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Abstract

Minichromosome Maintenance Complex Component 2 (MCM2) is a replicative helicase system subunit that is a 
major prognostic and proliferation marker for gastric, oral, breast, and colon cancers. During the replication procedure, 
it combines with histones named H3 and H4 by their N-terminal domain to help the assembly and disassembly of 
nucleosomes on DNA. MCM2 inhibition slows tumor cell growth and causes G0/G1 phase arrest, but it has little effect 
on cell apoptosis. Due to its complex structural composition and crucial involvement in DNA replication and regulation 
interface, MCM2 is a potential target for drug discovery. Traditional herbs are gradually gaining popularity. Beneficial 
functions of phytochemicals include low toxicity, low cost, availability, antioxidant activity, antibacterial action, regulation 
of detoxification enzymes, regulation of hormones, etc. The signaling pathway of many diseases alters simultaneously, and 
mutations happen in new ways, due to these reasons, discovering new drug candidates has become badly needed. Through 
Molecular docking study of compounds, pharmacokinetic property analysis, quantitative structure-activity relationship 
analysis, and drug-protein interaction against MCM2 protein, this work proposes phytochemical screening of the green 
tea plant (Camellia sinensis) to select the most potential drug compound to inhibit MCM2 protein.
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I. Introduction

Despite there are several advances in treatment procedures, 
cancer occupies the first position in global mortality. Effective 
conventional therapies that lack specificity cause adverse 
side effects as well as systemic toxicity. This limitation has 
spurred the pursuit of targeted therapies aimed at specific 
molecular pathways critical for tumor growth and survival. 
The Minichromosome Maintenance Complex Component 2 
(MCM2) protein has become a promising target. An MCM 
family member, MCM2 helps build the replication initiation 
complex1. Proteins of 101,896 Da and 904 amino acids are 
encoded2. MCM2 directly binds to DNA replication origins 
and regulates gene expression to unwind DNA or start 
replication3. MCM2 is the most extensively studied MCMs 
and is a biomarker for carcinoma diagnosis. High expression 
of MCM2 is found in solid tumors but is suppressed in normal 
samples, making MCM2 a potential marker for carcinoma 
groups. MCM2 is constitutively expressed in, for example, 
lung cancer tissue samples4 and ovarian cancer tissue 
samples, making it a potential therapeutic target5. According 
to these studies, MCM2 knockdown significantly improved 
ovarian cancer chemoresistance to carboplatin and olaparib. 
Recent studies have shown that MCM2 is recognized as a key 
molecule in various cancer-causing genes such as CAMKK2 
and MEK16.

Plants have served as a foundational source for medicine 
throughout history, and many contemporary pharmaceuticals 
are derived from or inspired by plant-based compounds7,8. 
Developing a new drug is complex, often involving high 
costs and extended timelines, with multiple clinical trials 
required to ensure safety and efficacy. Camellia sinensis, 
or green tea, is a widely researched plant biochemically 
rich in epigallocatechin gallate (EGCG), epicatechin, and 
catechin with antioxidant, anti-inflammatory, and anti-cancer 
properties. EGCG has been shown to inhibit the growth of 
cancer cells by modulating key signaling pathways, such 
as the ones in PI3K/AKT and MAPK pathways9. Still, the 
efficacy of C. sinensisphytocompounds in inhibiting the 
function of MCM2 protein is untouched.

Previous studies have highlighted the importance of MCM2 
as a potential target for therapy. For example, Su(2021) 
demonstrated that synthetic small molecules can effectively 
disrupt the MCM2-MCM7 complex, decreasing cancer cell 
proliferation10. Likewise, Wang (2020) recognized MCM2 as 
a biomarker for cancer progression and a promising target for 
early treatment. However, there is still a limited exploration 
of natural products, especially phytocompounds, as MCM2 
inhibitors. This gap in the literature is significant, as natural 
products provide unique benefits, such as structural diversity 
and lower toxicity11.
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This research enhances our understanding of natural products 
in oncology treatment by filling a significant gap in the 
investigation of C. sinensisphytocompounds as MCM2 
inhibitors. In contrast to earlier studies that mainly concentrate 
on synthetic inhibitors10,11, our study highlights the importance 
of natural bioactives in targeting a crucial oncogenic protein. 
The results could aid in developing safer and more effective 
cancer treatments, utilizing the pharmacological potential of 
phytochemicals derived from green tea.

Advances in computational methods, particularly high-
throughput virtual screening and rational drug design based on de 
novo structures, are emerging as valuable tools for streamlining 
drug discovery12-14. Through virtual screening, researchers 
can identify novel compounds with potential therapeutic 
applications. This in silico approach has made traditional in 
vitro screenings more efficient in terms of both time and cost, 
especially for the discovery of new compounds15-17.

Two main strategies are employed in virtual screening: 
ligand-based screening and receptor-based screening. 
Ligand-based screening identifies candidate compounds by 
comparing them to known active molecules, while receptor-
based screening focuses on finding compounds that interact 
optimally with a target’s binding site, based on its three-
dimensional structure18,19. In drug lead discovery, molecular 
modeling is crucial, requiring detailed knowledge of the 
target protein’s three-dimensional structure as well as the 
configuration of the protein-ligand complex, which forms 
when the drug binds to its target20-22.

Various methods, such as pharmacopeia analysis, bioassays, 
and quantitative structure-activity relationships (QSARs), 
are also applied to generate new leads or optimize existing 
compounds23-25. Incorporating structure-based drug design 
into the drug development pipeline enables researchers to 
discover new molecules with greater efficiency, saving both 
time and effort compared to traditional methods26-28.

Studies of pharmacokinetics are an extremely important part 
of the process of creating new drugs. The time-dependent 
behavior of medicines and the principal metabolites of 
those drugs in various body fluids is analyzed as part of 
these procedures. This gives us a better understanding of 
the processes of absorption, distribution, metabolism, and 
elimination of medications from the body. During the Phase 
I investigations, pharmacokinetically guided dose escalation 
(PGDE) procedures are used. These tactics are used to help 
smooth the transition from preclinical research to clinical 
research. It is impossible to discover and perfect medication 
therapies without the knowledge that can be gleaned from 
pharmacokinetics in clinical trials29-31.

When developing a new drug, it’s crucial to consider the 
chemical properties of the substance being studied at every 
stage. These properties are known as ADMET, which 
stands for absorption, distribution, metabolism, excretion, 
and toxicity. A key goal in drug development is to create 
compounds that have favorable ADMET characteristics, as 

these properties determine how the drug will behave in the 
body32. The concept of “drug-likeness” serves as a useful 
guideline during the early phases of drug creation, helping 
researchers identify compounds that are more likely to 
succeed as medications33.

One of the most widely recognized “drug-likeness” filters 
was introduced by Lipinski and his colleagues in 1997. 
This rule, known as Lipinski’s Rule of Five, suggests that a 
compound is more likely to be an effective drug if it meets 
certain criteria: a molecular weight under 500, an octanol/
water partition coefficient (A log P) below 5 (which indicates 
how well a compound dissolves in fats vs. water), no more 
than 5 hydrogen bond donors, and no more than 10 hydrogen 
bond acceptors34-36.

In another study, Ghose and his team analyzed a large set 
of chemical compounds. They found that over 80 percent of 
them met specific requirements, including having a molecular 
weight between 160 and 480, A log P value ranging from 0.4 
to 5.6, a molecular refraction (MR) above 40, and an atom 
count between 20 and 7037. By using these kinds of filters, 
researchers can streamline the drug discovery process by 
comparing new compounds to successful drugs based on 
their physical and chemical properties.

However, it’s important to note that some studies have 
pointed out the limitations of these rules or filters. Relying 
only on a compound’s physical and chemical characteristics 
doesn’t always lead to successful drug development, as there 
are other factors to consider38,39.

A great deal of research investigations have shown that 
consuming green tea can be advantageous in the fight against 
cancer. Our goal is to improve our understanding of new 
medicinal product candidates and possible inhibitors against 
the MCM2 receptor that originates from the leaves of the tea 
tree by conducting studies in computer simulations.

PyRx may be used to test a compound library for effectiveness 
against a specific therapeutic target. It is most commonly 
seen in Computer-Aided Design and Drafting (CADD) 
design processes. PyRx technologies for molecular docking 
were utilized, specifically the VinaAutoDock wizard, to 
locate the protein and ligand binding combinations that 
were shown to be the most successful40. The default setup 
parameters of the PyRx software were used to determine the 
docking score (kcal/mol) of ligands. The compounds that had 
a higher docking score than the control drug were regarded to 
be “expected drug candidates for the next analysis.” At long 
last, the protein-ligand complex’s binding relationship was 
analyzed and visualized with the help of the software called 
Discovery Studio41.

II. Materials & Methods

Preparation of Protein
The 3D experimental tertiary structures of the MCM2 are 
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presently accessible in the RCSB protein data bank (PDB 
id: 6XTY) (https://www.rcsb.org/). The PDB structures of 
the proteins were constructed with the following constraints 
in mind: human expression, X-ray crystallographic protein 
structure, elimination of side chains, metal ions, and 
cofactors, and removal of any cofactors that may have 
been present. The Chimera software then merged polar and 
nonpolar hydrogen atoms into a single structure. Concerning 
the Gasteiger charges that are associated with the system, a 
decision was reached42.

Selection of Ligands

Medicines from natural plants contain phytochemicals. 
These phytochemicals can be used to develop and explore 
novel medications by covering many chemical areas. Green 
tea (Camellia sinensis) was chosen for its well-known health 
benefits, which include anti-cancer, antioxidant, and anti-
inflammatory properties. The IMPPAT database was an 
essential tool in identifying these compounds, helping to 
explore their drug-like characteristics for possible therapeutic 
uses.  Natural product-based medications are identified using 
the IMPPAT database, which contains around 1742 Indian 
medicinal plants and 9500 phytochemical compounds43,44. 
AutoDock 4 was used to accurately recognize atoms, connect 
nonpolar hydrogens, discover aromatic carbons, and form 
a “torsion tree.” In most compound particles, an AD4-like 
atom is present.

Phytochemicals were selected based on docking results 
with MCM2. Specifically, the phytochemicals with more 
docking score than -7.2 kcal/mol were considered for further 
evaluation. Then the selected phytochemicals were gone 
through pharmacokinetic property analysis. After that, two 
phytochemicals that demonstrate decent pharmacokinetic 
properties were finally selected.

Molecular Docking

Molecular docking, a crucial part of structural biology, 
is most often used in CADD. This method helps identify 
which macromolecules will bind to a target macromolecule 
(such as an enzyme, protein, or drug) in the best way45,46. 
By integrating PyRx virtual screening with AutoDockVina, 
the molecular docking process was investigated. The need 
of protein molecular binding energy with the selected 
phytochemicals was assessed in this investigation.

PyRx is an open-source software used for virtual screening. 
It can evaluate a library of compounds related to a specific 
therapeutic target and perform these tasks simultaneously. 
PyRx is widely used in the CADD process, making it known 
as CADD software. Its reliability is enhanced by using 
AutoDock 4 and AutoDockVina as docking tools, along with 
a simple user interface. PyRx employs molecular docking 
techniques (using the AutoDockVina tool) to identify the 
most effective binding configurations between proteins and 
ligands47. The researchers selected the binding configuration 
with the lowest (most negative) binding energy (in kcal/mol) 
as the “recommended drug candidate for further trials.” This 

process was completed successfully using PyRx’s default 
settings. Finally, Discovery Studio software was used to 
visualize the interaction between the protein-ligand complex 
and the ligand48.

Pharmacokinetic Property

“PK,” or pharmacokinetics, refers to how a drug is 
processed in the body, including its absorption, distribution, 
metabolism, and excretion (ADME). In the context of 
CADD, understanding a drug’s ADME properties is critical 
as it determines how the drug enters and exits the body, how 
long its effects last, and how it impacts the system overall49. 
These pharmacokinetic characteristics are key to maintaining 
a drug’s stability and effectiveness as a treatment, making 
them an essential focus during the drug development process.

To explore the early-stage pharmacokinetic features of 
selected drugs, we used the SwissADME website (http://
www.swissadme.ch), a free tool that accurately predicts the 
ADME properties and drug-likeness of simple compounds. 
This allowed us to carry out a detailed investigation into 
these properties. Additionally, we used the PKCSM website 
(https://biosig.unimelb.edu.au/pkcsm/) to make predictions 
about the toxicity of the compounds, ensuring a more 
comprehensive understanding of their safety profiles50.

Ligand Activity Prediction by QSAR Analysis

The well-established Prediction of Activity Spectra for 
Substances (PASS) server at http://www.way2drug.com/
passonline/ was utilized to compare the two phytochemicals 
and the control drug. The server predicts outcomes using a 
substance (PASS) structure. The Simplified Molecular Input 
Line Entry System (SMILES) format was used to represent 
the molecular structures of the phytocompounds as well as 
calculate the corresponding Pa and Pi values for each ligand51.

III. Results

Molecular Docking Result Analysis

The Camellia sinensis (green tea) plant is associated with 
248 different phytochemicals that are found in the IMPPAT 
database. Ligands with a higher docking result that don’t 
satisfy any of the Lipinski, Ghose, Veber, Egan, or Muegge 
rules are not included in the study. The phytocompounds 
Quercetin and Luteolin, which are finally recommended, 
have a docking score of -8.8 kcal/mol. This research used 
ciprofloxacin as a control ligand since it had previously been 
found to have an inhibitory effect on the development of 
cancer cells. The docking score of Ciprofloxacin with MCM2 
is -7.2 kcal/mol. The chemicals that have the highest docking 
scores and the strongest binding affinities are presented in 
Table 1.



70 Tanima Roy, Tofazzal Hosen Milon, Ahmed Imtiaz Zamee, Safia Aktar Dipa, Md. Ibrahim Al Imran

Table 1. Chemicals having the highest docking scores

Compound CID Compound Name Docking Score 
(kcal/mol)

CID_5280343
(Quercetin) Quercetin -8.8

CID_5280445
(Luteolin) Luteolin -8.8

CID_2764
(Control) Ciprofloxacin -7.2

In various biological processes, the interactions between 
molecules of ligands and proteins are significant and 
play an important role. Because the idea of molecular 
complementarity makes it possible, chemical bonding plays 
an essential part in facilitating these interactions. Interactions 
between ligands and their targets in proteins ensure precise 
control over cellular processes. These interactions provide 
the foundation for the coordination of essential processes 
that take place inside biological cells. The protein-ligand 

interaction involving the control medication is depicted in 
Table 2, which contains the compounds that were chosen.
Table 2 displays the different protein-ligand interactions that 
can occur depending on which ligand is used with the target 
protein. Conventional hydrogen bonds are shamrock green, 
van der Waals bonds olive green, carbon hydrogen bonds 
emerald green, and pi sigma bonds violet in the interaction 
diagram.
The table highlights the interaction between various 
compounds and the target protein through the formation of 
hydrogen bonds, which are crucial in determining the strength 
and stability of the drug-protein interaction. Specifically, the 
compound CID_5280343, also known as Quercetin, forms 
five conventional hydrogen bonds with the target protein. 
This suggests a strong interaction, as the number of hydrogen 
bonds can influence how tightly the compound binds to the 
protein, potentially increasing its effectiveness as a drug 
candidate.

Table 2. Protein-ligand interaction (ligand used with the target protein)

CID_5280343

(Quercetin)

CID_5280445

(Luteolin)

CID_2764
(Control)
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In comparison, the compound CID_5280445 (Luteolin) forms 
four conventional hydrogen bonds with the target protein. 
While slightly fewer than Quercetin, these compounds still 
exhibit relatively strong binding interactions. Interestingly, 
the control drug, CID_2764, which serves as a baseline 
or standard for comparison in the study, forms only one 
hydrogen bond with the target protein. This significant 
difference in the number of hydrogen bonds suggests that the 
other compounds, particularly Quercetin, may have stronger 
or more stable interactions with the target protein, potentially 
making them more effective than the control drug in the 
context of this study.

Pharmacokinetic and ADME Property Analysis

Table 3 illustrates the fundamental physiochemical 
characteristics of the chosen medicinal molecule. Because 

breaking these rules leads to issues with bioavailability, 
every one of the chosen ligands abides with Lipinski, Ghose, 
Veber, Egan, and Muegge’s rules.

Molecular weight: the lower it is, the better because diffusion 
is directly influenced by it. The molecular weights of the 
vast majority of medications currently available on the 
market range anywhere from 200 to 600 Daltons. They are 
considered to be part of the class of relatively tiny molecules.

Luteolin has a lower molecular weight than the other 
compounds included in table 3. The total amount of atoms in 
a molecule that are not hydrogen is referred to as the heavy 
atom count. According to Lipinski’s definition of a drug, the 
total number of heavy atoms in a compound must be equal 
to or fewer than 36 for that substance to be deemed a valid 
substance.

Table 3. Physiochemical properties of the selected compounds

Compound 
CID Formula

Molecular 
weight
(g/mol)

Number 
of heavy 

atoms

Number 
of heavy 
aromat-
ic atoms

Frac-
tion 
Csp3

Number 
of

H-bond 
donors

Number 
of

H-bond 
acceptors

Num-
ber of 

rotatable 
bonds

Molar 
Refrac-
tivity

CID_5280343
(Quercetin) C15H10O7 302.24 22 16 0 5 7 1 78.03

CID_5280445
(Luteolin) C15H10O6 286.24 21 16 0 4 6 1 76.01

CID_2764 
(Control)

C17H18
FN3O3 331.34 24 10 0.41 2 5 3 95.25

All values that are shown in Table 3 are convenient. For 
instance, a drug compound should contain 36 or fewer heavy 
atoms, which is rooted in practical factors related to drug-
likeness and pharmacokinetics. All values of total heavy 
atoms of recommended compounds are under 36. 

Moreover, one description of a rotatable bond is any single 
bond that is not part of a ring and that is bonded to an 
atom that is not the terminal or a hydrogen atom. Another 

definition of a rotatable bond is any bond that may be broken 
and reformed into its original form. The number of rotatable 
bonds must be lower than three to fulfill the requirements.

In this scenario, not a single one of the compounds possesses 
a value greater than 3, but everyone has a value less than 3. 
When it comes to molar refractivity, the acceptable range is 
someplace in the area of 40 and 130. At least one location 
within this range contains each of the values.

Table 4. Absorption properties of the selected ligands

Compound CID
Water solu-

bility
[log mol/L]

CaCO2 permea-
bility

[log Papp in
10-6 cm/s]

Intestinal 
absorption (hu-

man)
[% Absorbed]

Skin Perme-
ability

[log Kp]

P-gly-
copro-

tein 
sub-

strate

P-gly-
copro-
tein I 

inhibi-
tor

P-gly-
copro-
tein II 
inhibi-

tor

CID_5280343
(Quercetin) -3.047 0.294 70.277 -2.737 Yes No No

CID_5280445
(Luteolin) -3.094 0.096 81.130 -2.735 Yes No No

CID_2764
(Control) -2.897 0.492 96.466 -2.734 Yes No No

The ligands’ absorption properties can be forecasted using 
Table 4, which contains all of the relevant information. 
When a drug ingredient can be dissolved in 250 milliliters of 
solution at its greatest concentration, we refer to this property 

as “high solubility.” The values of water solubility are 
presented in the log scale in the table 4 that can be found here. 
After going over the results, we can conclude that they have 
an extremely high solubility in water. It is recommended that 
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the CaCO2 permeability be more than 5 x 10-6 cm/s. The value 
when converted to logarithms is -5.30. The table contains no 

values that are lower than -5.30.

Table 5. Distribution properties of the selected ligands

Compound CID

VDss
(Human)
(log L/kg)

Fraction un-
bound (human)
Numeric (Fu)

BBB permea-
bility

(log BB)

CNS perme-
ability

(log PS)

Total
Clearance

(log ml/min/kg)

Renal 
OCT2 sub-

strate

CID_5280343
(Quercetin) 0.746 0.118 -0.719 -2.976 0.044 No

CID_5280445
(Luteolin) 1.153 0.168 -0.907 -2.251 0.495 No

CID_2764
(Control) -0.17 0.648 -0.587 -2.999 0.633 No

These compounds are ideal candidates for use as therapeutic 
compounds due to the high CaCO2 permeability that they 
exhibit. High intestinal absorption might range anywhere 
from 80 to 100 percent. Quercetin has a medium intestine 
absorption capability, while Liteolin has a high intestinal 

absorption capability. Based on the data presented in Table 
5, it is possible to deduce that the drugs that have been 
suggested do not contain a renal oct2 substrate, and the value 
of the total clearance falls within a range that is considered 
acceptable.

Table 6. Metabolism properties of the selected ligands

Compound CID CYP2D6 
substrate

CYP3A4 
substrate

CYP1A2 
inhibitor

CYP2C19 
inhibitor

CYP2C9 
inhibitor

CYP2D6 
inhibitor

CYP3A4 
inhibitor

CID_5280343
(Quercetin) No No No No No No No

CID_5280445
(Luteolin) No No Yes No Yes No No

CID_2764
(Control) No No No No No No No

The use of any of these inhibitors that were shown in Table 
6 may have hazardous effects. Pharmaceuticals that, upon 

metabolism, produce active metabolites that tend to reduce 
the effectiveness of the medicine in question.

Table 7. Toxicity properties of the selected ligands
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CID_5280343

(Quercetin)
No 0.25 No No 2.042 2.605 No No 0.39 2.305

CID_5280445

(Luteolin)
No 0.499 No No 2.455 2.409 No No 0.326 3.169

CID_2764

(Control)
No 0.924 No No 2.891 1.036 Yes No 0.286 1.194

It is clear from looking at Table 7 of the toxicology report 
that none of the compounds demonstrated any toxicity 
against AMES. The phytocompounds that we chose to study 
do not have any inhibitory effect on hERG II.

For pharmacological risk management, an understanding 
of the acute oral toxicity of medication in rats is vital. It is 
common practice to quantify this toxicity using the term 
“50% lethal dose,” or “LD50.” This term refers to the amount 
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of the chemical that is anticipated to result in the death of fifty 
percent of the animals treated over a predetermined duration 
of time. When compared to the drug that served as the standard 
of comparison, the phytochemicals that we recommend have 
a reduced level of acute toxicity when administered orally 
to rats. The phytochemicals that have been suggested will 
not result in skin sensitivity. In contrast to the hepatotoxicity 
exhibited by Ciprofloxacin, the in-silico analysis forecasts 
that the phytochemicals under consideration will not exhibit 
any hepatotoxic effects.

PASS Online Prediction for QSAR Analysis

Two phytochemicals and a placebo were tested using the 
PASS online program to see whether they had any chance 
of blocking of the MCM2 protein tyrosine kinase domain. 
Higher Pa values are associated with compounds that have 
more pharmacological potency and potential for experimental 
synthesis. We utilized a Pa cut-off value of 100 to investigate 
the QSAR of these two phytochemicals and the control 
medication. Even though it cannot forecast binding affinity 
for novel therapeutic targets, PASS can nevertheless help 
minimize the negative effects of a compound. The ADME 
evaluation was followed by a site-specific molecular docking 
study of the filtered phytochemicals. These values are shown 
in Table 8.

IV. Discussion

In every region of the world, cancer is the top cause of 
mortality. There has been a discernible rise in the number 
of cases of cancer in recent years. Because of this, the 
investigation of mutations in the MCM2 gene is of 
significant importance. CADD is a particularly useful 
tool for locating novel compounds that target particular 
proteins because it incorporates a wide variety of and a high 
level of sophistication in its capabilities and procedures. 
The overall goal of the CADD approach is to reduce the 
financial expenditures as well as the time restrictions that 
are connected with the developing procedure of new drugs. 
The approach of virtual screening was developed to use 
a wide variety of computational approaches, including 
molecular docking, quantum mechanics, ADMET, and other 
relevant methodologies. Research & development in the 
pharmaceutical industry places a significant emphasis on the 
inclusion of this specific component.

The purpose of this study was to ascertain the existence of 
the MCM2 protein as well as its properties and to assess 
the efficacy of several medication candidates by utilizing 
molecular docking and other experimental methods. The 
compounds were evaluated using a technique known as 
molecular docking during the first step of the process. 
Following that, two phytocompounds were chosen because 
of their better negative binding affinity in comparison to 
the control ligand, which was ciprofloxacin. The chosen 
phytochemicals had docking scores that are higher when 
compared to ciprofloxacin, which is being already introduced 
as a medicinal drug for the treatment of cancer in human 
patients. Following that comes the examination of the 
pharmacokinetic and QSAR features. The chemicals that we 
selected to study produced favorable outcomes across the 
board for this investigation.

V. Conclusion

CID_5280343 and CID_5280445 are some of the most 
promising potential MCM2 protein antagonists in the case of 
human malignancies. These compounds have been selected 
based on their good predicted pharmacokinetics and results 
of the analyses in QSAR studies making them ideal for 
this purpose. This experiment will also try to evaluate the 
usefulness of these agents for human cancer immunotherapy, 
raising new ways to treat cancer. The next stage includes 
laboratory studies (both in vitro and in vivo) intended to 
assess the anticancer efficacy of these phytochemicals 
and their safety. Even though the obtained results from 
the evaluation are encouraging, preclinical studies using 
animals have to be performed to conclusively establish the 
efficacy and possible safety of the phytochemicals. In cell 
lines and animals, their MCM2 protein inhibitory activities, 
tumoricidal activities, and toxic side effects will be screened. 
This phase is important as, in biological systems, there are 
complex relationships that cannot be fully created in silico. 
Furthermore, these studies will help to find the appropriate 
dose and enhance the compounds for efficacy and safety. 
The overriding goal is to create an enabling environment for 
clinical studies and in the end, provide treatments for cancer 
that are natural, targeted, and inexpensive.
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Table 8. Prediction of QSAR Analysis

CID
Com-

pounds 
name

Pa Pi Activity CID
Com-

pounds 
name

Pa Pi Activity

52
80

34
3

Q
ue

rc
et

in

930 1 CYP1A1 inducer

52
80

44
5

Lu
te

ol
in

947 3 Aldehyde oxidase inhibitor

931 2 UGT1A9 substrate 947 1 Aryl-alcohol dehydroge-
nase (NADP+) inhibitor

933 1 MAP kinase stimulant 952 2 2-Dehydropantoate 2-re-
ductase inhibitor

934 1 Quercetin 2,3-dioxygenase 
inhibitor 953 2 Membrane permeability 

inhibitor

938 3 Membrane permeability 
inhibitor 964 3 HIF1A expression inhibitor

939 2 UGT1A10 substrate 965 3 Membrane integrity agonist

940 3 CYP1A1 substrate 978 1 Chlordecone reductase 
inhibitor

940 1 Antimutagenic

27
64

 (C
on

tro
l)

C
ip

ro
flo

xa
ci

n
452 19 Antituberculosis

945 4 CYP1A substrate 546 103 Nootropic

944 2 UGT1A6 substrate 448 4 Antiviral (CMV)

951 1 CYP1A inducer 468 1 DNA gyrase inhibitor

957 2 HMOX1 expression en-
hancer 576 97 Antieczematic

962 1 Peroxidase inhibitor 505 10 RELA expression inhibitor

969 2 HIF1A expression inhibitor 567 1 Antibiotic Quinolone-like

973 2 Membrane integrity agonist 588 9 Antibacterial

52
80

44
5

Lu
te

ol
in

927 1 NADPH-ferrihemoprotein 
reductase inhibitor 595 6 Antiamyloidogenic

932 2 CYP1A inducer 638 35 Glutamate-5-semialdehyde 
dehydrogenase inhibitor

935 2 HMOX1 expression en-
hancer 639 8 Antimycobacterial

936 2 Peroxidase inhibitor 751 3 Topoisomerase II inhibitor

942 5 CYP2C12 substrate 786 4 DNA synthesis inhibitor

940 2 Kinase inhibitor 823 5 Antiinfective

940 1 Antimutagenic 909 0 Antibacterial, ophthalmic

942 1 P-benzoquinone reductase 
(NADPH) inhibitor
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