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Abstract

The business organizations in Bangladesh are operating their business by intuition based planning. They are not using 
scientific techniques for making decisions. But the scientific models can play an important role to maximize their profit 
and to save idle times, wastage of raw materials and finished products. As a result, the business organizations in our 
country fail achieve their goals.This is the case for electricity generation companies too. This research paper will focus 
on developing a stochastic capacity expansion model to help an electricity generation company. Capacity expansion 
problems are concerned with the timing of facility expansions and levels of investments to meet increasing demand. 
Since demand is difficult to forecast and expansion plans may need to change over time, stochastic programming offers 
a convenient way to solve these problems. In this research paper, we will develop a multi-stage stochastic programming 
model to formulate the real world problem which will satisfy the future demand of an electricity generation company. The 
model will help the company to find optimal investment in different power plants by allocating the limited resources and 
capacities to different power terminals.To observe whether the company can maximize the utilization of resources and 
minimize cost, and to demonstrate the applicability of our model, we will analyze a two-stage problem derived from this 
model. We will use mathematical programming language LINDO and LINGO for solving resulting SPs. We will also use 
MATHEMATICA to draw the continuous function.  
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I. Introduction

To become a developed country, Bangladesh must develop 
its economic sector because it is one of the most important 
areas for the development of the country. To achieve the 
Sustainable Development Goals (SDGs), Bangladesh 
needs strong national economy. Total economy of this 
country depends on the development of the different business 
organizations. On the other hand, the development of the 
business organizations depends on the implementation of the 
mathematical and scientific models which gives the manager 
a perfect insight about the demand, supply, production and 
inventory. 

Business organizations must do more with their limited 
resources to match their priorities with the needs of citizens. 
But almost all of the business organizations in Bangladesh are 
still operating their business through intuition based planning. 
They are not using scientific forecast techniques. In order to 
be sustainable, the companies should plan the future not the 
present. The organizations must take necessary measures 
to manage the cost of the inventory, labor, and financial 
resources in the best way to avoid wastage. This will result 
into cost minimization and profit maximization. We will first 
analyze various problems related to electricity generation. 
To satisfy the future demand of electricity, an investment 
problem will be considered.  It will help the company to 
decide the amount of investment in different power plants 
will be appropriate. Capacity expansion problems are 
concerned with the timing of facility expansions and levels 
of investment to meet increasing demand. Since demand is 
difficult to forecast and expansion plans may need to change 

over time, stochastic programming offers a convenient way 
to solve these problems. The model will help the company 
by optimal allocation of limited capacity to different 
power terminals.We will develop a multistage stochastic 
programming model so that the electricity company will 
be able to determine optimal levels of investment to meet 
their future demands. To observe whether the company can 
maximize the utilization of resources and maximize profit, 
and to demonstrate the applicability of our model, we will 
analyze a two-stage problem derived from this model.  We 
will use programming language LINDO or LINGO for solving 
resulting SPs. We will also use MATHEMATICA to draw the 
continuous function.

Literature Review

We will first review various relevant research articles to get an 
overview of the current research in the electricity generation 
sector. Dimitrios and Giorgia1 develop a stochastic model for 
evaluating the optimal timing and capacity of investments 
in flexible combined heat and power generation for energy-
intensive industries. Salvador and Morales2 proposed a 
capacity expansion model of stochastic power generation 
under two-stage electricity markets. Hasanand Chakroborty3 
discussed about the stochastic programming to solve a real 
life oriented farmer’s problem. Louveaux and Smeers4,5 

presented the stochastic models for optimal investment in 
electricity generation. Hashnayne6 presented a case study of 
stochastic programming problems modeling applications. 
Mainly he tried to develop a study of farmer’s problem 
based on two-stage SP with simple recourse. Zhengyangand 
Guiping7 presented two-stage SP framework for scheduling 
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problem. Murfy and Weiss8 have developed a capacity 
expansion modelfor electric utility. Lara et. al9 presented a 
stochastic infrastructure planning model for electric power. 
Rajagopalan et. al10 presented a capacity replacement model. 
Sainee11 developed a multi-period capacity expansion model 
for telecommunications. Grinold12developed a multistage 
convex programming model for the correction of end effect.
Goel. Grossmann13,14 analyzed a class of stochastic programs 
with decision dependent uncertainty.

The knowledge and information gathered from the above 
literature review will help us to develop capacity expansion 
stochastic program model for the electricity generation 
company. This will also help us to develop a multi-stage 
stochastic program for using decomposition technique. 

II. Basics of Stochastic Program

In mathematical planning, an  optimization problem  finds 

the  best  solution among the set of all  alternatives. It is 
classified as deterministic and stochastic depending on the 
basis of uncertainties on parameters and variables15,16. In 
this section, we discuss about Stochastic Programming (SP), 
importance and applications in several fields of real life. 

The mathematical form of a SP is as follows13,14. 
Minimize or Maximize  𝑧𝑧 = 𝑐𝑐𝑐𝑐 

subject to 𝐴𝐴𝐴𝐴 ≥ 𝑏𝑏, 𝑥𝑥 ≥ 0 

There may be uncertainty in demand b, in input prices c and 
in the technical coefficient matrix17,18:

Classes of SP 

The SP problems can be classified in Figure 2.1.
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Fig. 2.1. Classification of SP

III. Stochastic Program with Simple Recourse

In this Section, we will discuss about multi stage recourse 
problems and scenario generation21. We will first present a 
two-stage model. Then, we will generalize this to multistage 
model.

Two-Stage SP Problem 

In two-stage recourse problem, we first make a decision 
now which is termed as first stage decision. Then nature 
makes a random decision called after observing the random 
realization. Finally, we make a second stage decision that 
attempts to repair the uncertainty called two-stage recourse 
problem. The mathematical form of a two-stage recourse 
model is as follows19,20.

First stage

𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑧𝑧𝑧𝑧 + 𝐸𝐸[ℎ(𝑧𝑧, 𝜉𝜉)] 
subject to 

𝐴𝐴𝑥𝑥𝑥𝑥 + 𝐴𝐴𝑧𝑧𝑧𝑧 = 𝑏𝑏 
0 ≤ 𝑥𝑥 ≤ 𝑢𝑢𝑥𝑥 ,   0 ≤ 𝑧𝑧 ≤ 𝑢𝑢𝑧𝑧  

Second stage 
ℎ (𝑧𝑧, 𝜉𝜉) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝑓𝑓) 

subject to 
𝑇𝑇𝑇𝑇 + 𝑊𝑊𝑊𝑊 = 𝑑𝑑 

0 ≤ 𝑦𝑦 ≤ 𝑢𝑢𝑦𝑦 ,  
𝜉𝜉 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑓𝑓,𝑢𝑢𝑦𝑦 ,𝑇𝑇,𝑊𝑊,𝑑𝑑) 

The first stage decisions are the vectors x and z, where the 
decisions x appear in the first stage but z connects the first 
and second stage. The first stage decisions contribute directly 
to the objective value through the first stage cost. These 
decisions are constrained by linear constraints and simple 
upper bounds. The random variables affecting the second 
stage are described by the vectors 𝜉𝜉 . In most general case 
the vector may affect all the parameters of the second stage 
problem. The cost of the second stage,  ℎ (𝑧𝑧, 𝜉𝜉) , depends on 
the realizations  and on z. This cost is a random variable. y is 
the second stage decision variable which depends on the 1st 
stage decision x.

Multi-Stage SP Problem 

Initially, we first take a decision known as initial decision. 
After the realization from the random parameters, we 
make decisions for the 2nd stage. In a similar manner, we 
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take decision for the succeeding stages are called recourse 
decisions. 

Consider a multistage SP problem where c1, A1 and b1 are 
certain, but some or all the entries of the cost vectors ct, 
coefficient matrices Bt and At, and the right hand side vectors 
bt, t = 2, . . . ,T, are uncertain. Consider the random vector 
ξt becomes known at time period t. Let the decision vector 
for stage t is xt and depends on the realization available at 
time t and is defined as  ξ[t]. The initial decision is x1.  Then 
the realization from the random data is ξ2:= (c2, B2, A2, b2). 
After this we make a new decision in the second stage as 
x2. In a similar way we take the decision for Tth stage as xT 
after observing the realization from ξT:= (cT, BT , AT , bT ). 
This decision process minimizes the total cost allowing the 
decisions to be made at every stage t = 1, . . .,T. Figure 3.1 
shows a flowchart of the stage wise decision.

Fig. 3.1. Multi-stage decision procedure
 The problem can be formulated as follows:

min
x1 ∈ 𝑋𝑋1

𝑓𝑓1(𝑥𝑥1) + 𝐸𝐸[ 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥2 ∈ 𝑋𝑋2(𝑥𝑥1, 𝜉𝜉2)𝑓𝑓2(𝑥𝑥2, 𝜉𝜉2)

+ 𝐸𝐸 �… + 𝐸𝐸 � 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑇𝑇 ∈ 𝑋𝑋𝑇𝑇(𝑥𝑥𝑇𝑇−1, 𝜉𝜉𝑇𝑇)𝑓𝑓𝑇𝑇(𝑥𝑥𝑇𝑇 , 𝜉𝜉𝑇𝑇)��] 

where 
𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) = 𝑐𝑐𝑡𝑡𝑇𝑇𝑥𝑥𝑡𝑡  

𝑋𝑋1 = {𝑥𝑥1:𝐴𝐴1𝑥𝑥1 = 𝑏𝑏1, 𝑥𝑥1 ≥ 0} 
𝑋𝑋𝑇𝑇 = {𝑥𝑥𝑡𝑡 :𝐵𝐵𝑡𝑡𝑥𝑥𝑡𝑡−1 + 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡 = 𝑏𝑏𝑡𝑡 , 𝑥𝑥𝑡𝑡 ≥ 0}, 𝑡𝑡 = 2, … ,𝑇𝑇 

Here 𝝃𝝃𝒕𝒕, 𝒕𝒕 = 𝟏𝟏, … ,𝑻𝑻,   is a sequence of random variables and 𝑿𝑿𝒕𝒕  
is the set of decision variables and depends upon 

 
𝝃𝝃[𝒕𝒕]  where,   

𝝃𝝃[𝒕𝒕] = (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … , 𝝃𝝃𝒕𝒕)   denote the random observations up to 
period t.

Scenario based problem 

The idea is to construct or sample possible futures and solve 
the corresponding problems for these values. After obtaining 
a number of decisions in this way, we either pick the best of 
them, or we try to make a good combinations of the decisions. 

Scenario Tree 

In a scenario tree each scenario creates a path from the root 
of the tree to one of its leaves. The visited nodes are assigned 
with a random value21,22,23. As an example, here we discuss 
the construction of a scenario tree for well-known news 
vendor problem which maximize the total expected profit at 
the end a planning horizon.

Positive(p=.3)                            scenario1  p(H)p(P)=0.12 

 

Negative(p=.7)                           scenario 2  p(H)p(N)=.28 

High(p=.4) 

 

Positive(p=.3)        scenario 3 p(M)p(P)=0.09 

      Medium(p=.3)                                                            

Negative(p=.7)                            scenario 4 p(M)p(N)=.21 

 

         Low(p=.3)                   Positive(p=.3)                     scenario 5 p(L)p(p)=.09 

 

     Negative(p=.7)                        scenario 6 p(L)p(N)=.21 

Stage-0                                      Stage-1                       Stage-2 

 

Order X0 

Return 

Return x1 

Return x1 

Profit2 

Profit2 

Profit2 

Profit2 

Profit2 

Profit2 

Fig. 3.2. Scenario tree of news vendor problem

In this problem, a news vendor first decides the amount to 
order and then he realize the amount unsold amount to be 
returned to the company with a reduced price. Initially decide 
an order quantity. After observing the random parameter the 
demand is revealed. At the end of 1st stage, he decides how 
much of the products to be returned to the source company at 
a reduced price. This price may be either positive or negative.
In Figure 3.2, each root-leaf path defines a scenario.

IV. Capacity Expansion Model

Capacity expansion problems are concerned with the timing 
of facility expansions and levels of investment to meet 
increasing demand. We first study the optimal investments 
problem for an electricity generation company. Analyzing 
different existing problems related to electricity generation, 
we will develop a multi-stage stochastic model which will be 
able to handle the uncertainties faced by the company. The 
model will obtain optimal amount of investment in different 
power plants to meet future demands. This model concerns 
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the optimal allocation of limited capacity to different power 
terminals.We will discuss the justification of the requirement 
of a multistage stochastic model. We will then demonstrate 
the proposed model by considering a two-stage test-problem.

The Electricity Generation Problem

In this section, we first present a deterministic analysis of 
the electricity generation problem. Currently the company is 

operating its business on the basis of deterministic decisions.
The company has i number of power plants. The costs involve 
are investment cost ci,  operating cost qi and the availability 
factor ai which is a percentage of time the power plant can 
effectively be operated. The demand for electricity of the 
company is uncertain. The electricity company represents 
the demand by a ”load-curve” as shown in Figure 4.1. It 
indicates that the demand is decreasing over time.

 

 

 

 

 

 

 

 

 

Fig. 4.1. The load duration curve 
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Figure 4.2 shows the piece wise distribution of load which 
is known as load distribution curve. This curve has m 
segments. Let d1= D1, and dj= Dj−Dj−1 , j = 2, . . . , m is the 
additional demand of power in ‘mode j’ for a duration Tj. In 
the deterministic situation, the problem consists of finding 
the optimal investment for each mode j. It is given by

𝑖𝑖(𝑗𝑗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖=1,.. .,𝑛𝑛

{
𝑐𝑐𝑖𝑖+𝑞𝑞𝑖𝑖𝑇𝑇𝑗𝑗

𝑎𝑎𝑖𝑖
} …………… (1) 

where argmin represents the index i for which the minimum 
value is achieved and n is the number of available 
technologies5.

Deterministic Model Formulation

We consider equipment costs, load curve, new technologies 
and the currently available equipment24.The equipment costs 
depends on technological progress and fuel costs.

The indices for the proposed multi-stage model are t = 1, . . 
. , M for the periods or stages, i= 1, . . . , n for the available 
technologies and j = 1, . . . , m the operating modes in the 
load duration curve. The parameter for  proposed multi-
stage model ai stands for availability factor of i, Li stands 
for lifetime of i, gi

t indicates existing capacity of i at time t, 
decided before t= 1, ci

t is the investment cost per unit for iat 
time t, qi

t is the production cost per unit for iat time t, dj
t is the 

demanded of power in mode j at time t and Tj
t is the duration 

of mode j at time t. The decision variables for the proposed 
multi-stage model are xi

t which is the available capacity made 
for technology i at time t, wi

t is the total available capacity of 

i at time t and  yij
t is the capacity of i effectively used at time 

t in mode j.

Then the deterministic multi-stage electricity generation 
model takes the following form.

𝒎𝒎𝒎𝒎𝒎𝒎�(�𝒄𝒄𝒊𝒊𝒕𝒕.𝒘𝒘𝒊𝒊
𝒕𝒕 + ��𝒒𝒒𝒊𝒊𝒕𝒕.𝑻𝑻𝒋𝒋𝒕𝒕.𝒚𝒚𝒊𝒊𝒊𝒊𝒕𝒕 )

𝒎𝒎

𝒋𝒋=𝟏𝟏

𝒏𝒏

𝒊𝒊=𝟏𝟏

𝒏𝒏

𝒊𝒊=𝟏𝟏

𝑴𝑴

𝒕𝒕=𝟏𝟏

… … … (4.𝟐𝟐) 

𝒔𝒔. 𝒕𝒕 
𝒘𝒘𝒊𝒊
𝒕𝒕 = 𝒘𝒘𝒊𝒊

𝒕𝒕−𝟏𝟏 + 𝒙𝒙𝒊𝒊𝒕𝒕 − 𝒙𝒙𝒊𝒊
𝒕𝒕−𝑳𝑳𝒊𝒊 , 𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏, 𝒕𝒕

= 𝟏𝟏, … ,𝑴𝑴… … … (4.𝟑𝟑) 
 

�𝒚𝒚𝒊𝒊𝒊𝒊𝒕𝒕 = 𝒅𝒅𝒋𝒋𝒕𝒕
𝒏𝒏

𝒊𝒊=𝟏𝟏

, 𝒋𝒋 = 𝟏𝟏, … . ,𝒎𝒎, 𝒕𝒕 = 𝟏𝟏, … ,𝑴𝑴… … … (4.𝟒𝟒) 

�𝒚𝒚𝒊𝒊𝒊𝒊𝒕𝒕 ≤ 𝒂𝒂𝒊𝒊(𝒈𝒈𝒊𝒊𝒕𝒕 + 𝒘𝒘𝒊𝒊
𝒕𝒕),       𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏, 𝒕𝒕

𝒎𝒎

𝒋𝒋=𝟏𝟏
= 𝟏𝟏, … ,𝑴𝑴  … … … (4.𝟓𝟓) 

𝒘𝒘,𝒙𝒙,𝒚𝒚 ≥ 𝟎𝟎  
The constraint set (4.3) states that an equipment becomes 
obsolete after its lifetime. It also states that the newly decided 
capacities increase the total capacity wi

t. Constraint set (4.4) 
is the match between the demand and capacity in all modes. 
Constraint set (4.5) is a relationship between capacity and 
capacities gi

t decided before t = 1, newly decided capacities 
xi

t, and the availability factor. The objective function (4.2) 
is the sum of the investment cost, maintenance costs, and 
operating costs. 
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A Real Life Deterministic Problem

In this section, we consider a real life example taking 
secondary data from a company of Dhaka. The example 
is a deterministic model with 3 operating modes namely 
North, Middle and South of Dhaka. The problem has n = 4 
technologies such as gas, coal, nuclear and wind.  One period 
construction delay for all technologies, full availabilities, a = 
(1,1,1,1) and  there is no equipment available. As a result g 
= (0,0,0,0). Consider d1=5, d2= 3, d3= 2. Moreover, T2= .6T1 
and T3= .1 T1 and let T1 = 10. Available budget is 120. The 
investment costs for the equipment are (10, 7, 16, 6) and 
production costs per unit are q = (4, 4.5, 3.2, 5.5) respectively. 
The company needs to find the optimal allocation of limited 
capacity of gas, coal, nuclear and wind to different power 
terminals at the location North, Middle and South.
The decision variables and parameters are considered as 
follows.

x1 = Unit of  new capacity made available in Gas Plant

x2 = Unit of new capacity made available in Coal Plant

x3 = Unit of  new capacity made available in Nuclear Plant

x4 = Unit of  new capacity made available in Wind Plant

y11 = Unit of allocated capacity of Gas in North Mode

y21 = Unit of allocated capacity of Coal effectively used in 

North Mode

y31 = Unit of allocated capacity of Nuclear effectively used in 
North Mode

y41 = Unit of allocated capacity of Wind effectively used in 
North Mode

y12 = Unit of allocated capacity of Gas effectively used in 
Middle Mode

y22 = Unit of allocated capacity of Coal effectively used in 
Middle Mode

y32 = Unit of allocated capacity of Nuclear effectively used in 
Middle Mode

y42 = Unit of allocated capacity of Wind effectively used in 
Middle Mode

 y13 = Unit of allocated capacity of Gas effectively used in 
South Mode

y23 = Unit of allocated capacity of Coal effectively used in 
South Mode

y33 = Unit of allocated capacity of Nuclear effectively used in 
South Mode

y43 = Unit of allocated capacity of Wind effectively used in 
South Mode

Table 4.1. Install and operating cost per unit

Technology (xi) Cost/unit to install (ci) Cost/unit to operate (qi)
Gas (x1) 10 4
Coal (x2) 7 4.5
Nuclear (x3) 16 3.2
Wind (x4) 6 5.5

Table 4.2. Demands

Modes North Middle South
Demands (dj) 5 3 2

Table 4.3. Combined cost 

Technology(xi) North Middle South
Gas 40 24 4
Coal 45 27 4.5
Nuclear 32 19.2 3.2
Wind 55 33 5.5

The resulting deterministic problem is:
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𝑧𝑧 = min 10𝑥𝑥1 + 7𝑥𝑥2 + 16𝑥𝑥3 + 6𝑥𝑥4 + 40𝑦𝑦11
+ 45𝑦𝑦21 + 32𝑦𝑦31 + 55𝑦𝑦41
+ 24𝑦𝑦12 + 27𝑦𝑦22 + 19.2𝑦𝑦32
+ 33𝑦𝑦42 + 4𝑦𝑦13 + 4.5𝑦𝑦23 + 3.2𝑦𝑦33
+ 5.5𝑦𝑦43  

subject to
10𝑥𝑥1 + 7𝑥𝑥2 + 16 𝑥𝑥3 + 6 𝑥𝑥4 ≤ 120 

𝑦𝑦11 + 𝑦𝑦12 + 𝑦𝑦13 − 𝑥𝑥1 ≤ 0 
𝑦𝑦21 +  𝑦𝑦22 + 𝑦𝑦23 − 𝑥𝑥2 ≤ 0 

𝑦𝑦31 + y32 + y33 − x3 ≤ 0 
    y41 + y42 + y43 − x4 ≤ 0 

           y11 +  y21 + y31 + y41 ≥ 5 
                 y12 +  y22 + y32 + y42 ≥ 3 
               y13 + y23 + y33 + y43 ≥ 2 

    xi ≥ 0, yij ≥ 0, i=1,…,4 and j =1,.., 3. 

This is a simple linear optimization problem which can be 
solved by LINDO software as follows:

Output of the Deterministic LP problem

Fig. 4.3. Solution of deterministic LP problem

Table 4.4. Solution obtained by Lindo

Technology North Middle South Capacity installed
Gas 0 2.3333 0 2.3333
Coal 0 0.6667 0 .6667
Nuclear 5 0 0 5
Wind 0 0 2 2

Solution obtained by solving Lindo with description 
has given below table: where x1=2.33,x2=.67, x3=5, x4=2.
Therefore, the objective value is

𝑧𝑧 = ( 10 ∗ 2.3333 + 7 ∗ .6667 + 16 ∗ 5 + 6 ∗ 2
+ 40 ∗ 0 + 45 ∗ 0 + 32 ∗ 5 + 55
∗ 0 + 24 ∗ 2.3333 + 27 ∗ 0.6667
+ 19.2 ∗ 0 + 33 ∗ 0 + 4 ∗ 0 + 4.5
∗ 0 + 3.2 ∗ 0 + 5.5 ∗ 2) = 365  

Stochastic Capacity Expansion model 

In the deterministic model discussed in the section 4.3, we 
considered all the variables and parameters as certain. But in 
real life it is not true for all.  So in this section, we develop a 
multi-stage stochastic model to deal with these uncertainties. 
In this model, we will consider that demand and costs are 
uncertain. In the current model, xi

t will represent the new 
capacity of i at time t, as xi 

t+hi, where hi is the construction 
delay for equipment i. Because of the uncertainty, the 
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choice of investment decisions may yield an infeasible 
operations policy. To overcome this problem, let there exists 
a technology with high operating costs and zero construction 
delay. Let ξ be the realization of random event for any period 
t on the basis of technology an investment is made.  Let xi

t be 
the new capacity at time t for equipment i where, i = 1, ... , n, 
wi

t be the total capacity of i available in order at time t, n be 
a technology such that hn = 0 and ξt is the random variable at 
time t. Then the stochastic model takes the following form.

𝒎𝒎𝒎𝒎𝒎𝒎𝑬𝑬𝝃𝝃�(�𝒄𝒄𝒊𝒊𝒕𝒕.𝒘𝒘𝒊𝒊
𝒕𝒕

𝒏𝒏

𝒊𝒊=𝟏𝟏

𝑴𝑴

𝒊𝒊=𝟏𝟏

+ ��𝒒𝒒𝒊𝒊𝒕𝒕.𝑻𝑻𝒋𝒋𝒕𝒕.𝒚𝒚𝒊𝒊𝒊𝒊𝒕𝒕 )
𝒎𝒎

𝒊𝒊=𝟏𝟏

𝒏𝒏

𝒊𝒊=𝟏𝟏

… … … (4.𝟔𝟔) 

 
𝒔𝒔. 𝒕𝒕 

𝒘𝒘𝒊𝒊
𝒕𝒕 = 𝒘𝒘𝒊𝒊

𝒕𝒕−𝟏𝟏 + 𝒙𝒙𝒊𝒊𝒕𝒕 − 𝒙𝒙𝒊𝒊
𝒕𝒕−𝑳𝑳𝒊𝒊 , 𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏, 𝒕𝒕

= 𝟏𝟏, … ,𝑴𝑴… … … (4.𝟕𝟕) 
 

�𝒚𝒚𝒊𝒊𝒊𝒊𝒕𝒕 = 𝒅𝒅𝒋𝒋𝒕𝒕
𝒏𝒏

𝒊𝒊=𝟏𝟏

, 𝒋𝒋 = 𝟏𝟏, … . ,𝒎𝒎, 𝒕𝒕 = 𝟏𝟏, … ,𝑴𝑴… … … (4.𝟖𝟖) 

�𝒚𝒚𝒊𝒊𝒊𝒊𝒕𝒕 ≤ 𝒂𝒂𝒊𝒊�𝒈𝒈𝒊𝒊𝒕𝒕 + 𝒘𝒘𝒊𝒊
𝒕𝒕−h𝒊𝒊�,       𝒊𝒊 = 𝟏𝟏, … ,𝒏𝒏, 𝒕𝒕

𝒎𝒎

𝒋𝒋=𝟏𝟏
= 𝟏𝟏, … ,𝑴𝑴  … … … (4.𝟗𝟗) 

𝒘𝒘,𝒙𝒙,𝒚𝒚 ≥ 𝟎𝟎 

where, ξ = (ξ2,…,ξH) is a random vector. And ξt=(d1
t,…,dk

t) are 
the random demands, and the cost vector is (ct, qt).  Now 
we will demonstrate the model on the basis of scenarios as 
follows.
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Similar models can be formulated for Scenario 2 and 3.
A Real Life Stochastic Problem

Considering the stages M= 2, we analyze a two-stage, 
stochastic linear model of (4.6)-(4.9). In this real life problem, 
we assume that the available resources are stochastic.The 
deterministic decisions are the capacities assigned (Xi) to 
each power plants, subject to certain resource limitations. 
The stochastic decisions (2nd stage) are the amount of power 
is to be supplied from each plant to each demand location 
(Yij). The objective of the company is to minimize the total 
expected cost. At the beginning of stage-1, demands at three 
locations are revealed, and at the end of stage-1, the demand 
is satisfied at minimum cost by solving the resulting problem.
The problem has 3 operating modes, n = 4 technologies, hi 
=1, i.e, one period construction delay for all technologies, 
full availabilities, a = (1,1,1,1) and  no equipment available, 
so g = (0,0,0,0). We also assume d3= 2, d2= 3 and the only 
random variable is d1 = ξ,where ξ can take the value 3for low 
demand, 5for moderate demand and 7for highest demand 
with probability 0.3, 0.4 and 0.3 respectively. Moreover, 
T2= .6T1and T3= .1T1 and we assume T1 = 10. The maximum 
available budget is 120. The investment costs for the four 
equipment’s are 10,7, 16, 6 respectively. Assuming,T1 = 
10, the operating costs/production costs in mode 1 are 
40,45,32,55. Then, if T2= 6 and T3= 1, the resulting two-
period stochastic program is given as follow.

Table 4.5. Different costs and demand

Technology (xi) Cost/unitto install 
(ci)

Cost/unitto operate 
(qi)

North (yi1) Middle (yi2 ) South (yi2)

Gas (x1) 10 4 40 24 4
Coal (x2) 7 4.5 45 27 4.5
Nuclear (x3) 16 3.2 32 19.2 3.2
Wind (x4) 6 5.5 55 33 5.5
Demands(dj) 5 3 2

Transport rate(Tj) 10 6 1
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Table 4.6. Scenario based demand

North Mode Scenario 1
“Low Demand”

Scenario 2
“Moderate Demand”

Scenario 3
“Highest Demand”

Probability 0.3 0.4 0.3
Demands (d1) 3 5 7

Optimal solution based on Scenario-1:

𝑧𝑧1 = min 10𝑥𝑥1 + 7𝑥𝑥2 + 16𝑥𝑥3 + 6𝑥𝑥4 + 40𝑦𝑦11
+ 45𝑦𝑦21 + 32𝑦𝑦31 + 55𝑦𝑦41
+ 24𝑦𝑦12 + 27𝑦𝑦22 + 19.2𝑦𝑦32
+ 33𝑦𝑦42 + 4𝑦𝑦13 + 4.5𝑦𝑦23 + 3.2𝑦𝑦33
+ 5.5𝑦𝑦43   

subject to

10𝑥𝑥1 + 7𝑥𝑥2 + 16 𝑥𝑥3 + 6 𝑥𝑥4
≤ 120𝑦𝑦11 + 𝑦𝑦12 + 𝑦𝑦13 − 𝑥𝑥1 ≤ 0 

𝑦𝑦21 +  𝑦𝑦22 + 𝑦𝑦23 − 𝑥𝑥2 ≤ 0 
𝑦𝑦31 + y32 + y33 − x3 ≤ 0 
 y41 + y42 + y43 − x4 ≤ 0 

 y11 +  y21 + y31 + y41 ≥ 3 
y12 +  y22 + y32 + y42 ≥ 3 

   y13 + y23 + y33 + y43 ≥ 2 
 xi ≥ 0, yij ≥ 0, i =1,…,4 and j=1,.., 3. 

Table 4.7. Solution obtained by solving Lindo for 3 scenarios

Scenario 1 Scenario 2 Scenario 3

Technology North Middle South North Middle South North Middle South
Gas 0 3 0 0 2.3333 0 4.1667 0 0
Coal 0 0 2 0 0.6667 0 0 3 0
Nuclear 3 0 0 5 0 0 2.8333 0 0
Wind 0 0 0 0 0 2 0 0 2
Optimal costs ($) 269 365 459

Solution obtained by solving Lindo with description has  
been given in Table 4.7
Considering three scenarios the long run average cost is 
(269 + 365 + 469.33)

3
  = $367.78.  This is the Expected 

Value of WS problem where one needs to wait and see the 
outcomes random variables before making final decisions. 
For minimization type problem WS <= EV. This is the 
situation under perfect information i.e assuming that the 
power plants have advance knowledge on the demands in the 
North mode and can base the decision upon that knowledge.

We suppose that the demand is cyclical. A year with ‘low 
demand in North mode’ is always followed by a year with 
‘moderate demand in North mode’ and then a year with ‘high 
demand in North mode’. The optimal solutions of the power 
plants for three different scenarios are shown in Table 4.9, 
Table 4.10 and Table 4.11 respectively. The optimal cost of 
the company is $269 for the first year, $365 for the second 
year and $469.33 for the third year. The average expected 
cost over the three years is $367.78 per year.

From the above discussion, we observe that if the Power 
plants get the information on the demand before investment, 
they will be able to invest optimally to the different modes. 
As a result they will be gain an optimal expected cost $367.78 
per year.

Generalized stochastic programming formulation

Without using any scientific model, the power plants are 
unable to make a perfect decision that would be best in all 
circumstances. To get a reasonable solution it is required 
to formulate an expected general stochastic programming 
Problem as follows. 

𝑧𝑧 = 𝑚𝑚𝑚𝑚𝑚𝑚  �𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖

4
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+��𝑞𝑞𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖

3

𝑗𝑗=1

+
4

𝑖𝑖=1

��𝑠𝑠𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖

3

𝑗𝑗=1

4

𝑖𝑖=1
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𝑗𝑗=1
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4
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4
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 Demand constraints
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𝑖𝑖=1

,  𝑗𝑗 = 1 

    ��𝑦𝑦𝑖𝑖𝑖𝑖

3
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4

𝑖𝑖=1

,  𝑗𝑗 = 2,  3 

    �𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝜉𝜉
4

𝑖𝑖=1

,  𝑗𝑗 = 1 

    ��𝑤𝑤𝑖𝑖𝑖𝑖

3

𝑗𝑗=2

≤ 𝑚𝑚𝑗𝑗

4

𝑖𝑖=1

,  𝑗𝑗 = 2,  3 

    �𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 𝜉𝜉
4

𝑖𝑖=1

,  𝑗𝑗 = 1 

    ��𝑧𝑧𝑖𝑖𝑖𝑖

3

𝑗𝑗=2

≤ 𝑛𝑛𝑗𝑗

4

𝑖𝑖=1

,  𝑗𝑗 = 2,  3 

          
    𝑥𝑥𝑖𝑖 ≥ 0, 𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 0, 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0, 𝑧𝑧𝑖𝑖𝑖𝑖 ≥ 0 

Here, we assume an equal probability of happening the three 
scenarios. The detailed model for the electricity company is 
presented as follows.

 

subject to 
Budget Constraints: 

10𝑥𝑥1 + 7𝑥𝑥2 + 16 𝑥𝑥3 + 6 𝑥𝑥4 ≤ 120 
Capacity Constraints: 

                     𝑦𝑦11 + 𝑦𝑦12 + 𝑦𝑦13 ≤ 𝑥𝑥1 
𝑦𝑦21 + 𝑦𝑦22 + 𝑦𝑦23 ≤ 𝑥𝑥2 
𝑦𝑦31 + y32 + y33 ≤ x3 

                    y41 + y42 + y43
≤ x4                   𝑤𝑤11 + 𝑤𝑤12 + 𝑤𝑤13
≤ 𝑥𝑥1 

𝑤𝑤21 +  𝑤𝑤22 + 𝑤𝑤23 ≤ 𝑥𝑥2 
𝑤𝑤31 + w32 + w33 ≤ x3 
 w41 + w42 + w43 ≤ x4 

                 𝑧𝑧11 + 𝑧𝑧12 + 𝑧𝑧13 ≤ 𝑥𝑥1 
𝑧𝑧21 + 𝑧𝑧22 + 𝑧𝑧23 ≤ 𝑥𝑥2 
𝑧𝑧31 + z32 + z33 ≤ x3 
  z41 + z42 + z43 ≤ x4  

Demand Constraints: 
     𝑦𝑦11 + 𝑦𝑦21 + 𝑦𝑦31 + 𝑦𝑦41 ≥ 𝜉𝜉 
      𝑦𝑦12 + 𝑦𝑦22 + 𝑦𝑦32 + 𝑦𝑦42 ≥ 3 

        𝑦𝑦13  +  𝑦𝑦23 + 𝑦𝑦33 + 𝑦𝑦43 ≥ 2 
  w11 +  w21 + w31 + w41 ≥ 𝜉𝜉 
 w12 + w22 + w32 + w42 ≥ 3 

             w13 + w23 + w33 + w43 ≥ 2 
                   z11 + z21 + z31 + z41 ≥ 𝜉𝜉 

     z12 +  z22 + z32 + z42 ≥ 3 
z13 +  z23 + z33 + z43 ≥ 2 

 
𝑥𝑥𝑖𝑖 ≥ 0, 𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 0, ,𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0, , 𝑧𝑧𝑖𝑖𝑖𝑖 ≥ 0  
where,  ξ can take the value 3, 5 or 7 with probability 0.3, 0.4 
and 0.3 respectively. The output of the model is presented as 
follows.

Table 4.8. Solution of the generalized SP problem

Scenarios Technology North Middle South Total Costs
“Low Demand in 
North mode”

Gas 0 2.667 0

295.400

Coal 0 0 2
Nuclear 3 0.333 0
Wind 0 0 0

“Moderate demand 
in North mode”

Gas 1.667 1 0

380.333

Coal 0 2 0
Nuclear 3.333 0 0
Wind 0 0 2

“Highest demand 
in North mode”

Gas 2.667 0 0

470.333Coal 1 3 0
Nuclear 3.333 0 0
Wind 0 0 2

From Table 4.8, we observe that, the optimal solution HN 
extensive form is given by x1 = 2.6667, x2= 4, x3= 3.3333,  

x4= 2 and the objective value z = 381.853. The values of x1, x2, 
x3, x4 give the new capacities made available in Gas, Coal, Nuclear 
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and wind respectively, which must be determined before realizing 
the level of demands in the North mode of the 1st stage. The table 
describe the allocated capacities of all technologies and total costs 
in 3 modes in the three scenarios as second stage solution. The value 
of z is the overall expected cost.

Comparison between results in different scenarios

In this section, we present a comparison between the 

costs obtained for each scenarios. We see from the above 
discussions that total cost changes depending on an uncertain 
parameter demand in North mode. From Table-5, we see that 
minimum cost is 295.4000 units which is obtained for low 
demand in North mode and maximum cost is 470.3333 units 
which is obtained for highest demand in North mode. We 
present the comparison between profits for each scenario in 
Figure 4.7.

 

Fig. 4.5. Scenario based comparison between costs

From Figure 4.5, we observe that the column diagram shows 
that as the demand increase in North mode the total costs 
for installing new technologies increases. It happens because 
transportation costs are highest for each technology in North 
mode. Here, the expected value (EV) obtained from different 
scenarios is 381.853. Therefore, the Expected Value of 
Perfect Information (EVPI) = abs (EV- WS) = abs (381.853-
367.777) = 14.076. This indicates that the company will be 

able to reduce the cost by 14.074 if they make a decision 
from the realization of random data.

Two Stage Recourse Model

In this section, considering M = 2, we develop a 2-stage 
stochastic recourse model for the electricity generation 
company as follows.

Table 4.9. Stage wise description of parameters and variables

Stage-1 Variables (to be taken without full in-
formation of future demands)

Stage-2 Variables

x1, x2, x3, x4 y11, y12, y13, y14, y21, y22, y23, y24, y31, y32, y33, y34,
w11, w12, w13, w14, w21, w22, w23, w24, w31, w32, w33, w34, 
z11, z12,  z13, z14, z21, z22, z23, z24, z31, z32, z33, z34
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Stage-1 Model:  

𝑧𝑧 = 𝑚𝑚𝑚𝑚𝑚𝑚  �𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖
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4
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≤ 𝑏𝑏 

             𝑥𝑥𝑖𝑖 ≥ 0  
Stage-2 Model: 
 
Scenario 1 

𝑧𝑧 = 𝑚𝑚𝑚𝑚𝑚𝑚  ��𝑝𝑝𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖

3

𝑗𝑗=1

4

𝑖𝑖=1

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ��𝑦𝑦𝑖𝑖𝑖𝑖
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≤ 𝑥𝑥𝑖𝑖

4

𝑖𝑖=1

,  

   Demand constraints 

         ��𝑦𝑦𝑖𝑖𝑖𝑖
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≤ 𝑏𝑏𝑗𝑗

4

𝑖𝑖=1

,  

         𝑥𝑥𝑖𝑖 ≥ 0, 𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 0 
Similar models can be defined for Scenario 2 and Scenario 3.

𝑧𝑧 = min 10𝑥𝑥1 + 7𝑥𝑥2 + 16𝑥𝑥3 + 6𝑥𝑥4
+ 𝐸𝐸𝜉𝜉 min𝑄𝑄(𝑥𝑥, 𝜉𝜉)⁡ 

St 
10𝑥𝑥1 + 7𝑥𝑥2 + 16 𝑥𝑥3 + 6 𝑥𝑥4 ≤ 120 

 
Stage-2: 
 
Scenario-1: 
 
𝑄𝑄1 = min 40𝑦𝑦11 + 45𝑦𝑦21 + 32𝑦𝑦31 + 55𝑦𝑦41 + 24𝑦𝑦12

+ 27𝑦𝑦22 + 19.2𝑦𝑦32 + 33𝑦𝑦42
+ 4𝑦𝑦13 + 4.5𝑦𝑦23 + 3.2𝑦𝑦33
+ 5.5𝑦𝑦43   

subject to 
   𝑦𝑦11 + 𝑦𝑦12 + 𝑦𝑦13 − 𝑥𝑥1 ≤ 0 
𝑦𝑦21 +  𝑦𝑦22 + 𝑦𝑦23 − 𝑥𝑥2 ≤ 0 
𝑦𝑦31 + y32 + y33 − x3 ≤ 0 

      y41 + y42 + y43 − x4 ≤ 0 
        y11 +  y21 + y31 + y41 ≥ 3 

           y12 +  y22 + y32 + y42 ≥ 3 
          y13 + y23 + y33 + y43 ≥ 2 

xi ≥, yij ≥ 0  

Detailed 2-stage SP model for the company is discussed as 
follows.

Solution by LINGO: Scenario 1 

Solution by LINGO: Scenario 2

Scenario-3

1st stage cost for the Medium demand,x1=2.33,x2= 67, 
x3 = 5, x4 = 2. 1𝑠𝑠𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ( 10 ∗ 2.3333 + 7 ∗
.6667 + 16 ∗ 5 + 6 ∗ 2) = 120, 2nd stage Cost = 
.3*160+.4*224+.3*288 = 224. Total cost = 120+224 
= 344 is the Expected Value Model Solution.  
Value of stochastic solution (VSS) is the possible gain from 
the difference between the solution of the deterministic 
equivalent of the SP problem and the solution from the 
Expected Value Model. Therefore, VSS. The above results 
shows that VSS is not equal to EVPI, and, may in fact be 
larger than the EVPI.

We developed a stochastic model or the power generation 
problem handling the uncertainty in the electricity demand. 
The problem aims at making the most effective investment 
decisions based on different scenarios. In the end, a visual 
comparison between EVPI and VSS has been shown. EVPI 
measures the value of knowing the future with certainty but 
VSS assesses the value of knowing and using distributions 
on future outcomes.

V. Conclusion

In this research paper, we have developed a multistage 
stochastic recourse model expanding capacity of an electricity 
generation company. The model was concerned with the 
timing of facility expansions and levels of investment to 
meet increasing demand. Since demand is difficult to forecast 
and expansion plans may need to change over time, our 
stochastic programming model offers a convenient way to 
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solve these problems. Our multi stage stochastic capacity 
expansion  model formulated the real world problem of 
the company so that it can satisfy the future demand of the 
company. We also observed that our model is an efficient 
tool to obtain optimal levels of investment in various types 
of power plants by allocating the limited resources and 
capacities to different power terminals. To observe whether 
the company can maximize the utilization of resources and 
maximize profit, and to demonstrate the applicability of our 
model, we analyzed a two-stage problem derived from this 
model.  We used a mathematical programming language 
LINDO and LINGO for solving resulting SPs. We also used 
MATHEMATICA to draw the continuous function.  In our 
stochastic model, we assumed that the demand and cost are 
stochastic. We hope that if our model is implemented, the 
electricity generation company will be able to minimize their 
cost and maximize the utilization of the limited resources 
and maximize their profit. In future research, we will try to 
generalize the model considering lifetime,the delay factors 
and the availability factors as stochastic too. 
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