by the Rohingya presence, and target regions in the same locations where the 
Rohingya reside. The findings revealed notable differences in prediction accuracy between the models. The RNN with 
LSTM demonstrated superior accuracy in control areas, likely due to its ability to capture complex, nonlinear patterns. 
In contrast, the VAR model outperformed the RNN with LSTM in target areas, suggesting that weather patterns in these 
regions exhibit more linear relationships. These findings underscore the importance of selecting forecasting models based 
on the underlying structure of meteorological data to improve prediction accuracy.
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I. Introduction

Since the late 1970s, Bangladesh and Myanmar have had 
strained relations due to the Rohingya refugee crisis, a highly 
contentious issue. This crisis stems from severe human rights 
violations perpetrated by the military junta in Myanmar 
against the Rohingya Muslims in Rakhine, rendering them 
stateless1. The situation worsened on August 25, 2017, when 
hundreds of thousands of Rohingya fled to Bangladesh, 
coinciding with the release of the Advisory Commission 
report led by former UN Secretary-General Kofi Annan. 
This ongoing crisis poses a significant challenge for the 
international community, with Bangladesh experiencing 
immense pressure to accommodate such a large influx of 
refugees. Given the current political circumstances, long-
term solutions such as voluntary repatriation appear elusive. 
Despite ongoing diplomatic efforts by Bangladesh, bolstered 
by support from the international community through the 
UN and various human rights evaluations and accountability 
initiatives, progress toward establishing conditions for a safe, 
dignified, and sustainable return remains minimal2.

The Rohingya are widely recognized as the largest stateless 
population in the world. In August 2017, over 700,000 
Rohingya are compelled to flee from Myanmar to Bangladesh, 
marking one of the fastest-growing refugee crises globally. 
Despite being neighboring countries in Southeast Asia, 
Bangladesh and Myanmar maintain a strained relationship, 
sharing a border of approximately 271 kilometers.

Cox’s Bazar in Bangladesh, now the largest refugee camp in 
the world, has become a temporary haven for these displaced 
individuals, who sought safety in the camps. The sudden 
influx of people into Cox’s Bazar, a region known for its rich 
biodiversity, has posed significant challenges to maintaining 

the local ecosystem, particularly in areas like Teknaf, which 
hosts a wildlife sanctuary covering over 11,615 hectares3,4.

This article aims to outline the major environmental impacts 
resulting from the arrival of Rohingya refugees. Key issues 
include deforestation, severe water scarcity and pollution, 
habitat loss, fragmentation and destruction of wildlife 
habitats, inadequate waste management, poor drainage 
systems, air pollution, surface water contamination, and other 
environmental challenges5. These problems are diverse and 
complex, highlighting the necessity of multinational efforts 
to provide adequate protection and support. Contributing 
factors to the complexity of the Rohingya refugee crisis 
include the rise of Islamist insurgency, the illegal drug trade, 
particularly methamphetamine, and the prevalence of HIV/
AIDS and other sexually transmitted infections6.

A comparative study is conducted between VAR and LSTM 
models concerning weather components, alongside an 
examination of four different stochastic weather time series 
generators: first- and second-order Markov Chains (MC), 
vector autoregressive (VAR) models, and long short-term 
memory (LSTM) neural networks. These models are trained 
on a dataset spanning 40 years with an hourly resolution. 
After training, 25 years of simulated time series data are 
generated and evaluated using various time series metrics. 
The findings demonstrated that the second-order MC and 
VAR models excelled in replicating the original time series 
patterns7.

Additionally, a comparative analysis of statistical learning 
models-including VAR, ARIMAX, and the deep learning 
model LSTM-is conducted within the context of multivariate 
short-term (24 hours) time series forecasting. This analysis 
utilized traffic volume, speed, and average waiting time while 
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incorporating weather variables in Austin, Texas. Models are 
evaluated using the rolling forecast origin technique across 
three primary feature sets derived from feature selection, 
with the VAR model showing superior performance8.

Furthermore, a comparison is made between the outcomes of 
two models designed for weather forecasting: one employing 
a VAR model and the other utilizing a Recurrent Neural 
Network with a LSTM layer. Six meteorological variables-
temperature, humidity, precipitation, surface pressure, wind 
speed, and wind direction-served as inputs for the network.

II. Methodology

Data and variables

The data is obtained from NASA Prediction of Worldwide 
Energy Resources (POWER) project9. For the purpose of 
this investigation, meteorological data are utilized from 
two distinct geographical locations: the Rohingya camps in 
Ukhia and Teknaf, as well as two independent unaffected 
sites in Ukhia and Teknaf that remained undisturbed by 
their presence. Daily samples are taken from May 1st, 2014, 
through May 1st, 2024, to compile the gathered data. The data 
are obtained for four specific locations: the Ukhia Rohingya 
camp (21°12’18.0”N 92°09’06.8”E), the Teknaf Rohingya 
camp (20°57’22.3”N 92°15’06.2”E), and two unaffected 
locations independent of the Rohingya camps in Ukhia 
(21°03’03.5”N 92°11’22.8”E) and Teknaf (21°06’23.7”N 
92°09’00.9”E). Key meteorological parameters considered 
included temperature, humidity, precipitation, surface 
pressure, wind speed, and wind direction.

The six meteorological variables: temperature, humidity, 
precipitation, surface pressure, wind speed, and wind 
direction, were chosen because they play a key role in weather. 
These variables are commonly used in meteorological 
research since they directly influence weather patterns and 
help capture both short-term changes and long-term climate 
trends. Previous studies13 have shown that these factors are 
effective for weather prediction.

The selection of RNN with LSTM layer and Vector 
Autoregressive (VAR) models was motivated by their 
demonstrated effectiveness in time series forecasting. 
RNN with LSTM models are particularly advantageous for 
capturing long-term dependencies and nonlinear patterns in 
sequential data, making them highly suitable for complex 
weather prediction tasks. In contrast, VAR models are 
effective in modeling linear relationships among multiple 
time series variables, which is critical for understanding 
the interdependencies between various meteorological 
factors. These models have been shown in previous research 
to outperform traditional statistical methods in weather 
forecasting.

Selection of Target and Control Areas
The target areas refer to locations where the Rohingya camps 
are situated, specifically the Ukhia and Teknaf regions. The 

control areas in these regions were chosen based on their close 
geographical proximity to the Rohingya camps and similar 
climatic conditions. These criteria were applied to ensure that 
the comparison between the target and control areas would 
not be influenced by substantial environmental differences. 
Additionally, the control areas were selected to be unaffected 
by the presence of the Rohingya population, facilitating a 
clear comparison of weather patterns between the impacted 
and non-impacted regions.

Model Training Approach:

Separate models were trained for each region (target and 
control areas) to account for potential differences in weather 
patterns. This approach ensures that the models are tailored 
to the specific characteristics of each region, improving their 
predictive accuracy.

Recurrent Neural Networks

The Recurrent Neural Network (RNN) is a category of 
artificial neural network intended for time series forecasting. 
One notable subclass of RNNs is the Elman network, 
which features one or more hidden layers. The first hidden 
layer’s weights are derived from the input layer, and each 
subsequent layer’s weights are obtained from the previous 
layer. Typically, the hidden layers utilize a sigmoid bipolar 
activation function, while the output layer employs a 
linear activation function. Elman networks can handle 
both continuous and discontinuous activation functions. A 
distinctive feature of this network is the presence of a delay 
in the connection between the input layer and the first hidden 
layer at the previous time step (t-1). This delay introduces 
a feedback mechanism that can capture and accommodate 
noise from previous inputs into the next input. For a more 
mathematical understanding, let x(t) and y(t) represent 
the input and output time series, respectively. The three 
connection weight matrices are WII, WHH, and WIH. The 
activation functions for the hidden and output units are fI and 
fH, respectively. The behavior of the recurrent network can 
be described by the following non-linear matrix equations:

ℎ(𝑡𝑡𝑡𝑡 + 1) = 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼  (𝑊𝑊𝑊𝑊𝐻𝐻𝐻𝐻  𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) + 𝑊𝑊𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  ℎ(𝑡𝑡𝑡𝑡)) 
 

𝑦𝑦𝑦𝑦(𝑡𝑡𝑡𝑡 + 1) = 𝑓𝑓𝑓𝑓𝐻𝐻𝐻𝐻(𝑊𝑊𝑊𝑊𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻ℎ(𝑡𝑡𝑡𝑡 + 1)) 

Here, h(t) represents the state of a dynamical system, 
summarizing all necessary past information to predict the 
future behavior of the system10.

Recurrent Neural Networks with Long Short Term Memory

The fundamental distinction between the designs of RNNs 
and LSTM networks lies in the fact that the hidden layer of 
an LSTM is a gated unit or gated cell. The cell is composed 
of four layers that interact with each other to generate both 
the output and the cell state. 
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𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜎𝜎𝜎𝜎(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,ℎℎ𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) 

𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 = 𝜎𝜎𝜎𝜎(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ,ℎℎ𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓) 

𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜 ,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜 ,ℎℎ𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜� 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐  � ,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 +𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐  � ,ℎℎ𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐̃)  

The weight matrices are  𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑥𝑥𝑥𝑥 ,  𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 ,ℎ ,  𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ,𝑥𝑥𝑥𝑥 ,  𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ,ℎ , 𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜 ,𝑥𝑥𝑥𝑥 , 

𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜 ,ℎ ,𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐̃,𝑥𝑥𝑥𝑥 ,𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐̃,ℎ .   The bias vectors are 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 , 𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐̃. 

the current input is  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 ;  the output of the LSTM at time t −1 
is ℎ𝑡𝑡𝑡𝑡−1,  and the sigmoid activation function is 𝜎𝜎𝜎𝜎 . How much 
of the previous memory value to be eliminated from the cell 
state is decided by the forget gate. In the same way, new input 
to the cell state is specified by the input gate. The cell state 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡   
is then computed as follows: 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 ⊙ 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡−1 + 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 ⊙ 𝑐̃𝑐𝑐𝑐𝑡𝑡𝑡𝑡  

where ⊙  denotes the Hadamard product. The output ℎ𝑡𝑡𝑡𝑡    of the 
LSTM at time t is derived as:

Finally, The output ℎ𝑡𝑡𝑡𝑡    is projected to the predicted output 𝑦𝑦𝑦𝑦�𝑡𝑡𝑡𝑡   
as follows.:

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡� = 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦ℎ𝑡𝑡𝑡𝑡  

Where 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦  is a projection matrix to reduce the dimension of 
ℎ𝑡𝑡𝑡𝑡11 . 

 Fig. 1.  RNN with LSTM layer.

Vector Autoregression Model

The VAR model is a multivariate time series approach used 
to forecast multiple variables simultaneously. It is applicable 
in situations where the variables are interdependent. In 
VAR modeling, each variable is represented as a linear 
combination of its own past values and the past values of the 
other variables. This creates a system of equations, with each 
variable assigned its own equation, which can be expressed in 
vector form. Let 𝑌𝑌𝑌𝑌𝑡𝑡𝑡𝑡   represent a vector of time series data, then 

a VAR model with k variables and p lags can be formulated 
as shown in Equation. Here, 𝑌𝑌𝑌𝑌𝑡𝑡𝑡𝑡 ,𝛽𝛽𝛽𝛽0 and 𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡   are column vectors 
of size k×1, and 𝛽𝛽𝛽𝛽0,𝛽𝛽𝛽𝛽1, 𝛽𝛽𝛽𝛽2,…, 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝   are k×k coefficient matrices. 

𝑌𝑌𝑌𝑌𝑡𝑡𝑡𝑡 = 𝛽𝛽𝛽𝛽0 + 𝛽𝛽𝛽𝛽1𝑌𝑌𝑌𝑌𝑡𝑡𝑡𝑡−1 + 𝛽𝛽𝛽𝛽2𝑌𝑌𝑌𝑌𝑡𝑡𝑡𝑡−2+ … + 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑌𝑌𝑌𝑌𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝 + 𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡  

If the time series is non-stationary, differencing is required 
before training the model, and the forecasted 

values should be transformed back by reversing the 
differencing to obtain the actual predictions12.

III. Analysis and Results

In this study, two models are employed: RNN with LSTM 
layers and the VAR model. Ten years of weather data, 
collected from the Rohingya camps in Ukhia and Teknaf as 
well as from a control location independent of these camps, 
are utilized. The primary objective is to compare the weather 
conditions between the Rohingya camps and the control area 
by forecasting six key weather components: temperature, 
humidity, precipitation, surface pressure, wind speed, and 
wind direction. The RNN with LSTM layers is used to capture 
both short-term and long-term temporal dependencies, while 
the VAR model is applied to understand the linear relationships 
among these weather components over time. The Augmented 
Dickey-Fuller (ADF) test is applied to each dataset, and all 
datasets are found to be stationary. Additionally, the process 
of data normalization is performed to ensure consistency 
in the values of the data. The tools and technologies used 
include Python, TensorFlow, NumPy, Pandas, Matplotlib, 
and Scikit-learn. The performance of the model is evaluated 
by computing the Root Mean Squared Error (RMSE), which 
is derived from the MSE by taking the square root to provide 
a more interpretable error metric.

Analysis and Results in Ukhia

Table 1. Comparison of RMSE and MAE between LSTM 
and VAR models for Target and Control Areas in Ukhia.

RNN with LSTM         VAR
RMSE MAE RMSE MAE

Target Area 103.19 65.08 30.91 13.81
Control Area 22.02 8.39 26.87 11.91

The table demonstrates that the VAR model exhibits higher 
performance in the target area, whereas the LSTM model 
outperforms in the control area, as evidenced by reduced 
RMSE and MAE values. The disparity in performance may 
be ascribed to the distinct properties of the time series data in 
each region. The weather patterns in the target area display 
more linear correlations, rendering VAR more appropriate, 
whereas the control area may demonstrate more intricate, 
nonlinear patterns, which are more effectively captured by 
LSTM’s deep learning framework. Overall, VAR shows 
better results compared to LSTM.
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Target vs Control Area Data and Future Forecast using VAR in Ukhia

  

Fig. 2. Target vs Control Area Temperature and Future Forecast Fig. 3. Target vs Control Area Humidity and Future Forecast

  

Fig. 4. Target vs Control Area Precipitation and Future Forecast Fig. 5. Target vs Control Area Surface Pressure and Future Forecast

  

Fig. 6. Target vs control area wind speed and future forecast. Fig. 7. Target vs control area wind direction and future forecast.

Analysis and Results in Teknaf

Table 2. Comparison of RMSE and MAE between LSTM 
and VAR models for Target and Control Areas inTeknaf.

RNN with LSTM         VAR
RMSE MAE RMSE MAE

Target Area 96.85 61.99 26.88 11.95
Control Area 25.17 9.57 30.91 13.76

In Teknaf, as in Ukhia, the VAR model shows better 
performance in the target area, while the LSTM model 
excels in the control area, reflected by lower RMSE and 
MAE values. The target area’s weather patterns display more 
linear correlations, making the VAR model a more suitable 
choice. Conversely, the control area features more complex, 
nonlinear patterns, which are better captured by LSTM’s deep 
learning framework, similar to the case in Ukhia. Overall, the 
VAR model delivers superior results compared to the LSTM 
in Teknaf as well
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Target vs Control Area Data and Future Forecast using VAR in Teknaf

  

Fig. 8. Target vs Control Area Temperature and Future Forecast Fig. 9. Target vs Control Area Humidity and Future Forecast

  

Fig. 10. Target vs Control Area Precipitation and Future Forecast Fig. 11. Target vs Control Area Surface Pressure and Future Forecast

  

Fig. 12. Target vs control area wind speed and future forecast. Fig. 13. Target vs control area wind eirection and future forecast.

IV. Discussion and Implications

This study aims to generate weather predictions using a RNN 
with a LSTM layer and a VAR model. Six meteorological 
variables temperature, humidity, precipitation, surface 
pressure, wind speed, and wind direction serve as inputs for 
these models. The weather data analyzed comes from two 
distinct locations: one in Ukhia and one in Teknaf, where 
the Rohingya population resides, along with control areas in 
both municipalities that are not affected by their presence. 
The data is obtained from NASA’s POWER project, with 
separate datasets evaluated for Ukhia and Teknaf.

Predictions are made for all six meteorological variables 
in both regions, and the results are visualized. The RNN 
with LSTM and VAR models are applied to both target 
and control areas within Ukhia and Teknaf. Following the 

training and testing phases, the results are presented in the 
accompanying graph. The RNN with LSTM model is trained 
using normalized data through MinMaxScaler, which scales 
input features between 0 and 1 to enhance training efficiency. 
The LSTM architecture consists of two LSTM layers 
followed by Dense layers to handle the six weather outputs. 
A regression-standard Adam optimizer and mean squared 
error loss function are utilized for model training. Predictions 
are tailored to the characteristics of each area, with the model 
trained separately on target and control datasets. Model 
performance in each region is evaluated using Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE), 
providing a 365-day weather forecast. Trends are iteratively 
predicted using the last 60 days of available data, and line 
charts are created to compare actual, expected, and future 
data for each meteorological variable. It is possible that the 
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influx of Rohingya refugees into Bangladesh in 2017 has 
influenced the weather patterns in the target area.

Fig. 14. Comparison of LSTM and VAR.

The VAR model is applied separately to both the target and 
control datasets. The Akaike Information Criterion (AIC) is 
utilized to determine the optimal lag order for each model, 
informing the inclusion of appropriate time delays. Utilizing 
historical data, weather component predictions for the 
next year and a half are generated for both the target and 
control areas. To assess the models’ accuracy, RMSE and 
MAE are used as evaluation metrics, providing insights into 
forecasting performance for both datasets. Actual data, in-
sample forecasts, and 365-day forecasts are visualized for 
each weather component.

The VAR and RNN with LSTM models are chosen due 
to their enhanced predictive capabilities compared to 
other models. The VAR model effectively captures linear 
relationships among various weather variables, making it 
suitable for short-term forecasting. The RNN with an LSTM 
layer is adept at modeling sequential data by retaining 
historical information through recurrent connections, which 
is crucial for time series forecasting. The LSTM component 
addresses long-term dependencies and patterns that differ 
from linear trends, while the RNN structure improves the 
model’s ability to learn from sequential data. Additionally, the 
LSTM layer mitigates issues related to vanishing gradients, 
allowing it to effectively identify long-term weather trends. 
This combination of models offers a well-rounded approach 
that integrates both linear and nonlinear relationships for 
comprehensive short- and long-term weather predictions.

The findings suggest that the VAR model outperformed the 
Recurrent Neural Network with Long Short-Term Memory 
(RNN-LSTM) in the target areas, indicating that linear 
dependencies among weather variables are more dominant in 
regions influenced by the presence of the Rohingya population. 
These results align with previous research by Dissanayake 
et al. (2021)8, which highlights the effectiveness of VAR 
models in capturing linear relationships in meteorological 
data. Conversely, the RNN-LSTM model demonstrated 

superior performance in the control areas, likely due to its 
ability to model complex, nonlinear dependencies.

These findings have significant implications for weather 
forecasting in humanitarian contexts, where precise 
predictions are essential for disaster preparedness and 
resource allocation. The stronger performance of the VAR 
model in target areas suggests that weather patterns in these 
regions exhibit predominantly linear characteristics. Given 
that linear models like VAR are particularly effective when 
meteorological variables such as temperature and pressure 
demonstrate strong linear correlations, this reinforces the 
suitability of VAR for forecasting in the Rohingya-affected 
regions. In contrast, the LSTM model, which is adept at 
capturing nonlinear structures, may be less effective in 
environments where linear relationships prevail. These 
insights highlight the importance of tailoring model selection 
to the underlying dynamics of the local environment. Future 
studies could explore hybrid approaches that integrate the 
advantages of both VAR and RNN with LSTM models to 
enhance forecasting accuracy across diverse environmental 
settings, ensuring adaptability to both linear and nonlinear 
patterns. Such advancements would further empower 
humanitarian agencies to mitigate risks and optimize resource 
deployment in climate-vulnerable regions.

V. Conclusion

This study demonstrates that the VAR model is more effective 
for weather forecasting in Rohingya camps, where linear 
weather patterns dominate, while LSTM performs better in 
control areas with more complex, nonlinear trends. These 
findings have important implications for disaster preparedness 
and resource allocation in refugee camps, where accurate 
weather forecasts can help mitigate the impact of extreme 
weather events. Future research could explore the integration 
of additional data sources, such as satellite imagery or land-
use data, to further improve forecasting accuracy.

VI. Limitations and Future Research

This study has certain limitations. First, it relies solely 
on NASA’s POWER dataset, which may not include all 
meteorological variables that influence weather patterns. 
Expanding the dataset to incorporate additional factors, such 
as solar radiation and cloud cover, could improve forecasting 
accuracy. Additionally, the analysis is geographically 
confined to the Rohingya camps in Ukhia and Teknaf, 
making it uncertain whether the findings are generalizable 
to regions with different climatic conditions. Future research 
could apply these models to diverse geographical areas to 
evaluate their broader applicability.

Another key limitation is the assumption of stationarity 
in the time series data, which may not hold true for all 
meteorological variables. The study also operates within 
the constraints of the dataset’s spatial resolution, potentially 
limiting the generalizability of the results. Furthermore, 
while the study compares the performance of VAR and RNN-

98 Arman Mahmud and Md. Israt Rayhan



LSTM models, exploring hybrid approaches that integrate 
both could yield more accurate forecasts by capturing both 
linear and nonlinear relationships in weather data. Such 
advancements would be particularly valuable in complex 
humanitarian settings. Finally, model training presented 

challenges, notably overfitting in the LSTM model, which 
was mitigated using regularization techniques and early 
stopping.
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