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Abstract 

The study of stage-structured models in population dynamics is an effective way to understand future demographics better. 

This article investigates a single-species stage-structured model for its dynamical properties with an intra-group 

competition in the juvenile species and with Michaelis-Menten type harvesting on the adult group. The study focuses on 

both qualitative and numerical investigations. The dynamics of the model remain complex and rich. We tried to understand 

the biological, ecological, and economic implications of the dynamic data found from the investigation. Suitable Lyapunov 

and Dulac functions have been used for the global asymptotic stability of equilibrium points. The global asymptotic 

stability of internal equilibrium points reveals the possibility of bistability under reasonable parameter values. Despite 

intraspecies competition in the juvenile group, the adult population may be harvested significantly, ensuring the sustainable 

existence of the population. 
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I. Introduction 

A harvesting model is a population growth model of a 

species from which a portion of the population is 

harvested at regular or irregular intervals. In harvesting 

models, a negative term called a harvesting function is 

added in the expression of the growth rate that 

represents the portion of the population that is 

harvested. The two most common harvesting functions 

are the constant function and the linear function
1
. While 

these two choices are obviously simple, they do not give 

us results that are very practical, as it is the extent of 

balance between long term progression of the ecosystem, 

the economic benefits, and the sustainability of the 

ecosystem that is the primary indicator of a practical 

model, and those two choices fail to ensure such a 

balance
2,3

. These shortcomings can be rectified 

significantly by considering non-linear functions
4,5,6

. The 

Michaelis-Menten type harvesting model turned out to 

be the most practical from both a biological and an 

overall economic standpoint when compared to other 

non-linear harvesting strategies
7
. Non-linear functions 

of the form  ( )  
  

    
 are used to realize harvesting 

methods of the Michaelis-Menten type, given certain 

appropriate parameters          . These non-linear 

harvesting models exhibit more complex and practically 

significant dynamical features when compared to the 

model with constant and linear harvesting. Hu et al. 

investigated a prey-predator model featuring rich 

bifurcation-exhibiting Michaelis-Menten-type harvesting 

techniques
8
. 

Many authors, while studying harvesting models, have 

considered age-structured models. The study of stage-

structured models is motivated by the fact that a species 

generally shows different characteristics at different 

stages (juvenile, adult, or old adult) of its life cycle, 

producing differences in the behavior of their dynamics. 

There have been many studies that involve age-

structured population growth models, with important 

findings regarding sustainability, coexistence, and 

danger of extinction. One such study was done by Lei, 

whose work was based on the following commensalism 

model for two species
9
. 
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where       denote densities of the juvenile and 

adult populations at any time   of the first species,   

denotes the density of the second species, and the 

parameters                       are all positive. 

While studying the stability of the equilibrium points, it 

was found that strong inter-species cooperation is one of 

the best ways to prevent the extinction of endangered 

species. Ma, Li, et al. then proposed the stage-structure-

prey-predator model in the delay differential equation for 

two species, considering that the juvenile species 

requires time to mature
10,11,12,13

.  
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In their study of the nature of stabilities of the stationary 

solutions, conditions of extinction, and persistence of the 

species, it was found that the predator population may 

survive even in the absence of the prey if the parameter 

values satisfy some given conditions, which just gave a 

pathway for the system to be consistent under some right 

conditions. 

Harvesting strategies have been integrated with age-

structured models by many authors. As an example, the 

following single-species age-structured model with a 

linear harvesting technique for both adult and juvenile 

populations was explored by Lei and Xiao
2
. The model’s 

dynamics, as it turns out, are relatively straightforward, 

consisting of only two cases: a boundary equilibrium 

(   ) and an internal equilibrium (     ), both globally 

asymptotically stable under two different sets of 

parameter values. 

{

  

  
                

  

  
                 

  (1.3) 

Numerous academics investigated age-structured models 

that included Michaelis-Menten-type harvesting 

procedures. Liu et al.
14

, for example, examined the 

following amensalism model using cover harvesting only 

from the juvenile population. 

{

  

  
        

    (   )   
  (   ) 

      (   )

  

  
        

 
            (1.4)

According to the study, rich bifurcation phenomena, 

such as saddle and transcritical bifurcations, are 

displayed by this model. Finding the threshold value for 

the best harvesting under specific parameter values is 

obtainable. 

Yu, Zhu, and Chen considered harvesting the juvenile 

population in Michaelis-Menten form in their work on 

the stage-structured model below
15

. They observed 

practically useful dynamics. 

{

  

  
           

   

     
  

  
           

            (1.5) 

Since only adult populations are often harvested, Zhu Lia 

et al.
5
 suggested and investigated the following model 

using a Michaelis-Menten kind of harvesting function for 

the adult population from the perspective of fisheries 

production. Under certain constraints on the model 

parameters, an internally stable boundary and a globally 

stable boundary were found to exist. They also exhibited 

exciting bifurcation phenomena. 

{

  

  
          

  

  
            

   

     

  (1.6) 

Saima Akter et al. studied the dynamical properties of a 

single-species stage-structured model with Michaelis-

Menten type harvesting on the adult population and 

linear harvesting on the juvenile population
16

. As far as 

we know, a single-species stage-structured model with 

intra-species competition in the juvenile group and 

Michaelis-Menten-type harvesting tactics in the adult 

group has not been examined by any author. The stage-

structured model of a single species that we suggest and 

examine is shown below. This is a symmetric variant of 

the model (1.5). Consider the following proposed model 

{

  

  
              

 

  

  
        

   

     

  (1.7) 

where         denotes the densities of the juvenile and 

adult groups of population respectively,   denotes the 

rate of birth in the whole population,   is the survival 

rate of juvenile population to adulthood,   , and    

denotes their death rates,    is the intra-specific 

competition coefficients in the Juvenile population,   is 

the coefficient of catchability,   stands for the external 

effort required to gather the adult population. All 

parameters including     are assumed to be non-

negative. To make the system (1.7) dimensionless and 

simplified, we consider the following transformations 

 ̅  
  

 
 ,  ̅  

  

 
 ,  ̅     

which transforms the system into (ignoring the bars on 

 , and  ) 

{

  

  
     (  (  
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              (1.8) 

where,   
  

 
,   

    

   ,   
    

  
,     . If we consider 

the death rate of the juvenile population is negligible 
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(    ) compare to the survival rate, the system reduces 

to  

{

  

  
     (   )

  

  
      

  

   

  

Since a number of population can only be non-negative, 

we consider    , and    , with any arbitrary initial 

conditions  ( )      , x(0), and  ( )     . 

II. Stability Analysis of Equilibria 

Boundary Equilibria 

Notice that   (   ) is the unique boundary equilibrium 

of the system (1.8). 

The Jacobian matrix for the system (1.8) is 

  (
      

    
  

(   ) 
)  

The determinant and the trace o f  Jacobian matrix a r e  

      (    ) (  
  

(   ) 
)     (2.1) 

And 

      (       
  

(   ) 
)     (2.2) 

When        , then the equilibrium point is of an 

elementary type
17

. When        , then the 

equilibrium point is a saddle point, and the 

equilibrium point is degenerate when        18
. 

Notice that       vanishes at   (   ) when 

  
 

 
    (2.3) 

Lemma 1. Suppose  (   ) is an isolated stationary 

point of the system
19

 

{

  

  
   (   )

  

  
     (   )

  (2.4) 

where    and    are analytic functions of degree at 

least two in a neighborhood   ( ). In a sufficiently 

small   neighborhood, there exists an analytic function 

 ( ) such that 

  ( )    (   ( ))    | |    

Let  ( )  (  ( )  ( ))       [ ]   , 

where         , then 

i. If   is odd and     , then  (   ) is an 

unstable node. 

ii. If   is odd and am < 0, then  (   ) is a saddle. 

iii. If   is even,  (   ) is a saddle node. 

The stability of the boundary equilibrium   (   ) can 

be determined from the trace and determinant of the 

Jacobian matrix  (   ). 

Theorem 1. For positive values of the parameters, 

   (   ) is the unique boundary equilibria point of the 

system (1.8), for which 

i. If    (   ), then    is a saddle point. 

ii. If    (   ), then    is a stable node. 

iii. If    (   ), then    is a saddle node. 

Proof. At the boundary equilibrium point (   ), we get 

from (1.8), 

     (  )    
 

 
    

Notice that    (  )   . Therefore,    is a stable node 

whenever      (  )   , i.e,   
 

 
  . 

   is a saddle whenever      (  )   , i.e.,   
 

 
  . 

Moreover,    is becomes degenerate whenever 

     (  )   , i.e,   
 

 
  . We introduce the 

transformation    
  

   
 for further simplification and to 

capture the nature of the boundary equilibrium   . Then the 

system (1.8) reduces to 

  

  
                       

  

  
                 

  

We transform as follows 

 *
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]. 

Then we obtain   
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  ), where         and the values of         
and   are 

α = constant, 
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Differentiating   and  , we get 

   
 

 
(       ),    

 

 
(        )  

We compute 
  

  
 and 

  

  
 in terms of   and   by 

substituting the values of     
  

 
,  ,  , and  , 

and make the transformation 
  

  
      . We get, 
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We omit    ,    ,    , and   (   ) as they are not 

used further. Next, the value of 
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We omit    ,     ,     , and   (   ) as they are not 

used further. 

Define   (   )           
      

  

          
    (   ). Since 

   

  
  , by implicit 

function theorem, there exists a function     ( ), 

such that  ( )    and  (   ( ))   . The function 

   ( ) may be approximated iterative as follows 

     ( )     
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Therefore, we have,  
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We substitute this value of   into the equation (2.5) to 

get 
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  (             ) 

   

From Lemma 1, if      , i.e., 
        

(  
 

 
)(      ) 

  , 

then    , hence by Lemma 1, we conclude that 

   is a saddle node. However, due to the 

transformation, 

   (     )  , then it turns into the  opposite 

direction, and    becomes a stable node. 

Internal Equilibria 

Our next target is to analyze the internal equilibrium of 

the system (1.8). Stationary points are the solution of the 

system 

{
    (   )   

     
  

   
  

 (2.8) 

From (2.8), we get from the first equation   
 (   )

 
. 

Substituting   in the second equation of (2.8), and since 

   , we get 

    (    )   ( (    )     )  
 (    )          (2.9) 

To understand the nature of internal equilibria, let 

 ( )       (    )   ( (    )     )  
 (    )       

Therefore,   ( )        (    )  ( (    )  
   ) 

From  ( )   , we get 

   
    (    )   (       )    (   )

 (   )
  

              (2.10) 

By using (2.10) in (2.1), we get 

    ( )  
 (       )(     (    )   (     )         )

 (   )
  

 (       )(   ( )   ( ))   (     

  )  ( ) (2.11) 

Let  ̅  (    )    ( (    )     ), and 

 ( )  
 

   
(  ( ̅)  ( (   ) ̅  (   )  

       ) ). 

The following cases need to be considered. 

Case I:         

Theorem 2. For          the system (1.8) may have 

at most three internal equilibria
2 0 , 2 1

. 

i. If  ( )   , all three internal equilibria are 

distinct. One of them is a saddle point, and the 

other two are stable nodes. 

ii. If  ( )   , we have two cases to consider: 

(a) When  ̅   , there is one degenerate equilibrium 

point and a stable node. 

(b) When  ̅   , there is only one degenerate internal 

equilibrium point. 

iii. If ( )   , there is a unique internal stable node 

equilibrium point. 
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Graphical Analysis for Case (I) 

The analysis above and Figure 1 demonstrate that if 

   (   ), the boundary equilibrium    of the 

(1.8) is unstable. To verify the result, we consider 

the parameter values                and   
   

  
, satisfying  (   )            and  ( )  

 . In this case, the system (1.8) has three internal equilibria 

in which   (0.070213, 0.014695) and   (2.0222, 1.1952) 

are stable nodes, and   (1.021, 0.40355) is a saddle 

point. The red line (stable manifold) in Figure 1 separates 

the first quadrant into the lower and upper areas. All 

solutions tend to the stable node    if the initial conditions 

are in the higher region, while all solutions tend to the 

stable node    when the initial conditions are in the 

lower region. As a result, juvenile and adult species are 

likely to coexist. This is known as bistability 

phenomenon. 
  

 
 

Fig. 1. The coexistence of juvenile and adult species whenever 

   (   ) and  ( )   .    and    are stable 

nodes and    and    are saddles. 

Fig. 2. The coexistence of juvenile and adult species when 

   (   ),   ( )   ,  ̅   . Two positive 

equilibria    (saddle) and    (stable). 

If we take the parameter values           
 

 
, 

and   
 

 
(    √ ), we get  (   )          

 ,   ( )   ,  ̅           . In this case, the model 

(1.8) has two internal equilibria,    and   , which are 

saddle and stable nodes, respectively, and an unstable 

boundary equilibrium    (figure 2). 

Parameter values           
 

  
, and     give us 

 (   )           and  ( )           . As a 

result, the system (1.8) has an unstable boundary 

equilibrium point    and a stable internal equilibrium 

point    (figure 3). 

  

  

Fig. 3. The coexistence of juvenile and adult species whenever 

   (   ), and  ( )        is an internal stable 

equilibrium point. 

Fig. 4.    (   ),    <0;    and    are stable nodes and 

   is a saddle point. 
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Case II:  (   )    

Theorem 3.  If  (   )   , the system (1.8) may have 

two internal equilibria at most
2 0 , 2 1

. We have the 

following cases to consider, 

1. If  ( )   , the model (1.8) has two internal distinct 

equilibria    and    that are a saddle and a stable 

node, respectively. If  ( )    and  ̅   . 

i. There is a unique degenerate internal equilibrium 

point   . 

ii. There is no internal equilibrium point. 

2. When  ( )    or  ( )   ̅    the system (1.8) 

has no internal equilibrium. 

2.4 Graphical Analysis for Case (II) 

The analysis above and figure 4, show the existence of 

two internal equilibria. Depending on the initial 

conditions, two species will coexist permanently or will 

be driven into extinction. For verification of these 

results, we assume                   , and 

          , so that  (   )             and 

           . In this case, we have a boundary 

equilibrium point   (   ), two internal equilibria 

  (0.13434, 0.068649) and   (0.54346, 0.37786), 

which are saddle and stable, respectively. 

In figure 4, the red line (stable manifold) demarcates the 

first quadrant into two regions, a lower region and an 

upper region. Any initial condition in the upper region 

will tend to the stable node   . The two populations 

will coexist permanently from a biological perspective. 

However, the initial conditions in the lower zone will 

tend toward the boundary equilibrium E0, implying that 

juvenile and adult species will ultimately become 

extinct. Here we observe another bistability 

phenomenon. 

To verify the case of      and  ̅   , we choose 

  
    

    
       

    

     
   

     

    
, then the model 

(1.8) has a distinct internal degenerate equilibrium 

point    (figure 5). 

  

  

Fig. 5. The only internal equilibrium    when    (   ), 

    ,  ̅   . 

Fig. 6. There is no positive equilibrium when    (   ), 

    ,  ̅   . 

  

Fig. 7. There is no internal equilibrium when  (   )   , 

    . 

Fig. 8. There is no internal equilibrium when  (   )   , 

    ,  ̅   . 
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On the other hand, if we take the parameter values   

        
 

  
   

 

  
, then     ,  ̅    and the 

system (1.8) has no internal equilibrium (figure 6). 

We choose values of the parameters as       
 

  
   

 

  
   

 

 
 to get      for which the model has 

no internal equilibrium (figure 7). To verify the case 

when      and  ̅   , we consider the values of the 

parameters as       
 

  
   

 

  
  and    . In this 

incident, the model has no internal equilibrium (figure 

8). This completes the analysis. 

2.5 Global Stability of Equilibria 

Theorem 4. The boundary equilibrium point   (   ) is 

globally asymptotically stable.  

Proof. The function defined below is considered 

 (   )     , as a Lyapunov function. We recall 

our proposed model (1.8). 

{

  

  
     (   )

  

  
      

  

   

 (1.8) 

Notice that  (   ) vanishes at   (   ), and is positive 

for all        .  We get 

   (   )            (   )       
  

   
     (   )  

  

   
  

If    , then    ( )    and    ( )    iff 

       . Hence by Lyapunov’s asymptotic 

stability theorem,   (   ) is globally asymptotically 

stable
22

. The proof comes to an end here. 

Theorem 5. If  (   )    and     , then the 

internal equilibrium point is globally asymptotically 

stable. 

Proof. In order to prove, we take  (   )   as a 

Dulac function. Let  (   )      (   ), and 

 (   )       
  

   
. We have 

 (  )

  
 

 (  )

  
 

 

  
(    (   )  

 

  
(     

  

   
))  

         
(   )    

(   )          
  

(   ) 
  

The Bendixson-Dulac discriminant
22

 shows that the 

model (1.8) can’t have any limit cycle when in the 

first quadrant. Therefore, Hopf bifurcation is not 

possible
18

. Secondly, if  (   )   , the unique 

boundary equilibrium   (   ) is a saddle. As a result of 

the Poincare-Bendixon theorem, we can conclude that 

the internal equilibrium point    is globally 

asymptotically stable. 

III. Numerical Simulation 

Numerical simulations of the results that we have 

discussed in the sections 2.3 and 2.4 are shown in the 

following figures. 
  

  

(a) fig: Juvenile species (b) fig: Adult species 

Fig. 9.      for Case-I. (a) Numerical simulation of juvenile species x at the stable node   . (b) Numerical simulation of adult 

species y at the stable node   . 
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(a) fig: Juvenile species (b) fig: Adult species 

Fig. 10.      and  ̅    for Case-I. (a) Numerical simulation of juvenile species x at the stable node E2. (b) Numerical 

simulation of adult species y at the stable node   . 

  

(a) fig: Juvenile species (b) fig: Adult species 

Fig. 11.      for Case-I. (a) Numerical simulation of juvenile species x at the stable node   . (b) Numerical simulation of 

adult species y at the stable node   . 

  

(a) fig: Juvenile species (b) fig: Adult species 

Fig. 12.       for Case-II. (a) Numerical simulation of juvenile species x at the stable node   . (b) Numerical simulation of 

adult species y at the stable node   . 
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(a) fig: Juvenile species (b) fig: Adult species 

Fig. 13.      and  ̅    for Case-II. (a) Numerical simulation of juvenile species  . (b) Numerical simulation of adult species  . 

  

(a) fig: Juvenile species (b) fig: Adult species 

Fig. 14.      and  ̅     for Case-II. (a) Numerical simulation of juvenile species   at   . (b) Numerical simulation of adult 

species   at   . 

 

 

(a) fig: Juvenile species (b) fig: Adult species 

Fig.15.      for Case-II. (a) Numerical simulation of juvenile species   at   . (b) Numerical simulation of 

adult species   at   . 
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(a) fig: Juvenile species (b) fig: Adult species 

Fig. 16.      and  ̅     for Case-II. (a) Numerical simulation of juvenile species   at   . (b) Numerical simulation of adult 

species   at   . 

IV. Conclusion 

We have proposed and investigated a stage-structured 

system in which the juvenile population has to survive 

intra-specific competition in a single species with no 

harvesting strategy on the Juvenile population and a 

Michaelis-Menten form of harvesting on the adult 

population of the species. The impact of competition in the 

adult group with Michaelis-Menten harvesting on the adult 

group has been studied, reporting the coexistence and rich 

dynamics. Our study shows that, despite some intra-species 

competition in the juvenile group, we can sustainably 

harvest the adult species, ensuring coexistence is globally 

asymptotically stable. It has been observed that intra-

species competition in the juvenile group may either 

enhance or deter the fluctuation of the total population. 
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