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Abstract 

Traditionally, the overdispersion parameter   is estimated by using Pearson’s lack of fit statistic   or the Deviance statistic  , 

which do not perform well in the case of sparse data. This paper particularly focuses on an estimator      of overdispersion 

parameter which was proposed for sparse multinomial data. The estimator was derived on the basis of an assumption on the 3rd 

cumulant of the response variable.When the data comes from the Dirichlet-multinomial distribution      is known to have the 

lowest root mean squared error comparing to the other three estimators. In this paper the 1st to 3rd order raw moments of the finite 

mixture of Dirichlet-multinomial distributions are derived, which results in complicated mathematical expressions. Furthermore, it 

is found that the 3rd cumulant of this mixture does not satisfy the assumption which is considered in the derivation of     . 
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I. Introduction 

The correlation among the observations making up the 

counts of multinomial data creates overdispersion. Ignoring 

overdispersion may lead to the serious under-estimation of 

the standard errors and consequently the model parameters 

will be incorrectly tested. Overdispersed multinomial data 

may arise in many areas, such as mark-recovery and mark-

recapture modelling, household surveys, DNA sequence 

analysis, hyperspectral image (HSI) classification. Several 

approaches can be found in the literature for handling 

multinomial data that exhibit overdispersion. The most 

common likelihood approaches for modelling multinomial 

overdispersed data are Dirichlet-multinomial distribution 

(Mosimann
1
) and Finite mixture distribution (Morel and 

Nagaraj
2
). Another approach is the quasi-likelihood (QL) 

method introduced by Wedderburn
3
and McCullagh and 

Nelder
4
, and generalized estimating Equations (GEE) by 

Liang and Zeger
5
 and Zeger and Liang

6
. The quasi-

likelihood method is simple to apply as only the first two 

moments of the response variables need to be specified. 

Also, the maximum likelihood estimate is the same as the 

maximum quasi likelihood estimate for GLMs. In quasi-

likelihood method it is assumed that    ( )      where 

  is the variance function,     indicates overdispersion. 

The classical estimators of overdispersion are 

 ̂  
  

   
   ̂  

 

   
 

where    is the Pearson’s lack of fit statistics and   is the 

residual deviance,   is the total number of observations and 

  is the number of parameters estimated. Asymptotically 

both    and   follow    distribution with     degrees of 

freedom. However, the asymptotic results of these test 

statistics depends on the total counts being sufficiently 

large, which is unlikely to be the case for sparse data 

containing many small counts. 

In 1986 McCullagh
7
 argued that for assessing goodness of 

fit the conditional distribution of the test statistic is more 

relevant than the marginal distribution. For sparse discrete 

data McCullagh
7
derived conditional moments of     and  . 

Farrington
8
used an estimating equations approach to extend 

the results of McCullagh
7
 to models with any type of link 

function.  

Fletcher
9
 considered the problem of estimating the 

overdispersion parameter   when fitting a generalized 

linear model to sparse data. He proposed a new estimator of 

  that has a smaller variance than Wedderburn
3
’s and 

Farrington
8
’s estimator, subject to a condition on the third 

cumulant (   ) of the response variable. Under the 

assumption         
 , where      and    

 is the third 

cumulant of the Poisson distribution, Fletcher
9
 showed that 

that 

   ( ̂   )     ( ̂ )     ( ̂ ) 

where,  ̂  is the Farrington
8
’s estimator. Therefore, the 

assumption on the 3
rd

 cumulant is needed to justify that the 

new estimator is more efficient compared to the other 

estimators. Through simulation study Fletcher
9
 showed that 

the proposed estimator has the lowest level of root mean 

squared error (RMSE) for the increasing level of 

overdispersion compared to the Wedderburn
3
’s and 

Farrington
8
’s estimator when the data comes from Negative 

binomial distribution and Neyman Type A distribution. 

Considering the same assumption on the 3
rd

 cumulant as 

Fletcher
9
, Afroz

10 
proposed an estimator  ̂    for 

multinomial data, which can be defined as follows: 

suppose there are   independent multinomial random 

variables    (             ) having mean vector    
(             )

 , then  

 ̂    
 ̂ 

   ̅
   

where  ̅  
∑ (     ̂  )  

 (    )
 and  ̂   is the quasi likelihood 

estimate of    . Also, Farrington
8
’s estimator for 

multinomial data can be defined as 

 ̂   ̂  
 (    )

 (    )   
 ̅ 
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Afroz
10

showed that  ̂    has the lowest RMSE comparing 

to  ̂   ̂  and  ̂ , when the data are highly sparse and 

follow Dirichlet-Multinomial distribution. However, it is 

shown that  ̂    did not performed the best when the data 

are generated from the finite mixture of Dirichlet-

multinomial distributions. Afroz
10

derived the 3
rd

 cumulant 

of the Dirichlet-multinomial distribution and showed that it 

satisfies the assumption discussed in Fletcher
9
. The 

motivation of this paper comes from a question raised in 

Afroz
10

, whether the 3
rd

 cumulant of the mixture of 

Dirichlet-multinomial distributions satisfy the assumption 

or not. In this paper, the 1
st
 to 3

rd
 order raw moments of the 

mixture of Dirichlet-multinomial distribution sare derived, 

also using the raw moments the 3
rd

cumulant is derived. 

II. Dirichlet-multinomial Distribution 

Let    (            (   ))
 denote the observations from 

a typical cluster of size  . Here     denotes the count in 

cluster   and category   (          and           
 ) and       (            (   )). The Dirichlet-

multinomial distribution proposed by Mosimann
1
 provides 

a way to model categorical data exhibiting overdispersion. 

Here the overdispersion is believed to arise from the fact 

that the cell probabilities    (            (   ))
  vary 

randomly according to a Dirichlet distribution, with 

probability density function     

 (  )  
 ( )

∏  (    )
 
   

∏   

      

 

   

 

where   
   

 
         and  ( ) denotes the gamma 

function. Thus it is assumed that      is distributed as a k-

dimensional multinomial random variable and the marginal 

distribution of    is then the Dirichlet-multinomial, with 

probability mass function 

 (     )  
  

              

 ( )

 (   )

∏ (        )
 
   

∏  (    )
 
   

. 

The mean and variance of    are as follows 

 (  )      

and 

   (  )  *   (   )+  *    (  )      
 + 

where     (  ) is a diagonal matrix with diagonal elements 

            (   ). The term *   (   )+ indicates 

extra variation comparing to the usual covariance of a 

multinomial distribution. Note that for     the Dirichlet-

multinomial distribution and the usual multinomial 

distribution have common covariance matrix. Newcomer et 

al.
11

 derived the higher order moments of the two 

commonly used multinomial overdispersion models. 

Following the results of Newcomer et al.
11

the first through 

third order moments of Dirichlet-multinomial distribution 

are 

I.  (   )      , 

II.  (   
 )   (   )

(      )

(   )
     , 

III.  (  
 )   (   )(   )

(      )(      )

(   )(   )
   

  (   )
(      )

(   )
     . 

III.  Example 

In order to examine the numerical differences between the 

estimators, mark-recovery data on herring gulls (Larus 

argentatus) from Kent Island in Canada are used here. From 

1934 to 1939, 31,694 fledging gulls were banded, of which 

1099 were recoverd after death. The detailed description 

can be found in Paynter
12

. Suppose,   is the probability that 

a bird survives a year and   is the probability that a banded 

dead bird is reported. Simple form of Seber
13

 model is used 

to model cell probabilities of the data.  After fitting product 

multinomial model   and   are estimated as 0.035 and 

0.655 respectively. In order to, construct a suitable 

confidence interval of the parameters,   and   a proper 

estimator of   is needed. Now a simulation study is 

performed to select the best estimator of   by generating 

data from Dirichlet-multinomial distribution. The recovery 

and survival probabilities were set to the estimated value 

sand   is varied from 2 to 5 in the simulation study. Now 

the root mean squared error for all the 4 estimators are 

calculated for each level of  . From the results displayed in 

Table-1 it is apparent that,  ̂    outperforms the other 

estimators for different levels of  .  It is noticeable that 

RMSE increases for the increasing values of  , however 

 ̂    has the lowest RMSE among all the estimators in 

each case. 

Table 1. Simulation results for the Dirichlet-multinomial 

distribution 

   ̂   ̂   ̂   ̂    

   2   3.112 2.167   1.203   0.634 

   3   9.879 7.418   1.967   1.144 

   4   5.085 3.527   2.759   1.584 

   5  11.576 9.434   3.581   2.175 

Therefore, from the simulation results it is clear that  ̂    

should be used to construct the confidence interval of the 

parameters. 

IV. Mixture of Dirichlet-multinomial Distributions 

Suppose that the multinomial data    (           ) is 

collected from a population which is a mixture of two 

groups having different parameters    (             ) 

and    (             ). Each observation comes from 

group-1 and group-2 with probability    and    

respectively, where        . Let us consider the 

following setup with subscript   removed for simplicity 

        

   (           )    (           ) 

where 

                 (     )  
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                 (     )  

         

and 

            (             )  

            (             ). 

We then have 

 (   )  
     

∑       
  (   )  

     

∑       
 

    (   )       (     )    

   (   )       (     )  

Now following the results of Afroz
1
 the expected value and 

variance of    can be obtained as follows 

  
          

(       ) 

   (        (       )) 

   (   
(        (       ))) 

   (   
(           )) 

   (           ) 

  (           )  (1) 

Similarly 

             
(       ) 

   (          (       )) 

     (        (       )) 

   (  (  ((    )  )   (     ) 

   (  ((    )  )   (     )) 

     (           ) 

 (  (   )    )      (     ) 

 (  (   )    )      (     ) 

    
    (    )     

    (    ) 

               (2) 

Now the second order raw moment   
  of    can be 

calculated by using Equations (1) and (2). For the 

simplified form of   
 , the software Mathematica

14
 Version 

12.1 is used. The final form of   
  is as follows 

  
       

          (     (  (   )  )  

    (   )   )               (       

      )
 
          (     ((   )    )  

(   )      ) (  (   )           
 (     

          ))               (       

      )
 
    (  (   )           

 (  (  

(   )  )   )) (3) 

In order to derive 3
rd

 order raw moment   
  of   , results 

from Newcomer et al
11

 are used. The derivation of   
  is as 

follows 

  
          

(       )
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Note that in Equation (4),   
  is expressed in terms of    and  

  . In order to express    
 in terms of     and   , the 

software Mathematica
14

is used. The final form of   
  is as 

follows 
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Now using Equations (1), (3) and (5) the 3
rd

 cumulant of the 

mixture of Dirichlet-multinomial distribution can be 

calculated as 
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  ((     
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   (  
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Now, the 3
rd

 cumulant of multinomial distribution is 

  
   (           )(             )(  

             ). (7) 

From Afroz
10

 the third cumulant should satisfy the 

assumption       
   where     , i.e.   must be 

positive. Here using Equations (6) and (7) one can calculate 

the value of   
  

  
  Since, the form of   would be very 

complex,   is plotted for different values of the parameters 

(                   ) using Mathematica
14

. 

Plot of  for       

↑α  

     

Fig. 1.                                
 

  
    

 

  
                

Plot of  for      

↑   

     

Fig. 2.                               
 

 
    

 

 
                

In figure 1 and 2,   is plotted in the y-axis while    varies 

from       to       in the x-axis and the other parameters 

kept fixed to certain values. In both the figures    becomes 

negative when             . Therefore, it is apparent 

that the 3
rd

 order cumulant of the mixture of Dirichlet-

multinomial distribution does not satisfy the assumption of 

    . 

V. Discussion and Conclusion 

In this paper, the 1
st
 to 3

rd
 order raw moments and the 3

rd
 

cumulant (  ) of the mixture of Dirichlet-multinomial 

distributionsare derived.  Higher order moments are useful 

to develop goodness of fit statistics, also use of additional 

information about the moments in estimation procedure 

can provide more efficient estimators. Here it is found 

that,    does not satisfy the assumption discussed in 

Fletcher
9
and Afroz

10
. Unlike the present set up one can 

consider other type of mixtures of Dirichlet-multinomial 

distributions, where one subpopulation is selected 

randomly from the two sub-populations and the whole 
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sample comes from the selected sub-population. Also, 

there are other kind of distributions to model 

overdispersed multinomial data such as finite-mixture 

distribution (Morel and Nagaraj
2
). The future research 

may involve derivation of the moments of such 

distributions and also checking the assumption on the 3
rd

 

cumulant. Furthermore, a new estimator of overdispersion 

which is more relaxed to the assumption on the third 

cumulant can be developed. 
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