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Abstract 

The calculus of differential forms has been applied to electromagnetic field theory in several papers and texts, some of 

which are cited in the references. Differential forms are underused in applied electromagnetic research. Differential forms 

represent unique visual appliance with graphical apprehension of electromagnetic fields. We study the calculus of 

differential forms and other fundamental principle of electromagnetic field theory. We hope to show in this paper that 

differential forms make Maxwell’s laws and some of their basic applications more intuitive and are a natural and powerful 

research tool in applied electromagnetics. 
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I. Introduction  

Maxwell equations and the medium equation in terms of 

differential forms, gives the impression that there can’t 

exist a simpler way to express these equations, and so 

differential forms should serve as a natural language for 

electromagnetism. However, looking at the literature 

shows that books and articles are almost exclusively 

written in Gibbsian vectors. Differential forms have been 

used by the physicists. The use of the calculus of 

differential forms in electromagnetics has been explored 

in several important papers and texts, including Misner, 

Thorne and Wheeler
1
, Deschamps

2
, and Burke

3
. George 

Deschamps pioneered the application of differential forms 

to electrical engineering but never completed his work. A 

worldwide known authority of differential forms, Ismo V. 

Lindell gave a feasible idea of classical Gibbsian vector 

calculus with the mathematical interpretation of 

differential forms.    

James Clerk Maxwell, a famous scientist, discovered the 

full set of mathematical laws that govern electromagnetic 

fields. After that, other mathematicians, physicists and 

engineers have suggested a surprisingly large number of 

mathematical structures for characterizing fields and waves 

and performing with electromagnetic theory. Vector 

notation is the most common in textbooks and engineering 

work, and has the advantage of being widely taught. The 

successive development of the vector calculus extended a 

powerful and useful tool for working with electromagnetic 

theory. Tensor analysis is actually a brief notation for 

electromagnetics, but the full description of tensor is 

typically not needed in application problems. The exterior 

derivative of differential forms is convenient to work with 

electromagnetic theory that is simpler than vector analysis 

or tensor calculus.  

Actually, the formulation of differential forms is close to 

the vector calculus. It is actually analytical tools have been 

developed, including dydics, bivectors, tensors, 

quarternions and Clifford algebra. The common theme of 

all of these mathematical notations is to hide the complexity 

of the set of 20 coupled differential equations in Maxwell’s 

original paper
4
 using high level hypothesis for field and 

source quantities.  

For various reasons, higher order mathematical notation are 

actually used by applied practitioners and engineers. 

Heaviside’s vector analysis is used normally to compare 

between abstraction and concreteness with dydic notation, 

adequate for nearly all practical problems.  

Differential forms originated in the work of Hermann 

Günter Grassmann and Élie Cartan. During 1842-43, 

Grassmann wrote the book Lineale Ausdehnungslehre
5
, in 

which he introduced what is now called exterior algebra. 

Based on Grassmann’s exterior algebra, Cartan
6
 developed 

the exterior calculus. Differential forms provide direct 

connection between geometric image and visual 

interpretation into electromagnetism. Electromagnetic 

theory combines physical, mathematical and geometric 

ideas.  

In this paper, we represent the various degrees of 

differential forms, graphical representations of the various 

field quantities. Maxwell’s equations in integral and in 

point form are also demonstrated. The aim of this paper is 

to express that differential forms are an attractive and stable 

to vector analysis for electromagnetic field theory.  

II. Differential Forms and Its Degree     

The vector concept can be extended by differential forms. 

The use of differential forms doesn’t mean to give up vector 

concept. When a quantity integrated over integrals, 

including differentials, the integrated value is called 

differential forms.     ,          are examples of 

differential forms. The number of integral in which an 

object is integrated called for by a differential form decides 

its degree. The form      is integrated under a single 

integral over a path and so it is a 1-form. The form 

         is integrated by a double integral over a surface, 

so its degree is two. A 3-form is integrated by a triple 

integral over a volume. 0-forms are functions which is 

integrated by evaluation at a point. Now, we define 

differential forms of various degrees and identify them with 

field intensity, flux density, current density, charge density 

and scalar potential. 
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Table 1. Examples of forms of various degrees   

Degree Region of Example General Form 

 Integration 

0-form Point               
1-form Path                          

2-form Surface                                     

3-form Volume                        

Table 2. Representation of field and sources with the 

differential forms 

Quantity Form Degree Units Vector/Scalar 

Electric Field Intensity   1-form  V E 

Magnetic Field Intensity   1-form A H 

Electric Flux Density   2-form C D 

Magnetic Flux Density   2-form Wb B 

Electric Current Density   2-form A J 

Electric Charge Density    3-form C   

Different physical properties of the electric and magnetic 

fields can be represented by 1-form and 2-form. The 1-form 

represents the energy picture that shows the change in 

potential energy as a test charge moves across the 1-form 

surfaces and the 2-form shows the flux of the field that 

extends from positive charges to negative charges. 

Table 3. The representation of the differential forms of 

electromagnetism which is expanded in 

components  

Differential Forms of Electromagnetism in Component 

Form 

     d     d     d  

     d     d     d  

     d  d     d  d     d  d   

     d  d     d  d     d  d   

     d  d     d  d     d  d   

    d  d  d  

III. Electromagnetic Fields with Differential Forms 

The Scottish physicist, Maxwell combined the 

mathematical theory of electric and magnetic phenomena. 

He developed the relationship between electric and 

magnetic fields by four distinguished equations. From 

Maxwell’s equations in integral from, we can readily 

determine the degrees of the differential forms that will 

represent the various field quantities
7
. In vector notation,  
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where   is a surface bounded by a path  ,   is a volume 

bounded by a surface  ,   is volume charge density and the 

other quantities are defined as usual. By integrating over 

path, the electric and magnetic field intensity give 1-forms. 

The electric and magnetic flux densities are integrated over 

surfaces so that they are 2-forms. Since, electric current 

density is a 2-form, this is integrated under a surface. The 

volume charge density is integrated over a volume as it is a 

3-form.Table 2 summarizes these forms.  

IV. The Exterior Derivative  

In this section, we use the exterior derivative operator to 

express Maxwell’s laws as differential equation. The 

exterior derivative
8
 is a single operator which has the 

gradient, curl and divergence as special cases, depending on 

the degree of the differential form on which the exterior 

derivative has the symbol d, and can be written 

mathematically as  

d  
 

  
 d  

 

  
 d  

 

  
 d   (1) 

Here, the operator “d” operator is similar to a 1-form and 

the coefficients are partial derivative operators instead of 

functions. When we use this operator to a differential form, 

the derivatives replace the coefficients of the form Also, the 

differentials combine with those of the form according to 

the properties of the exterior product.  

Exterior Derivative of 0-forms  

Let          be a 0-form. The exterior derivative of 0-form 

is  

d  
  

  
 d  

  

  
 d  

  

  
 d  (2) 

which is a 1-form, the exterior derivative of  . The 1-form 

d  is dual to the gradient of  . The surfaces of the 1-form 

are equipotentials or level sets of the function  , so that the 

exterior derivative of a 0-form has a simple graphical 

interpretation.  

Exterior Derivative of 1-forms 

The exterior derivative of a 1-form is comparable to the 

vector curl operator. If   is a random 1-form    d  
   d     d , then the exterior derivative of   is   
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using the antisymmetry of the exterior product, this 

becomes  
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which is a 2-form dual to the curl of the vector field 

   ̂     ̂     ̂. The integral of a 1-form over a path is 

the number of surfaces pierced by the path with respect to 

the orientation of the surfaces and the direction of 

integration. This 1-form is physically represented as 

surfaces in space. The differential 2dz produces surfaces 

perpendicular to the  -axis, as shown in the Figure 1(a). In 

general, they meet each other, depending on the behavior of 

the coefficients of the form.  

Exterior Derivative of 2-forms  

The electric flux density   is a 2-form         
               . The exterior derivative of a 2-form   

is 
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where six of the terms vanish due to repeated differentials. 

The coefficient of the resulting 3-form is the divergence of 

the vector field dual to  . Graphically, 2-forms are tubes 

which is shown in the Figure 1(b). As the coefficients of a 

2-form increase, the tubes become narrower and more 

dense. The tubes are oriented in the direction of the 

associated dual vector. The number of tubes passing 

through the surface is the integral of a 2-form over the 

surface which take into account the relative orientation of 

the tubes and surface.   

 
(a) 

 
(b) 

 
(c) 

Fig. 1. (a)  The 1-form 2dz, (b) The 2-form d  d , The tubes in the 

 -direction are formed by the superposition of surfaces 

of d  and the surfaces of d . (c) The 3-form d  d  d , 

with three sets of surfaces that produces boxes. 

Exterior Derivative of 3-forms 

The exterior derivative of the 3-form   is  

                                       d          d  d  d   

 (
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   d ) d  d  d  

                                                            

where the terms vanish due to repeated differentials. Since a 

3-form is a volume element, here in the Figure 1(c), this is 

pictured by boxes. The integral of a 3-form over a volume, 

where each box is weighted by the sign of the 3-form. A 3-

form is dual to its coefficient.  

V. The Point Form of Maxwell’s Equations  

Maxwell’s equations in the integral form are given by:  
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, Faraday’s Law (4) 
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, Ampere’s Law (5) 
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, Gauss’ Law (6) 

∮  
 

  , Magnetic Flux Continuity (7) 

Faraday’s law relates the magnetic flux to the electric field. 

It says that the time derivative of the magnetic flux through 
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an area   equals the electric tension along the path  . 

Ampere’s law relates current to magnetic field. It states the 

sum of conduction and displacement current through an 

area   equals the magnetic tension along the path  . Both 

equations are tied together via the constitutive equations 

relating flux densities to field intensities
8
.  

Stokes’ theorem provides a link between integrals of a 

differential form and its exterior derivative through the 

relationship  

∫ d 
 

 ∮  
  

                                                                  (8) 

where   is some region of space and    is its boundary. 

The dimension of    has to match the degree of  . If   is 

a 0-form, this expression reduces to the fundamental 

theorem of calculus. If   is a 1-form, this theorem connects 

the surface integral of the 2-form d , represented by tubes 

progressing along the surface, to the closed path integral  , 

as shown in the Figure 2. This closed path integral is non-

zero only if new surfaces of the 1-form are created inside 

the path. Thus, Stokes’ theorem can be interpreted 

graphically as stating that new surfaces of   are created by 

tubes of d . If   is a 2-form, then new tubes of   extend 

away from cubes of the 3-form d .  

 

Fig. 2. (a) A nonconsecutive 1-form, with new surfaces extending 

out into space, allowing a nonzero integral over a closed path. (b) 

The exterior derivative of the 1-form is a 2-form having tubes 
where new surfaces of the 1-form are created. 

By using Stokes’ theorem to the integral from of Maxwell’s 

equations (4) to (7), we obtain Maxwell’s equations in the 

differential forms:  

  d   
 

  
 , Faraday’s law (9) 

d  
 

  
   , Ampere’s law (10) 

d   , Gauss’ law (11) 

  d  0, Magnetic Flux Continuity (12) 

Figure 3 shows the graphical representation of Maxwell’s 

equations. We have two groups of equations, namely 

Faraday’s law and magnetic flux continuity on the left-hand 

side of the diagram and Ampere’s law and Gauss’ law
8
 on 

the right-hand side. The operator exterior derivative is 

metric-independent operator which enlarges the order of the 

corresponding differential forms. The constitutive relations 

are shown by these groups depending on the coordinate 

metrics and the elementary properties. These relations are 

liable for incrementing or decrementing the order of the 

respective differential forms.  

 

Fig. 3. Graphical representation of Maxwell’s equation. 

VI. Conclusion  

Differential forms make Maxwell’s law more intuitive and 

exterior derivative makes it comfortable to work with. This 

paper concentrates on the relevance of the exterior calculus 

to electromagnetics. The simplification found in these areas 

will likely extend to other problems. Since the calculus of 

forms can be introduced in the same simple, a combination 

of differential forms and exterior derivatives could benefit 

teaching and research in electromagnetics.  
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