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Abstract 

For building a linear prediction model, robust Backward Elimination (RBE) algorithm, which is computationally useful and 

scalable to high-dimensional large datasets, is introduced in this investigation. Backward Elimination (BE) can be stated in 

terms of sample correlations and simple RBE can be obtained by swapping out these correlations with their corresponding 

robust counterparts. The robust correlation for winsorized data was employed based on the adjusted winsorized correlation 

as a robust bivariate correlation. In another study, the Spearman rank correlation was employed as a robust bivariate 

correlation. However, the RBE has some drawbacks in the presence of multivariate outliers. In this article, the usage of 

FastMCD (Fast minimum covariance determinant)-based correlation is proposed in BE to reduce the influence of outlying 

data points. We call this proposed method BEmcd. A comprehensive simulation study was conducted to evaluate the 

performance of BEmcd with that of RBE based on winsorized correlation and Spearman rank correlation. Simulations and 

an application of actual data demonstrate the outstanding performance of BEmcd. 
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I. Introduction 

For a limited set of candidate predictors, we can select a 

robust linear prediction model by calculating robust 

versions of selection criteria
1,2,3

, best subset regression
4,5

, or 

first    with    6
. Morgenthaler et al.

7
 developed a 

selection method that identifies both the proper model 

structure and unusual observations. One major disadvantage 

of majority of robust model selection techniques is that the 

computational burden (also known as all possible subsets 

regression) grows rapidly as the number of subsets 

increases. One exceptional model selection procedure based 

on the Wald test
8
requires only estimates from the full 

model to be computed. However, the goal is frequently to 

select a subset of a large number of possible predictors, and 

fitting the entire model may be impossible. 

When there are many candidate predictors, A parsimonious 

set of candidate predictors must be chosen in order to 

effectively predict a response variable. Backward 

elimination (BE), one of the traditional step-by-step model-

building techniques, is often used for this reason
9,10

. Our 

strategy is to use the BE model to sequence the candidate 

predictors to form a list, with the best predictors at the top. 

BE has been described using sample correlations and 

proposed a robust version of BE (RBE) that is based on two 

approaches to robust bivariate correlation estimates: 

adjusted winsorized correlation and Spearman rank 

correlation
11,12,13

. These two types of correlations are robust 

only to bivariate outliers. However, multidimensional 

outliers may be missed by univariate as well as bivariate 

studies. Furthermore, the matrix of correlation generated by 

the adjusted winsorized correlation technique might not be 

positively definite, necessitating its use in some situations. 

These issues prompted us to improve this selection criterion 

by employing a fast and robust multivariate location and 

dispersion method that is resistant to multivariate outliers. 

The fast minimum covariance determinant (FastMCD) 

approach is a computationally efficient and highly multivariate 

robust estimator of location and scatter
13

. We propose to use 

robust correlation obtained from the FastMCD scatter matrix 

for sequencing candidate predictors with BE, referred to as 

BEmcd. 

A short list of first-ranked predictors (which is equal to or 

somewhat higher than the total number of predictors in the 

ultimate model) can be derived from the sequence, from 

which a final model can be derived using a robust 

regression estimator. The sequence is the primary focus of 

this paper. 

The remaining sections of the article are organized as 

follows: The BE and RBE algorithms were discussed in 

section 2. Fast MCD-based correlation was presented in 

section 3. Section 4 presents a Monte Carlo simulation study 

comparing the performances of RBE based on adjusted 

bivariate winsorized correlation, Spearman's rank correlation, 

and Fast MCD-based correlation. There is a real-data 

application in Section 5. Section 6 brings us to a close.  

II. BE Algorithm Expressed in Correlations 

The benefit of BE is the ability to generate the sequence of 

covariates from the matrix of correlations in the data. Let   

be the  -dimensional standardized response variable 

and            be  -dimensional standardized predictor 
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variables with zero mean and unit variance. The BE 

procedure begins with the entire model and pulls out one 

covariate at each step and then replaces the covariate at the 

end of the sequence. Let     denote the correlation between 

   and  .    is the predictors’ correlation matrix. Without 

losing generality, we assume that the absolute partial 

correlation of    with   is the lowest after removing the 

linear influence of            on     The first 

predictor   , known as the inactive predictor, is then 

removed from the model and placed at the end of the 

sequence. To identify the inactive predictor (let us say,   ), 

we require the partial correlation of    and   after 

removing the linear influence of            on   , 

denoted by         . 

BE steps in correlations 

We summarize the BE algorithm based on the correlations 

among the initial variables as follows
11

: 

1. Let   represent the subset of all predictors and  represent 

the subset that excludes the  th predictor. To eliminate 

the first predictor, say    
, compute the partial 

correlation       of    and   after removing the linear 

influence of the predictor that belongs to   on   . 

Determine          |     |. 

2. Let   represent a subset carrying       predictors took 

away from   after       steps          , and 

  represent the subset excluding the  th predictor and  . 

To remove the  th predictor, say    
, calculate the 

partial correlation       between    and   after removing 

the linear effect of    
    

          
 on   , and then 

determine          |     |.  

The 'weakest' predictor (among the rest of the predictors) is 

identified at every BE step and placed to the left of the 

predictors in  . We have a sequence of all predictors that 

are now in   at the       steps.  

Robustification of BE algorithm 

BE algorithm has been described with regard to sample 

means, standard deviations, and correlations
11

. It is well 

known that the sample mean and sample standard deviation 

are affected by outliers or other contaminations. In this 

situation, Pearson’s correlation   becomes non-robust when 

outliers may occur in either    or    or in both        . 

Consequently, the presence of outliers and other 

contaminations in data destroys the estimate   of good data 

and may change its sign
14,15

. On the solution considered this 

issue, the robustness literature shows a variety of 

approaches to robust correlations obtained from the robust 

covariance matrix. Thus, the classical building blocks 

(mean, standard deviation and Pearson’s correlation) of BE 

algorithm are replaced by their corresponding robust 

counterparts. Initial standardization has two simple options 

for quickly computed robust center and scale measures: 

median (med) and median absolute deviation (mad).  

III. FastMCD-based Correlation 

The minimum covariance determinant (MCD) estimator is a 

very much robust and affine equivariant estimator of 

multivariate location and scatter
16,17

. In multivariate 

location and scatter setting, let   be the  -dimensional 

response variable in multivariate location and scatter 

settings, and   (          )be   predictor variables 

each of size    Suppose that the observations in   are drawn 

from a sample of a unimodal distribution that is elliptically 

symmetric with an unknown mean vector   and a positive 

definite covariance matrix  . The traditional tolerance 

ellipse is then described as the collection of  -dimensional 

points   with Mahalanobis distance 

       (   ̂  ̂)  √    ̂    ̂       ̂  (1) 

equals √          
 .   ̂is the sample mean vector, and  ̂ is the 

sample covariance matrix. The robust tolerance ellipse 

according to robust distances is 

           ̂     ̂    ,                            (2) 

where  ̂    is the MCD estimator of location and  ̂    is 

the MCD covariance estimator.  

The raw MCD estimator with a tuning constant of    

   ,      and       is ( ̂   ̂ ), where  ̂  is the 

mean of   observations that have the smallest sample 

covariance matrix, and  ̂  is the matching covariance 

matrix multiplied by a constant factor   . To get 

consistency in the normal distribution,    equals 

       
      with                 and    the   

quantile of the   
  distribution

18
. The MCD estimator is the 

most robust when   ⌊         ⌋, where ⌊ ⌋ is the 

greatest integer less than or equal to  . 

To boost efficiency while retaining high robustness, a 

weighting step can be applied
19,20

. For the MCD, this yields 

 ̂    
∑  (  

 ) 
     

∑  (  
 ) 

   
, 
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 ̂      
 

 
∑  (  

 ) 
        ̂         ̂    

  (3) 

with         ̂   ̂  , an appropriate weight function   

and again a consistency factor   . Effective choice of   is 

such that        (             
 ). Huber

21
shows that if 

       the weighted step enhances the efficiency almost 

45.5% for     as well as 82% for       The efficiency 

can be raised by taking a greater  as         

The robust correlation between     and   as from the MCD 

scatter matrix as 

     
   

√      
. 

with     is the      th
 element of the MCD scatter matrix.  

The accurate MCD estimator is difficult to compute due to 

the need to evaluate every(
 
 
) subset of size  . Rousseeuw 

and Driessen
17

developed a quite efficient FastMCD 

algorithm. The algorithm’s key element is the 

C(concentration)-step: 

Take   {          } be a sample of size   and 

   {       } be a subset of size  . For data in   , 

calculate empirical mean and covariance matrix  ̂  and 

 ̂ . If |  ̂ |   , define the relative distances       

 (    ̂   ̂ ) for          . Now consider    such that 

{          }  {                            } where 

                            . Compute  ̂  and 

 ̂  from data set   . Then | ̂ |  | ̂ | and equality holds 

iff  ̂   ̂  and  ̂   ̂ . 

If |  ̂ |     the C-steps give a new subset of size  with 

covariance matrix  ̂  such that | ̂ |  | ̂ |.  

Iterate C-steps until | ̂   |  | ̂   |. The sequence of 

determinants derived in this manner has to converge in a 

limited number of steps, and it does so quickly in 

practice.The global minimum of the MCD objective 

function is not guaranteed to be the final value | ̂   | of the 

iteration process. Therefore, an approximation of the MCD 

solution can be derived by considering a large number of 

initial options for    and applying C-steps to each, 

retaining the solution with the smallest determinant.  

In order to build an initial subset   , we first generate a 

random subset   of size       and compute  ̂ and  ̂ , 

where  ̂ is the empirical mean and  ̂  is the covariance 

matrix. (If |  ̂ |   ,   grows by adding observations until 

|  ̂ |    ) Compute the distances   
       (    ̂   ̂ ) 

for         . The   observations that have the shortest 

distance    make up the initial subset   .This strategy 

produces better initial subsets than simply taking random 

subsets of size  . 

Each C-step includes the computation of a covariance 

matrix, its relevant determinant, and the accompanying 

distances. Using fewer C-steps significantly improves the 

algorithm's speed. For a small  , this process is very quick 

but as   grows, the amount of computing time grows 

because each C-step requires calculating   more distances. 

FastMCD splits the data set for large  , avoiding any 

calculations on the whole set
21

. It should be noted that the 

FastMCD method it self is affine equivariant. For   

    ,the breakdown point of MCD-based correlation is 

25%. Bernholdand Fischer
22

 show that the computational 

complexity of MCD correlation is  (           ). 

IV. A Simulation Study 

To evaluate the effectiveness of BEmcd, a simulation study 

equivalent to the one conducted by Frank and Friedman is 

carried out
23

. Out of a total of     target predictors 

(predictors with non-zero coefficients),      candidate 

predictors are considered. Three correlation structures exist 

among the target predictors: nocorrelation, moderate 

correlation, and high correlation. 

For the no-correlation case, independent predictors 

          are considered, and the   target predictors 

having coefficients (7, 6, 5) cycled three times are used to 

generate the response variable    The standard deviation of 

the error term is set to have a signal to noise ratio of 2.  

For the correlation scenario, three independent latent 

variables                      are introduced,which are 

accountable for the systematic variation in both of the 

response and the target predictors. The model is 

                              

where         , and   √     . For      a set of    

predictors is created as follows: 

                        ;        ,         and 

     ,            
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where all            and    are independent standard normal 

variates. For    , the real correlation between the 

predictors produced by the same latent variable is 0.5 

(moderate correlation case). For      , the real 

correlation between the predictors produced by the same 

latent variable is 0.8 (high correlation case). 

To permit for a fraction   of outliers, we generate using  

                , where   is another distribution 

rather than       . 

We consider    0.05,0.10, 0.15, and 0.20. 

We consider the following scenarios: 

1. For the moderate correlation case, all noise predictors 

are contaminated with   50,1) and corresponding 

response values with   500,1). 

2. For high correlation cases, outliers are given by 

symmetric slash contamination:          

             and outliers are given to all noise 

predictors, and corresponding response values as 

                      . 

3.  For a centered multivariate normal distribution with 

covariance structure    (     )   |   |where 

      is considered. Outliers are given like (2). 

We generated 1000 independent data sets, each having a 

size of 500. For each of the simulated data sets, the 

covariates were sequenced using BEmcd, BEr, and RBE. 

To provide a summary of the simulated findings for each of 

the sequences, the number    of targeted predictors 

contained in the first   sequenced variables was 

determined, with   ranging from 1 to 25. 

 

 

Fig. 1. Recall curves for no correlation case: 5% outliers (upper left), 10% outliers (upper right), 15% outliers 

(lower left), and 20% outliers (lower right) 
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Fig. 2. Recall curves for moderate correlation case: 5% outliers (upper left),10% outliers (upper right), 15% 

outliers (lower left), and 20% outliers (lower right) 

 

Fig. 3. Recall curves for a high correlation case with symmetric slash contamination: 5% outliers (upper left), 10% 

outliers (upper right), 15% outliers (lower left), and 20% outliers (lower right). 
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Fig. 4. Recall curves for multivariate outliers with symmetric slash contamination: 5% outliers (upper left), 10% 

outliers (upper right), 15% outliers (lower left), and 20% outliers (lower right). 

All pieces of Fig. 1 show that the three procedures perform 

equally well for sequencing the important predictor 

variables for various contamination cases.  

All pieces of Fig. 2 show the recall curves for predictors 

with moderate correlation and contamination cases. The 

recall curve obtained in the upper left piece of Fig. 2 shows 

that BEmcd performs slightly worse than RBE and BEr 

with 5% contamination, whereas BEmcd performs better 

than RBE and BEr with larger contamination proportions 

(upper right, lower left, and lower right pieces of Fig. 2). 

Even with 20% contamination, BEmcd with   

     =8.5      already yields a recall proportion of 

around 94.4%.  

All pieces of Fig. 3 show the recall curves for predictors with 

high correlation and symmetric slash contamination cases. 

The recall curve obtained in the upper left piece of Fig. 3 

shows that BEmcd performs slightly worse than RBE and 

BEr with 5% contamination, whereas BEmcd performs much 

better than RBE and BEr with higher contamination 

proportions. Even with 20% contamination, BEmcd with 

      =8.74      yields a recall proportion of around 

97%. BEmcd with      already produces a recall 

proportion of around 99%.  

All pieces of Fig. 4 show the recall curves for predictors with 

multivariate outliers and a symmetric slash distribution. All 

recall curves show that the BEmcd is consistently able to 

select the correct predictors. BEmcd with       =8.8 

      already produces a recall percentage of around 98%. 

V. Determination of Reduced Ret and Final Prediction 

Model 

To get a stable sequence, the BEmcd algorithm is repeated 

100 times, and then the predictors are sequenced by their 

ranking orders. After sequencing all the predictor variables 

using the RBE, BEmcd, and BEr algorithms, the first   top 

ranking predictors form a reduced set for each sequence. 

When a reduced set is obtained, we can go to the 

segmentation step to obtain the final prediction model. The 

condensed set should be large enough to contain the 

majority of the important predictors while remaining 

manageable enough to prevent the segmentation step from 

being rendered ineffective. In practice, the number of 

predictors required in the model is frequently unknown. 

Thus, we employ a graphical tool called the learning curve 

to get the length of the condensed set. We start with the first 

predictor in the sequence and grow the number of 

predictors throughout the sequence, fitting a robust 

regression model each time to compute a robust    measure 

like                     , where   is the vector of 
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residuals from the robust fit
24

. We obtain a learning curve by 

plotting these    values against the number of predictors
25

. 

The length of the condensed set,  , is selected at the point at 

which the learning curve no longer has a significant slope. 

One reasonable approach is to execute all conceivable 

subsets regression of this “condensed set” using proper 

selection criteria (e.g, RAIC,    , RFPE, RCV, all possible 

subset regression and robust bootstrap). We employall 

possible subset regression to fitall possible models and 

display some of the best candidates based on adjusted R-

squared or the robust version of   , Mallows’    
2
.     is 

defined as     
  

 ̂  (     ), where    ∑  ̂ 
   

  is 

the weighted sum of squares of residuals,  ̂  is a robust 

consistent estimator of    from the entire model, and    and 

   are constants that depend on   and the weight function,  .  

VI. Application to Real Data 

A true data set was used in this section to compare the 

performance of BEmcd to that of RBE and BEr. As an 

example of real data, we use the information on wave 

energy converters (WECs) in two real wave scenarios from 

Australia's southern coast (Adelaide and Tasmania) stored 

in the UCI Machine Learning Repository 

(https://archive.ics.uci.edu/ml/datasets.php). This data set 

contains 49 variables. We excluded the last non-dimensional 

variable from the data set. We consider the first variable (V1) 

as the response. The rest of the 47 variables are the predictors 

which are numbered from 1 to 47. The data set obtained from 

Adelaide was used as training data and that from Tasmania as 

test data. Each data set contains missing observations. After 

eliminating the missing rows, training and test data sets 

contain 24251 observations and 18454 observations, 

respectively. The reduced sets obtained from the sequences of 

RBE, BEmcd and BEr are (32 16 30 46 47 31 21 45 33 13 

415 38 24), (32 16 47 31 45 14 38 33 41) and (32 16 30 46 21 

47 31 45 41 33 5 13 38 24), respectively. The final models 

obtained using all possible subset regression over the above 

shortlists are (32 16 30 46 47 31 21 45 33 13 38), (32 16 47 

31 45 14 38 41 33) and (32 16 30 46 21 47 31 45 33 13 38), 

respectively. The corresponding Mallows’   s are 12.00, 

10.00, and 10.00, respectively. The final model obtained by 

RBE and BEr are the same and each contains 11 predictors, 

whereas BEmcd contains only 9 predictors. 

Using robust five-fold cross-validation (CV) with 100 

replications, the 5% trimmed MTMSPEs are obtained as 

128.93, 127.99, and 128.93, respectively for the final 

models obtained from RBE, BEmcd, and BEr. The 

predicted outcomes for several methods are shown in Fig.5. 

 

Fig. 5. Prediction error of root-trimmed mean squared with 5% 

trimming estimated through repeated five-fold robust CV 

with 100 repetitions. 

 

Table 1. WECs data set: root trimmed mean squared prediction error (RTMSPE) with 1%, 5% and 10% trimming 

estimates, root median squared prediction error (RMSPE), standard deviation (SD), interquartile range (IQR) 

and normalized median absolute deviation about median (MAD). 

Algorithm RTMSPE RMSPE SD IQR MAD 

1% 5% 10% 

RBE 303.80 282.85 265.21 215.45 301.36 416.94 311.01 

BEmcd 288.23 269.00 252.74 206.97 296.91 411.21 306.80 

BEr 303.80 282.85 265.21 215.45 301.36 416.94 311.01 

 
In Table 1, we assess the predictive power of different final 

models fitted by MM regression method.  

For the given data set, we observe that the final models 

obtained via the algorithms RBE and BEr perform equally, 

whereas the final model obtained via BEmcd results in 

better prediction performance compared to the others. From 

Fig.5, it is also clear that BEmcd outperforms the other 

methods.  

VII. Conclusions 

This paper considers the issue that occurs when choosing a 

linear prediction model for sizable, high-dimensional data sets 
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that could be clean or could have a fraction of contamination. 

RBE and BEr are two popular robust algorithms. In this study, 

we propose a robust BE algorithm based on Fast MCD based 

correlations (BEmcd). The outstanding performance of the 

proposed algorithm is demonstrated by a simulation study and 

a real-data application comparing the performances of RBE 

and BEr. For data sets with multivariate outliers, the BEmcd 

algorithm outperforms at different contamination levels, while 

RBE and BEr decline gradually. 
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