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Abstract 

The main aim of this article to study about vector fields      of manifold   and how these vector fields will be Killing and 

conformal Killing vector fields. Conformal transformation of Weyl rescaling which is conformally related to metrices from g to 

g


, Levi-Civita connection  , Lie derivative, torsion with tensor concept of manifold N in a multi-linear map have been treated 

in this paper. Finally, we have been proved Example 3.02and established the theorem 6.02 on Conformal Killing vector fields. 
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I.  Introduction 

In this paper we have focused on some important topics 

such as Killing vector field X  of a set of vector fields 

    of manifold  , the coordinates 


x  of a point 

Np  change to  




x  )( px


 under the   countless displacement, 

metrices ij
t , vectors 


x , equation of Killing, torsion 

tensor, Riemannian curvature tensor and some theorems, 

examples are derived in a different elaborate way. The 

Killing vector field X is produced by a one-parameter 

familyof transfigurations. In one consciousness the Killing 

vector fields illustrate  way of  symmetry for any manifold. 

A set of Killing vector fields are in general defined to be 

dependent if one of them is presented as a linear 

combination of others with constant coefficients. In this 

way there may be exceeding Killing vector fields than the 

degree of the manifold. If an infinitesimal displacement  
X generates a Conformal transformation, then the vector 

field X      is a conformal Killing vector field. 

II.       Manifolds 

An    manifold is a couple ),( tN  where N  is a 


C

manifold and t  is a   metric on N . 

Definition 2.01 Let us consider a differentiable manifold 

N . A poetic tensor t  on N is of rank )2,0( is more 

general vectorfield on N . 

At any point Nq , t  satisfies the properties given 

below. 

 (i) ),(),( PQtQPt
qq

  

(ii) 0),( QPt
q , if and only if 0P . 

Here NTQP
q

,  and qq
tt  . In a nutshell q

t has three 

forms. 

Definition 2.02 Let us suppose N is a manifold which is 

differentiable. A more generalized vector field t  be on N
is duplicate    metric when it holds properties (i) &(ii) and 

0),( QPt
q for any NTP

q
 , then 0Q . 

Definition 2.03 If t  be  metric, all the eigenvalues are 

exactly definite and if t  is duplicate-Riemannian some 

eigenvalues are opposite. lk , are eigenvalues which are 

opposites and the couple ),( lk is called the exponent of 

generalized vector fields. If lk  then that is called 

Lorentz metric. [1] 

Definition 2.04
12

 Let ),( tN  is Lorentzian. The elements 

of TqN  are classified as  

(i) space like when XXXt  0),(  

(ii) light like when XXXt  0),(  

(iii) time like when XXXt  0),(
 

Definition 2.05
2

When a 


C  manifold N agree  a 

  metric t , then ),( tN  is referred to as Riemannian 

manifold. If t is a duplicate-Riemannian metric, then 

),( tN is said to be a pseudo-Riemannian  manifold.  If t is 
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a duplicate-Riemannian metric, then ),( tN is said to be a 

pseudo-Riemannian manifold. If t is Lorentzian, then 

),( tN is called Lorentz manifold. 

Example 2.06 An m -sized Euclidean space        is a 

Riemannian manifold and an m degreed Minkowski 

space        is a Lorentz manifold. 

III. Covariant Derivative with Affine Connection 

Let us consider two nearby tangent spaces   and  d . 

Also let   )(
i

i
ex  and 


di

i
dex


 )(~~

. 

The basis vectors 
i

e  depend on the base point. So even if 

the components 
ii

xx ~,  are the same, we can not actually 

say that xx ~,  are same. 

The notion of an affine connection defines some one-one 

correspondence between tangent spaces with nearby base 

points that limit to the identity when the two base points 

coincide. 

We want to introduce a connection which is known as 

affine connection as a means of mapping basis vectors 

 d  to  . The map from 
'

i
e  to  di

e


~
 is 

close to )(
i

e , so we can represent it as 

j

j

iiiii
edeedeee )(

'
  

But 0
j

i
de  as 0d . 

Also this is linear in d  that is 
kj

ki

j

i
dde  )( . 

So j

kj

kiii
edee  )(

'
 . 

This is linear correspondence between   and  d  is 

established by specifying on affine connection 
j

ki . 

Definition 3.01
3

Along tangent vector of manifold the way 

of specifying a derivative is called a covariant derivative 

and defined by 

YfYffY
XXX

 )()( . 

Example 3.02 Let N            a plane.  is a 

connection on N  with coordinate symbols 

21

1

21

2

1

2

11
, xxx  , all others are zero. Let us 

compute  

Y
X

 , where 

21
32

xx
eX

x









  

2211
x

x
x

xY








  

Proof. Given  

21
32 eeeX

x
  

2211
exexY   

where 
2211

,
x

e
x

e








 . 

Now  

)(
2211

exexY
XX

  

)()(
2211

exex
XX

  

)(3)(3
22211121 22

exeeexee xx
ee

  

)()()()(
223221113111 2222

exexeexexe
eeee

xx   

)(3)()(3)(
22221111 21

2

21

2 exexeexexe
ee

x

ee

x


])([3]))([

])([3]))([

2222222211

2111211111

21

2

21

2

exexeexexee

exexeexexee

ee

x

ee

x





].1[3].0[

].0[3].1[

222222

211111

21

2

21

2

exeexee

exeexee

ee

x

ee

x





][3][
2221222111 2211

2 exexeexexee
eeee

x


 

Now,  
k

n

k

k

jije
ee

i  


1
 

kk

k

e
ee  


2

1 1111
 and 

kk

k

e
ee  


2

1 2222
 

2

2

111

1

11
ee    and        

2

2

221

1

22
ee   

22

2

11
..0 exxe    and        

21
.0.0 ee   

22

2

1
.exx   and                  0  

and  
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kk

k

e
ee  


2

1 2121
 

2

2

211

1

21
ee   

2121
.0).( eexx   

121
).( exx   

12
e

e
 . 

Therefore,  

]0.)..([3])..(..[
212112121222

2

111
2 xexxxeexxxexxxeeY

x

X
  

]3[)].(3)..([
22

3

122112121
22  exxexxxexxxee

xx
 

222

3

11211212
]3[)].(3)..([ 22

x
exx

x
xxxexxxe

xx









 . 

IV. Torsion Tensor and Riemann Curvature Tensor 

Definition 4.01 Let )(N  be the collection of all 

differentiable vector fields on differentiable manifold N  

with connection  . Then the mapping  

               
)()()(: NNN    given by 

),( YX               

where )()()(:[.,.] NNN    

                     
YXXYYX ],[ . 

Then )(),( NYX    is called the torsion tensor or 

simply torsion of the connection  . Also  is a tensor of 

type )2,1( . 

Definition 4.02 On affine connection  , torsion 
 is a 

map 

:
 )()()( NNN    given by 

),(),( YXYX
  

Theorem 4.03 For every affine connection  , its torsion 
 is a special vector  of type )2,1( . 

Definition 4.04 If 0 , then the connection   is said to 

be torsion free or symmetric. Thus if 0  we have 

             . Thus the Lie bracket is also related 

in terms of covariant derivative. In terms of local 

coordinates )(
i

x , the component 
k

ji ,
 of  is then 






















jik

k

ji
xxx

,
,

 . Here 
k

ji ,
  are tensor features. 

Theorem 4.05
2

 The curvature 


R for each affine 

connection  is a tensor of rank )3,1( . 

V. Connections with Levi-Civita 

Let .,.  denotes the Riemannian metric on a manifold N , 

there exists an unique affine connection  satisfies 

(i)    ,  

(ii)    ,,,  

For all )(,, N . This affine connection  is 

called the Connection with Levi-Civita on N . 

Theorem 5.01 On a pseudo-   manifold ),( tN , there 

exist a unique symmetric Levi-Civita connection, which is 

compatiable having the metric t . 

Proof. Suppose
~

 is any arbitrary connection coefficient 

and 
i

jk
  be the torsion tensor. Then we have from the 

definition of any connection coefficient 

  i

kj

i

kj

i

kj K
~

, where 2,1,, kji . 

and  i

kj  are  Christoffel symbols defined by 

  




























l

jk

k

jl

j

klili

kj
x

t

x

t

x

t
t

2

1
. 

Coefficient of connection are  

i

kj

i

kj

i

kj 
~

. 

Now we choose 

i

kj

i

kj
K  so that 

  




























l

jk

k

jl

j

klili

kj

i

kj
x

t

x

t

x

t
t

2

1
. 

By structure, the connection is obviously symmetric and 

clearly unique obtained a metric.  
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Example 5.02 Let the geodesic of the surface of a sphere is
222222

)(sin)()(  dadads  . The non-

zerocoefficients of the Levi-Civita connection coefficients 

are  

 cossin
1

22
  and cot

2

12
 . 

Example 5.03 The geodesics on a plane in polar 

coordinates are straight lines and the geodesics is 
2222

)()()( dvududs   and the non-zero Christoffel 

symbols are  

u
1

22
 and 

u

12

12
 . 

VI. Killing Vector Fields with Conformality 

Let   be a global 


C  vector field in space time N . The 

  is called Conformal Killing Vector field when it holds  

abab
tLtL 


 

where  is scalar valued and known as Conformal factor. If 

the Conformal factor become constant, the Conformal 

Killing Vector (CKV) become Homthetic CKV reduce to 

Killing vector. 

Let us suppose that ),( tN be a manifold of Riemannian 

and )(NX  . A tiny dislocation  , where   is a very 

small, creates an equal dimension, then the vector field   is 

called a Killing vector field. If 


xxf :   


X  is 

an isometry. It holds  

         

   

 (      )

   
                 

Example 6.01 Let 
k

x  be the identicals of       . Then 

       has three such type fields. The Minkowski 

spacetime       , the Killing equation yields      

       

In fact  



 
ijij

i

i
xx 2 . 

Theorem 6.02Let N be a manifold and NX  . Then 

X is a conformal Killing vector field ifwe have

)(NCf


  for which  ftt  , if and only if 

 fXX
c

̂ , where )(ˆ Xt . 

Proof. If X  is a Conformal Killing vector field   a 

function )(NCf


  such that   ftt   and then 

          (1) 

We know the relation  


tt

dXiXidXXi
cc

t

c

  )())(()( ˆ    t  

                               


tX
c     t (2) 

We also know the relation  

tt
i  )( (3) 

Using the relation (2), from (1) we get, 

t
fi

t

c
XX    )( ˆ . 

Using relation (3), from (1) we get  

tt

c
fii XX  )()( ˆ  . 

As g
T  is nondegenerate we find  

 f
c

XX ̂ . 

Conversely, if   a function )(NCf


  such that 

 f
c

XX ̂ , then 

t
ffii

tt

c
XX    )()( ˆ . 

As a consequence of relation (3) we obtain that  
   t  

f , which implies  

  ftt  . Hence proved. 

VII. Conclusion 

In this paper, some significant and basic definitions, 

examples and theorems which are unavoidable. Finally, in 

section III, the Example 3.04 has been proved which is 

related with affine connection of manifold N  and in 

section VI, the theorem 6.02 has been established. This 

modern approach to prove these example and theorem will 

be so sound for further research in  Conformal Killing 

vector fields on the Riemannian Manifolds. 
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