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Abstract

The study of stage-structured models in population dynamics is an effective way to understand future demographics better.
This article investigates a single-species stage-structured model for its dynamical properties with an intra-group
competition in the juvenile species and with Michaelis-Menten type harvesting on the adult group. The study focuses on
both qualitative and numerical investigations. The dynamics of the model remain complex and rich. We tried to understand
the biological, ecological, and economic implications of the dynamic data found from the investigation. Suitable Lyapunov
and Dulac functions have been used for the global asymptotic stability of equilibrium points. The global asymptotic
stability of internal equilibrium points reveals the possibility of bistability under reasonable parameter values. Despite
intraspecies competition in the juvenile group, the adult population may be harvested significantly, ensuring the sustainable

existence of the population.

Keywords: Stage Structured Model, Harvesting, Michaelis-Menten form of harvesting, Local and Global Stabilities.

l. Introduction

A harvesting model is a population growth model of a
species from which a portion of the population is
harvested at regular or irregular intervals. In harvesting
models, a negative term called a harvesting function is
added in the expression of the growth rate that
represents the portion of the population that is
harvested. The two most common harvesting functions
are the constant function and the linear function'. While
these two choices are obviously simple, they do not give
us results that are very practical, as it is the extent of
balance between long term progression of the ecosystem,
the economic benefits, and the sustainability of the
ecosystem that is the primary indicator of a practical
model, and those two choices fail to ensure such a
balance®®. These shortcomings can be rectified
significantly by considering non-linear functions**®. The
Michaelis-Menten type harvesting model turned out to
be the most practical from both a biological and an
overall economic standpoint when compared to other
non-linear harvesting strategies’. Non-linear functions
of the form h(x) = % are used to realize harvesting

methods of the Michaelis-Menten type, given certain
appropriate parameters a,b,and c. These non-linear
harvesting models exhibit more complex and practically
significant dynamical features when compared to the
model with constant and linear harvesting. Hu et al.
investigated a prey-predator model featuring rich
bifurcation-exhibiting Michaelis-Menten-type harvesting
techniques®.

* Corresponding author. e-mail address: mdsharifulislam@du.ac.bd

Many authors, while studying harvesting models, have
considered age-structured models. The study of stage-
structured models is motivated by the fact that a species
generally shows different characteristics at different
stages (juvenile, adult, or old adult) of its life cycle,
producing differences in the behavior of their dynamics.
There have been many studies that involve age-
structured population growth models, with important
findings regarding sustainability, coexistence, and
danger of extinction. One such study was done by Lei,
whose work was based on the following commensalism
model for two species®.

d
% = au, — puy — 6y
% = Buy — Suy — yui + duyv (1.1)
d
l d—'; =v(b, — a,v)

where u;,u, denote densities of the juvenile and
adult populations at any time t of the first species, v
denotes the density of the second species, and the
parameters «a,f,8,,68,,d,a,,and b, are all positive.
While studying the stability of the equilibrium points, it
was found that strong inter-species cooperation is one of
the best ways to prevent the extinction of endangered
species. Ma, Li, et al. then proposed the stage-structure-
prey-predator model in the delay differential equation for
two species, considering that the juvenile species
requires time to mature!®**1213,
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In their study of the nature of stabilities of the stationary
solutions, conditions of extinction, and persistence of the
species, it was found that the predator population may
survive even in the absence of the prey if the parameter
values satisfy some given conditions, which just gave a
pathway for the system to be consistent under some right
conditions.
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Harvesting strategies have been integrated with age-
structured models by many authors. As an example, the
following single-species age-structured model with a
linear harvesting technique for both adult and juvenile
populations was explored by Lei and Xiao?. The model’s
dynamics, as it turns out, are relatively straightforward,

dx

= ax - bix? —c;(1 —k)xy —

qE(1—-k)x
miE+my(1—-k)

d
d_i= a,y — byy?

According to the study, rich bifurcation phenomena,
such as saddle and transcritical bifurcations, are
displayed by this model. Finding the threshold value for
the best harvesting under specific parameter values is
obtainable.

Yu, Zhu, and Chen considered harvesting the juvenile

population in Michaelis-Menten form in their work on

the stage-structured model below™. They observed

practically useful dynamics.
dx

oAy —Bx—81x—

hEx
mE+nx

(1.5)
L = px — 8y —vy?
Since only adult populations are often harvested, Zhu Lia
et al.® suggested and investigated the following model
using a Michaelis-Menten kind of harvesting function for
the adult population from the perspective of fisheries
production. Under certain constraints on the model
parameters, an internally stable boundary and a globally
stable boundary were found to exist. They also exhibited
exciting bifurcation phenomena.

ax _ ay — fx — 6;x
dy a“ 2 hEy (16)
2= Bx =86y —yy" —

mE+ny

Saima Akter et al. studied the dynamical properties of a
single-species stage-structured model with Michaelis-
Menten type harvesting on the adult population and
linear harvesting on the juvenile population®. As far as
we know, a single-species stage-structured model with
intra-species competition in the juvenile group and

di1x,(t) — 1 (t — 11)e 11 Tax2(t=71)
by (£)x3 (£) — ¢1(£) X2 (£)y2 (t)
rZ(t)yZ(t) - dZZY1(t) — I‘Z(t — '[Z)e—dzz T2Y2(t— T2)

r(t — 1;)e %22 T2y2(t=72) dz1y2(t) —

(1.2)

b, [©)y3 (£) — c2(D)x2(£)y ()

consisting of only two cases: a boundary equilibrium
(0,0) and an internal equilibrium (x*,y*), both globally
asymptotically stable under two different sets of
parameter values.

x ay — Bx —6,x — qEmx

dt
; (L3)
= = Bx — 8,y — Yy*—q,Emy

Numerous academics investigated age-structured models
that included Michaelis-Menten-type  harvesting
procedures. Liu et al.'*, for example, examined the
following amensalism model using cover harvesting only

from the juvenile population.
(1.4)

Michaelis-Menten-type harvesting tactics in the adult
group has not been examined by any author. The stage-
structured model of a single species that we suggest and
examine is shown below. This is a symmetric variant of
the model (1.5). Consider the following proposed model
E=ay—ﬁx—é‘lx—53x2

dt
a ne @7
Y _ e — 5,y — 1E

mE+ny

where x, and y denotes the densities of the juvenile and
adult groups of population respectively, a denotes the
rate of birth in the whole population, g is the survival
rate of juvenile population to adulthood, §,;, and &,
denotes their death rates, &5 is the intra-specific
competition coefficients in the Juvenile population, h is
the coefficient of catchability, E stands for the external
effort required to gather the adult population. All
parameters including m,n are assumed to be non-
negative. To make the system (1.7) dimensionless and
simplified, we consider the following transformations

;=23
X = 3 X,y =
which transforms the system into (ignoring the bars on

x, and y)

LE R -
s It Bt

axX _ e CEY
A x(x+(1+ ,8)) L8)
av _ . _ by '
dt X ay c+y
hES3 __ MEd3

=% 4 _ = i
Where,a—ﬁ,b— w52 €= g , e = af. If we consider

the death rate of the juvenile population is negligible



170 Md. Shariful Islama, Saima Aktera, Touhid Hossain, and Adeeb Shahriar Zamana, Mir Shariful Islam

(6; < B) compare to the survival rate, the system reduces
to

dx

— =ey—x(x+1)
Wy aqv—2
dt_x ay c+y

Since a number of population can only be non-negative,
we consider x = 0, and y = 0, with any arbitrary initial
conditions x(0) = x, > 0, x(0), and y(0) = y, >.

11. Stability Analysis of Equilibria
Boundary Equilibria

Notice that £0(0,0) is the unique boundary equilibrium
of the system (1.8).

The Jacobian matrix for the system (1.8) is

—2x -1 e
] = ( _ _ bc )
1 a (c+y)?

The determinant and the trace of Jacobian matrix are

bc
Det] = (1+2x) (a+ (Hy)z) —e 2.1)
And
bc
tr)=—(a+1+2x+ (C+y)2) <0 (2.2)

When Det J # 0, then the equilibrium point is of an
elementary type'’. When Det] <0, then the
equilibrium point is a saddle point, and the
equilibrium point is degenerate when Det ] = 0%,
Notice that Det ] vanishes at £0(0,0) when

a+ g =e (2.3)
Lemma 1. Suppose 0(0,0) is an isolated stationary
point of the system™®

d
=Py

dt
(2.4)
2=y +Q.(x,y)

where P, and Q, are analytic functions of degree at
least two in a neighborhood Ss5(0). In a sufficiently
small & —neighborhood, there exists an analytic function
¢ (x) such that

d) + Po(x, (X)) = 0,|x| < &

Let Y(x) = (P2 (x),¢(x)) = apx™ + [x]mis
where a,, # 0,m = 2, then

I. If m is odd and a,, >0, then 0(0,0) is an
unstable node.

li. If mis odd and a, <0, then 0(0,0) is a saddle.

lil. If mis even, 0(0,0) is a saddle node.

The stability of the boundary equilibrium E0(0,0) can
be determined from the trace and determinant of the
Jacobian matrix J(0,0).

Theorem 1. For positive values of the parameters,
E0 = (0,0) is the unique boundary equilibria point of the
system (1.8), for which

I. If b <c(e—a), then EO is a saddle point.
ii. If b > c(e—a), then EO is a stable node.

iii. If b = c(e — a), then EO is a saddle node.

Proof. At the boundary equilibrium point (0,0), we get
from (1.8),

Det](EO)=a+§—e

Notice that trJ(E0) < 0. Therefore, EO is a stable node
whenever Det J(EQ) > 0, i.e,a + g > e.

EO is a saddle whenever Det J(EQ) < 0, i.e., a +§< e.
Moreover, EO is becomes degenerate whenever
Det J(E0) =0, ie, a +§ =e. We introduce the

transformation dt = dety for further simplification and to

capture the nature of the boundary equilibrium EO. Then the
system (1.8) reduces to
%= —cx — cx? + cey — xy — x%y + ey?

Z—fzcx—by—acy+xy—ay2

We transform as follows

[u] 1 Kx — By
vl " ak-py |—yx + ay|
Then we obtain u = %(KX —By) and v = %(_yx +

ay), where p = ak — By and the values of «,p,y,
and x are

o = constant,
a+2
— o]
=5
(1+a+—) ca
c
b+ac
=——""__ an
K (b+c+ac)?a’ and
y = a
a+2
c

Differentiating u and v, we get
’ 1 7 7 ’ 1 ’ ’
u =;(Kx —py), v =;(—Vx + ay’)
We compute Z—: and % in terms of u and v by

substituting the values of e = a +‘;—d, K, B, and vy,

and make the transformation % = ax —y[. We get,
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du
as 901“3 + gozu2 + gozuv + .904172 + 7 (uw,v)
(2.5)
Where _ ba?+aca?
» Jou (a+%)(b+c+ac)2.

We omit gg2, Gosz:» Joa, and 1y (u, v) as they are not
used further. Next, the value of % is

% = ho1V + hgu? + ho3v? + hgauv + hosu® +

(U, v) (2.6)

where

ho1 = 2 z+ 2 z+ 2 7=+
(1+a+§) (a+§)(1+a+§) (1+a+2)"c

and

h02 _ aaS ] aS_aa3+a4— a3+cba3 . ba33 ‘
(a+¢) are  (av)

(a+d)’
(2.7)

We omit hys, hgs, hos, and r,(u,v) as they are not
used further.

Deflne Hl (u, 17) = h01v + h02u2 + h031]2 +
hoattv + hosu® + 1, (1, v). Since 22 = 0, by implicit
function theorem, there exists a function v = w; (u),
such that w(0) = 0 and q(u, w(w)) = 0. The function
v = w(u) may be approximated iterative as follows

vy =wi(w) =0

vy, = _tozuz - t05u3,

vz = v, — Hy(U,v;) = —hgou? — hosu® — (=hg hgou? —
ho1host® + hoau?) + hos(—hgau?® — hosu®)?

= ho1hoat® + (ho1hos — hos)u®

Therefore, we have,

v =w; (W) = horhop? + (horhos — hos)u® + -+

We substitute this value of v into the equation (2.5) to
get

d

d_: = go1u?+goru? + gozuv + goav? + 13(0, v)

= go1u>+go2u® + gosu(hoi hou? + (ho1hos —
hos)us)

= go1u’+gou” + gozho hortt®

= go1u® + (gozho1hoz + go)U*

ba?+aca?
' (a+%)(b+c+ac)2
then m = 2, hence by Lemma 1, we conclude that

EO0 is a saddle node. However, due to the
transformation,

From Lemma 1, if go4 # 0, i.e. * 0,

ds = (ax —yB)dt, then it turns into the opposite
direction, and EO becomes a stable node.

Internal Equilibria

Our next target is to analyze the internal equilibrium of
the system (1.8). Stationary points are the solution of the
system

ey—x(x+1)=0
x—ay—%=0 (2.8)

From (2.8), we get from the first equation y = XD

Substituting y in the second equation of (2.8), and since
y # 0, we get

ax®+ (2a—e)x? + (e(ac+ b) +a—e)x +
e(ac+b)—ce?=0 (2.9)

To understand the nature of internal equilibria, let

f(x) = ax®*+ (2a—e)x? + (e(ac + b) + a—e)x +
e(ac + b) — ce?

Therefore, f'(x) = 3ax? + 2(2a — e)x + (e(ac + b) +
a—e)

From f(x) = 0, we get

ax3+(2a-e)x%+(ace+a—e)x+ce(a—e)
e(l+x)

(2.10)
By using (2.10) in (2.1), we get

x(x2+x+ce)(2ax3+(5a—e)x2+(4a—2e)x+ce?+a—e)
e(1+x)

b =

DetJ(E) =
=x2+x+ce)(xf'(x) = f(x)) =x(x*+x+
ce)f'(x) (2.11)

Let A = (2a — e)? — 3a(e(ac + b) + a — e), and
A(D) = = (—4(A)* + Ba+e)A— (a+e)® +
27a%e?c)?).

The following cases need to be considered.
Casel:ce—ca>bh

Theorem 2. For ce — ca > b, the system (1.8) may have
at most three internal equilibria?®%*.

i. If A(b) <0, all three internal equilibria are
distinct. One of them is a saddle point, and the
other two are stable nodes.

ii. IfA(b) = 0, we have two cases to consider:

(@) When 4 > 0, there is one degenerate equilibrium
point and a stable node.

(b) When 4 = 0, there is only one degenerate internal
equilibrium point.

iii. IfA(b) > 0, there is a unique internal stable node
equilibrium point.
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Graphical Analysis for Case (1)

The analysis above and Figure 1 demonstrate that if
b < c(e —a), the boundary equilibrium EO of the
(1.8) is unstable. To verify the result, we consider

the parameter values a=1,b=1,c=1/4, and e =
%, satisfying c(e —a) =1.02835>b and A(b) <
0. Inthis case, the system (1.8) has three internal equilibria
in which £1(0.070213, 0.014695) and E3(2.0222, 1.1952)

©=496/97
c=14

x'=ey-x(x+1) a=1
y'=x-ay-(bylc+y) b=1

Fig. 1. The coexistence of juvenile and adult species whenever

b<c(e—a) and A(b) <0. E1 and E3 are stable
nodes and EO and E2 are saddles.

If we take the parameter values a=1,b =1,c = %

and e = §(11 +6v3), we get c(e —a) = 1.08702 >

b, A(b) =0, A =4.19856 > 0. In this case, the model
(1.8) has two internal equilibria, E1 and E2, which are
saddle and stable nodes, respectively, and an unstable
boundary equilibrium EO (figure 2).

Fig. 3. The coexistence of juvenile and adult species whenever
b<c(e—a), and A(b) >0, E1 is an internal stable
equilibrium point.
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are stable nodes, and E2(1.021, 0.40355) is a saddle
point. The red line (stable manifold) in Figure 1 separates
the first quadrant into the lower and upper areas. All
solutions tend to the stable node E3 if the initial conditions
are in the higher region, while all solutions tend to the
stable node E1 when the initial conditions are in the
lower region. As a result, juvenile and adult species are
likely to coexist. This is known as bistability
phenomenon.

x'zey-x(x+1) a=1  e=(11+6sqt(3)4
y'=x-ay-(byJc+y) b=1 c=1/4

Fig. 2. The coexistence of juvenile and adult species when
b<c(e—a), AMB)=0, A>0. Two positive
equilibria E1 (saddle) and E2 (stable).

Parameter valuesa =1,b = 1,c = %, and e = 8 give us
c(e —a) =0.4375 > b and A(b) =9143.51 > 0. As a
result, the system (1.8) has an unstable boundary
equilibrium point EO and a stable internal equilibrium
point E1 (figure 3).

Fig. 4. b = c(e —a), Ab <0; EO and E2 are stable nodes and
E1lis a saddle point.
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Casell:c(e—a)<bh

Theorem 3. If c(e — a) < b, the system (1.8) may have
two internal equilibria at most’“?'. We have the
following cases to consider,

1. If A(b) < 0, the model (1.8) has two internal distinct
equilibria E1 and E2 that are a saddle and a stable
node, respectively. If A(b) =0 and 4 > 0.

I. There is a unique degenerate internal equilibrium
point E1.

Ii. There is no internal equilibrium point.

2. When A(b) >0 or A(b) = A =0 the system (1.8)
has no internal equilibrium.

2.4 Graphical Analysis for Case (Il)

The analysis above and figure 4, show the existence of
two internal equilibria. Depending on the initial
conditions, two species will coexist permanently or will
be driven into extinction. For verification of these
results, we assume a=1,b=1/4,c =26/135, and

\V\‘* -~
=5

Fig. 5. The only internal equilibrium E1 when b = c(e — a),
Ab =0,4>0.

x'zey-x(x+1) a=1  e=9m8
y'=x-ay-(byMc+y) b=184 c=116

L L L L L L
0 01 02 03 04 05 06 07

Fig. 7. There is no internal equilibrium when c(e — a) < b,
Ab > 0.
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e = 1787/805, so that c(e —a) = 0.234939 < b and
Ab = —0.17663. In this case, we have a boundary
equilibrium point E0(0,0), two internal equilibria
E1(0.13434, 0.068649) and E2(0.54346, 0.37786),
which are saddle and stable, respectively.

In figure 4, the red line (stable manifold) demarcates the
first quadrant into two regions, a lower region and an
upper region. Any initial condition in the upper region
will tend to the stable node E2. The two populations
will coexist permanently from a biological perspective.
However, the initial conditions in the lower zone will
tend toward the boundary equilibrium EO, implying that
juvenile and adult species will ultimately become
extinct. Here we observe another bistability
phenomenon.

To verify the case of Ab =0 and 4 > 0, we choose

2529 4003 12645
a=—"7,b=1,c= = , then the model
3 4003

= ,€e
10116
(1.8) has a distinct internal degenerate equilibrium

point E1 (figure 5).

Fig. 6. There is no positive equilibrium when b > c(e — a),
Ab =0,4>0.

=ey-x(x+1) a=1 e=1
y'=x-ay-(byMc+y) b=1/27 c=8R7

Fig. 8. There is no internal equilibrium when c(e —a) < b,
Ab=0,4=0.
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On the other hand, if we take the parameter values a =
1,b=1,c =i,e =15—6, then Ab=0, A>0 and the

system (1.8) has no internal equilibrium (figure 6).

We choose values of the parameters as a=1,b =

é,c = 11—6,e = % to get Ab > 0 for which the model has
no internal equilibrium (figure 7). To verify the case

when Ab = 0 and A = 0, we consider the values of the
parameters as a =1,b = %,c = % and e = 1. In this
incident, the model has no internal equilibrium (figure
8). This completes the analysis.

2.5 Global Stability of Equilibria

Theorem 4. The boundary equilibrium point E0(0,0) is
globally asymptotically stable.

Proof. The function defined below is considered
V(x,y) =x+y, as a Lyapunov function. We recall
our proposed model (1.8).

dx

—=ey—x(x+1)

dat

dy by (1.8)
- x—ay—-2>

dat c+y

Notice that V(x,y) vanishes at £0(0,0), and is positive
for all x > 0,y > 0. We get

D*V(x,y)=x"+y =ey—x(x+ 1) +x—ay —
Ly 2 _(a- _ by
c+y x (a—e)y c+y

25 Parameter Values: a=1, b=1, c=1/4, e=496/97

—— dx/dt=e*y-x*(x+1)]

20

solution x
N
(4]

=y
(=]

0 5 10 15 20 25
time t

(@) fig: Juvenile species

If e<a, then D*V()<0 and D*V(¢t) =0 iff
x=0,y=0. Hence by Lyapunov’s asymptotic
stability theorem, EO0(0,0) is globally asymptotically
stable?”. The proof comes to an end here.

Theorem 5. If c(e—a) >b and Ab > 0, then the
internal equilibrium point is globally asymptotically
stable.

Proof. In order to prove, we take D(x,y) = las a
Dulac function. Let P(x,y) =ey —x(x+ 1), and
Qx,y) =x—ay —Cll—yy. We have

a(dP) L 2(DQ) _ 3 _ O (0 gy by
dox + dy T ox (ey x(x + 1) + dy (x ay c+y)>

= 2y —1_qg_letnbby 5. 4, __bc
=—-2x—1—a Ci? = 2x—1—a Ty

The Bendixson-Dulac discriminant®’ shows that the
model (1.8) can’t have any limit cycle when in the
first quadrant. Therefore, Hopf bifurcation is not
possible®®.  Secondly, if c(e —a) > b, the unique
boundary equilibrium E0(0,0) is a saddle. As a result of
the Poincare-Bendixon theorem, we can conclude that
the internal equilibrium point E1 is globally
asymptotically stable.

I11. Numerical Simulation

Numerical simulations of the results that we have
discussed in the sections 2.3 and 2.4 are shown in the
following figures.

o5 Parameter Values: a=1, b=1, c=1/4, e=496/97

| dy/dt=x-a*y-(b*y)/(c+y)

20

-
3
T

solution y

=
o
—_—

0 5 10 15 20 25
time t

(b) fig: Adult species

Fig. 9. Ab < 0 for Case-l. (a) Numerical simulation of juvenile species x at the stable node E3. (b) Numerical simulation of adult

species y at the stable node E3.
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25 Parameter Values: a=1, b=1, c=1/4, e=(11+6*sqrt(3))/4

dx/dt=e*y-x*(x+1)]

20

15|

solution x

10

0 5 10 15 20 25
time t

(@) fig: Juvenile species

- Parameter Values: a=1, b=1, c=1/4, e=(11+6*sqrt(3))/4

dy/dt=x-a*y-(b*y)/(c+y) |

20

-
3
T

solution y

-
o
—_—

0 5 10 15 20
time t

(b) fig: Adult species

25
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Fig. 10. Ab =0 and A > 0 for Case-l. (a) Numerical simulation of juvenile species x at the stable node E2. (b) Numerical

simulation of adult species y at the stable node E3.

Parameter Values: a=1, b=1/64, c=1/16, e=8

25
—— dx/dt=e*y-x*(x+1)]
20 |
< 15
f =4
i)
5
E
10
5|
. ‘ ‘ ‘ ‘
) 5 10 15 20 25

time t

(@) fig: Juvenile species

25 Parameter Values: a=1, b=1/64, c=1/16, e=8

- dyld=x-ay-(b"y)(cty)

20 1

o
T
L

solution y

time t

(b) fig: Adult species

Fig. 11. Ab > 0 for Case-l. (a) Numerical simulation of juvenile species x at the stable node E1. (b) Numerical simulation of

adult species y at the stable node E1.
Parameter Values: a=1, b=1/4, c=26/135, e=1787/805

25

dx/dt=e"y-x*(x+1)]

20 |

solution x
N
w
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Fig. 12. Ab < 0 for Case-ll. (a) Numerical simulation of juvenile species x at the stable node E2. (b) Numerical simulation of

adult species y at the stable node E2.



176 Md. Shariful Islama, Saima Aktera, Touhid Hossain, and Adeeb Shahriar Zamana, Mir Shariful Islam

25Parameter Values: a=2529/4003, b=1, c=4003/10116, e=12645/4003

dx/dt=e"y-x*(x+1)]
20 q
< 15} |
c
2
]
3
10 q
. |
. ‘ ‘ ‘ ‘
0 5 10 15 20 25

time t

(a) fig: Juvenile species

3(l)'-‘:-lrameter Values: a=2529/4003, b=1, c=4003/10116, e=12645/4003

dy/dt=x-a*y-(b*y)/(c+y)|

25 R

[}
o
T
L

solution y
o
3]
:
.

time t

(b) fig: Adult species

Fig. 13. Ab = 0 and 4 > 0 for Case-1l. (a) Numerical simulation of juvenile species x. (b) Numerical simulation of adult species y.
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Fig. 14. Ab =0 and 4 > 0 for Case-Il. (a) Numerical simulation of juvenile species x at E0. (b) Numerical simulation of adult

species y at EO.
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Fig.15. Ab > 0 for Case-ll. (a) Numerical simulation
adult species y at EO.
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Fig.16. Ab =0and A = 0 for Case-ll. (@) Numerical simulation of juvenile species x at £0. (b) Numerical simulation of adult

species y at EO.
1V. Conclusion

We have proposed and investigated a stage-structured
system in which the juvenile population has to survive
intra-specific competition in a single species with no
harvesting strategy on the Juvenile population and a
Michaelis-Menten form of harvesting on the adult
population of the species. The impact of competition in the
adult group with Michaelis-Menten harvesting on the adult
group has been studied, reporting the coexistence and rich
dynamics. Our study shows that, despite some intra-species
competition in the juvenile group, we can sustainably
harvest the adult species, ensuring coexistence is globally
asymptotically stable. It has been observed that intra-
species competition in the juvenile group may either
enhance or deter the fluctuation of the total population.
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