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Abstract 

In this paper, a new method is proposed for finding an optimal solution to a Quasi-Concave Quadratic Programming Problem with Bounded 
Variables in which the objective function involves the product of two indefinite factorized linear functions and constraints functions are in the 
form of linear inequalities. The proposed method is mainly based upon the primal dual simplex method. The Linear Programming with Bounded 
Variables (LPBV) algorithm is extended to solve quasi-concave Quadratic Programming with Bounded Variables (QPBV). For developing this 
method, we use programming language MATHEMATICA. We also illustrate numerical examples to demonstrate our method. 
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I. Introduction 

In mathematics, non-linear programming (NLP) is the process 
of solving an optimization problem defined by a system of 
equalities and inequalities, collectively termed constraints, 
over a set of unknown real variables, along with an objective 
function to be maximized or minimized, where some of the 
constraints or the objective function is non-linear. It is the 
sub-field of mathematical optimization that deals with 
problems that are not linear. A quadratic programming (QP) 
is a special type of mathematical optimization problem. It is 
the problem of optimizing (minimizing or maximizing) a 
quadratic function of several variables subject to linear 
constraints on these variables. Because of its usefulness in 
Producing Planning, Financial and Corporate Planning, 
Health Care and Hospital Planning and Engineering, QP is 
viewed as a discipline in Operational Research and it has 
become a fertile area in the field of research in recent years. 
More importantly, though, it forms the basis of several 
general non-linear programming algorithms. A large number 
of algorithms for solving QP problems have been 
developed. Some of them are extensions of the simplex 
method and others are based on different principles. In the 
conversance, a great number of methods (Wolfe1, Beale2, 
Frank and Wolfe3, Shetty4, Lemke5, Best and Ritter6, Theil 
and van de Panne7, Boot8, Fletcher9, Swarup10, Gupta and 
Sharma11, Moraru12,13, Jensen and King14, Bazaraa, Sherali 
and Shetty1 5) are designed to solve QP problems in a 
finite number of steps. Among them, Wolf’s method1, 
Swarup’s simplex method10 and Gupta and Sharma’s 
method11 are more popular than the other methods. The 
above mentioned articles deal with variables of the type 

 but no upper bound. But when considering real-world 
applications of QP, it may arrive that one or more 
unknown variables  not only have a non-negativity 
restriction but also have upper and lower bounds on them. 
In this case, the above mentioned articles did not consider 
the upper bounds on the variables. Andrew Whinston16 
developed a method for solving QP problems with 
bounded variables but not consider quasi-concave QP 
problems with bounded variables. Also this method is 
laborious. For this reason we try to find another procedure 
which takes less computational effort. So, in this paper, we 
proposed a new method for solving quasi-concave QPBV 
problems. 

The proposed method depends mainly on solving quasi-
concave QPBV problems in which the objective function 
involving the product of two indefinite factorized linear 
functions and constraints functions are in the form of linear 
inequalities. We use the concept of LPBV method to solve 
this problem. For developing this method, use programming 
language MATHEMATICA. We also illustrate numerical 
examples to demonstrate our method. 

The rest of the paper is organized as follows. In section II, 
we discuss on glossary background of LPBV, QP, quasi-
concave QP and quasi-concave QPBV problems. In 
section III, we discuss the existing method and existing 
algorithm for LPBV problems. In section IV, we discuss 
our proposed algorithm for quasi-concave QPBV 
problems and illustrate the solution procedure with a 
number of numerical examples. In section V, we develop 
a computer technique for this method by using 
programming language MATHEMATICA and solve the 
previous examples through the computer technique. Finally, 
we draw a conclusion in section VI.    

II. Preliminaries 

In this section, we briefly discuss definitions of LPBV, 
QP, quasi-concave QP and quasi-concave QPBV 
problems. 

LPBV Problems 

In Linear Programming (LP) models17, variables may 
have explicit positive upper and lower bounds. For 
example, in production facilities, lower and upper bounds 
can represent the minimum and maximum demands for 
certain products. Bounded variables also arise 
prominently in the course of solving integer programming 
problems by the branch and bound algorithm.  

Consider the following LP problems, 

                    Maximize,    
        Subject to,   
                                         

where,  &  , .  
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The elements of  and  for an unbounded variable  and . 

QP Problems 

The general QP problem can be written as 

Maximize,         

 Subject to,         and  

Where  is an -dimensional row vector describing the 
coefficients of the linear terms in the objective function, 
and  is an  symmetric real matrix describing the 
coefficients of the quadratic terms. If a constant term 
exists it is dropped from the model. As in LP, the decision 
variables are denoted by the -dimensional column vector 

, and the constraints are defined by an   matrix 
and an -dimensional column vector  of right-hand side 
coefficients. We assume that a feasible solution exists and 
that the constraints region is bounded. When the objective 
function  is strictly convex for all feasible points the 
problem has a unique local maximum which is also the 
global maximum. A sufficient condition to guarantee 
strictly convexity is for  to be positive definite. 

Quasi-Concave QP Problems 

In this paper, we consider the quasi-concave QPBV 
problems subject to linear constraints. 

The quasi-concave QP problems18 can be written as 

Maximize,    
                  Subject to,       and   

where,  is an  matrix, , and , ,  
and , . Here we assume that 

(i)  and  are positive for all feasible 
solution. 

 (ii) The constraints set  is non-
empty and bounded. 

Quasi-Concave QPBV Problems 

Let us consider the general quasi-concave QPBV problem 

Max,  

 

Subject to,  

 

             

where, . Here  and  are 
usually called lower-bound and upper-bound of the 
constraints. 

Let us assume that ,  for all 
, where  denotes a 

feasible set defined by the constraints  and . Also 
assume that  is non-empty and bounded. 

III. Existing Method for LPBV Problems 

In this section, we discuss the existing method17 and 
existing algorithm17,19 for LPBV problems. 

One can solve LPBV problems by regular simplex method 
by considering the lower and upper bound constraints 
explicitly which is not computationally efficient as the 
number of constraints as well as the number of variables 
become large and studied LP problems with upper 
bounded variables, which uses smaller basis to solve 
LPBV problems. In which case, from  and , the 
constraints are put in the form, 

 
 
 
 

Where  and  are slack and surplus variables. This 
problem includes  variables and  
constraints equations. However, the size can be reduced 
considerably through the use of special techniques that 
ultimately reduce the constraints to the set . 

First, we consider the lower-bounds. Given , we can 
use the substitution , , . 
Throughout and solve the problem in terms of . The 
original  is determined by back-substitution which is 
legitimate because it guarantees that  will 
remain non-negative for all . Next, we consider the 
upper-bounding constraints, . The idea of direct 
substitution (i.e. ) is not correct 
because back substitution, , does not ensure 
that  will remain non-negative. This difficulty is over 
come by using a simplex method variation that accounts 
for the upper bounds implicitly. Define the upper bounded 
LP model as 

Maximize,  

The bounded primal simplex method uses only the 
constraints , while accounting for 

 implicitly by modifying the simplex feasibility 
condition. Let  be a current basic feasible 
solution of  and suppose that according 
to the regular optimality condition,  is the entering vector. 
In developing the new feasibility condition, two main 
points must be considered. First one, the non-negativity 
and upper-bound constraints for the entering variable and 
secondly, for those basic variables that may be affected by 
introducing the entering variables. 

Existing Algorithm for LPBV Problems 

Step 1: If R.H.S of any constraint is negative, make it 
positive by multiplying the constraint by . 

Step 2: Convert the inequalities of the constraints into 
equations by the addition of suitable slacks and or surplus 
variables and obtain an initial basic feasible solution. 
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Step 3: If any variable is at a positive lower bound, it should 
be substituted at its lower bound. 

Step 4: Calculate the net evaluation . For a 
maximization problem if  for the non-basic 
variables at their upper bound, optimum basic feasible 
solution is attained. It not, go to step-5. Reverse is true for a 
minimization problem. 

Step 5: Select the most positive  

Step 6: Let  be a non-basic variable at zero level which is 
selected to enter the solution. Compute the quantities, 

 

 

Final condition is satisfied simply it  and 
, , , where  value of the entering variable 

and  is the upper bound for the variable . Let  be 
the leaving variable corresponding to ,  
and then we have the following rules:  

Rule 1: If ,  leaves the basic solution  (because 
non-basic) at level zero and  enter by using the regular 
row operation of the simplex method. 

Rule 2: If ,  leaves the basic solution at level 
zero and  enters then  being non-basic at its upper 
bound must be substituted out by using 

– , where  

Rule 3: If ,  is substituted at its upper bound 
 but remain non-basic. 

A tie among ,  and  may be broken arbitrarily. 
However, it is preferable to implement the rule for  
because it entails less computation.  

In the next section, we will develop a method for solving 
quasi-concave QPBV problems and also illustrate the 
solution procedure with a number of numerical examples. 

IV. Proposed Algorithm for Quasi-Concave 
      QPBV Problems 

In this section, we propose an algorithm on quasi-concave 
QPBV problem and also include numerical examples to 
demonstrate our method. 

Step 1: If the R.H.S. of any constraints is negative make it 
positive by multiplying the constraint by . 

Step 2: Convert the inequalities of the constraints into 
equations by the addition of suitable slacks and or surplus 
variables. If the constraint set is in a canonical form, then go 
to step-3. If the constraint set is not in a canonical form, then 
go to step-9. 

Step 3: If any variable is at positive lower bound, it should 
be substituted at its lower bound. 

Step 4: Now, compute , , relative profit factor 
, relative cost factor  and the ratio , where 

 
 

 
 

and   

Step 5: For maximization problem, if  for all non-
basic variables at their upper bound then optimal solution is 
attained. If, not go to step-6. 

Step 6: Select the most positive . 

Step 7: Let  be the non-basic variable at zero level, which 
is selected to enter the solutions. Compute the quantities, 

 

 

 

, ,  

Where  value of the entering variable and  is the upper 
bound for the variable . 

Step 8: Set  be the leaving variable corresponding to 
, ,  and then follow the following rules:  

Rule 1: If ,  leaves the basic solution at level 
zero and  enter by using the regular row operation of the 
simplex method. 

Rule 2: If ,  leaves the basic solution at level 
zero and  enters then  being non-basic at its upper 
bound must be substituted out by using 

– , where  

Rule 3: If ,  is substituted at its upper bound 
 but remain non-basic. 

A tie among ,  and  may be broken arbitrarily. 
However, it is preferable to implement the rule for  
because it entails less computation. 

Step 9: If the constraints set is not in a canonical form then 
follows the following sub-steps: 

Sub-step 1: Introduce artificial variables wherever it is 
required. Consider all variables are non-negative. 

Sub-step 2: Then write it as an artificial linear objective 
function as in minimization type (minimization: 

). In phase-I, solve the problem as a regular linear 
program. 

Sub-step 3: Compute relative profit factor . 
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Sub-step 4: For minimization problem, if  for all 
non-basic variables and the objective function (i.e. 
minimization: ) equal to zero and also all 
artificial variables leave the basis then the original quasi-
concave QPBV problem has a basic feasible solution. If, not 
then the problem has no optimal solution. 

Sub-step 5: When it is feasible then remove all columns 
corresponding to the artificial variables and construct a new 
table to solve original quasi-concave QPBV problem with 
initial solution found at the end of phase-I. Then, repeat step 
3 to step 8. 

Numerical Example 1 

Consider the following quasi-concave QPBV problem: 

Max,  
           Subject to,           

 
,    

Solution: Using Our Proposed Method 

In our problem, the constraints are not in a canonical form. 
So apply step 9. Then our problem becomes and also we get 
the following simplex table. 

Min,   

Subject to,            
             
                             , , , ,  

Table 1. Final table for finding basic variables 
 

 
 

       
 Basis      

        
        

       

Since all  and Min  and all artificial 
variables leave the basis. So the original quasi-concave 
QPBV problem has a basic feasible solution. After the 
above calculation, we take  

,    and 

, .  

Now, solve the original quasi-concave QPBV problem with 
initial solution found at the end of phase-I. Then the original 
quasi-concave QPBV problem becomes 

Max,   

Subject to,       

                        

, and ,  
 

 

Table 2. Initial table 

 
 

 
 

     
     

Basis      
       
       

    

  
     
     

      

Here, ,  , since 

. So . 

Table 3. 

 
 

 
 

     
     

Basis      
       
       

    

  
     
     

      
 

Here, , , since . So 

. 

Table 4. Optimal table 

 
 

 
 

     
     

Basis      
       
       

    

  
     
     

      

Since all  in Table-4, this table gives the optimal 
solution. The optimal solution in term of the original 
variables ,  is found as follows: 

 and  with 
. 

Numerical Example 2 

Consider the following quasi-concave QPBV problem: 

    Max,  
    Subject to,           
                              

, , ,  
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Solution: Using Our Proposed Method 
Since  and  has positive lower bound, it must be 
substituted at its lower bound. Let ,  
and , . Then our problem becomes 
and also we get the following simplex table. 

   Max,   
   Subject to,         
                             

, , ,  

Table 5. Initial table 

 
 

 
 

     
     

Basis      
       
       

    

  
     
     

      

Here, ,  , since . So 

. 

Table 6. Optimal table 

 
 

 
 

     
     

Basis      
       
       

    

  
     
     

      

 

Since all  in Table-6, this table gives the optimal 
solution. The optimal solution in term of the original 
variables , ,  and  is found as follows:

, ,  
and  with . 

V. Algorithm and Computer Technique 

In this section, we present algorithm and computational 
technique for solving quasi-concave QPBV problems. 
Hasan18 developed a computer oriented solution method for 
solving the LP problems. In this study, we extend that 
method for solving quasi-concave QPBV problems. 

Algorithm for solving Quasi-Concave QPBV problems 

Step 1: Express the quasi-concave QPBV problem to its 
standard form. 

Step 2: Find an  sub-matrix of the coefficient matrix 
 by setting  variables equal to zero. 

Step 3: Test whether the linear system of equations has 
unique solution or not. 

Step 4: If the linear system of equations has got any unique 
solution, find it. 

Step 5: Dropping the solutions with negative elements. 
Determine all basic feasible solutions. 

Step 6: Calculate the values of the objective function for the 
basic feasible solutions found in step-5. 

Step 7: For maximization of quasi-concave QPBV problem, 
the maximum value of  is the optimal value of the 
objection function and the basic feasible solution which 
yields the optimal value is the optimal solution. 

Computer code for solving Quasi-Concave QPBV problems 

In this section, we present a computer technique for solving 
quasi-concave QPBV problems using the programming 
language MATHEMATICA20,21. 

 
<<LinearAlgebra`MatrixManipulation` 
 

Clear[basic,sset,AA,bb] 
 

basicfeasible[AA_,bb_]:=Block[{m,n,pp,ss,ns,B,v,vv,var,vplus,vzero,BB,RBB,sol,new,sset,bs}
,{m,n}=Dimensions[AA];pp=Permutations[Range[n]]; 
  ss=Union[Table[Sort[Take[pp[[k]],m]],{k,1,Length[pp]}]]; 
  ns=Length[ss];B={}; 
  For[k=1,k<=ns,k=k+1, 
           v=Table[TakeColumns[AA,{ss[[k]][[j]]}],{j,1,m}]; 
   vv=Transpose[Table[Flatten[v[[i]]],{i,1,m}]]; 
          B=Append[B,vv]]; 
   var=Table[x[i],{i,1,n}]; 
   vplus[k_]:=var[[ss[[k]]]]; 
   vzero[k_]:=Complement[var,vplus[k]]; 
   sset={};For[k=1,k<=ns,k=k+1,BB=B[[k]];RBB=RowReduce[BB]; 
    If[RBB==IdentityMatrix[m],sol=LinearSolve[BB,bb],sol={}]; 
    If[Length[sol]==0||Min[sol]<0,new={},new=sol; 
     sset=Append[sset,{vplus[k],new}]]]; 
   bs[k_]:=Block[{u,v,w,zf1,f2}, 
           u=sset[[k,1]];v=sset[[k,2]];w=Complement[var,u]; 
           z=Flatten[ZeroMatrix[Length[w],1]]; 
     f1=Transpose[{u,v}];f2=Transpose[{w,z}]; 
     Transpose[Union[f1,f2]][[2]]]; 
   Table[bs[k],{k,1,Length[sset]}]] 
qpoptimal [AA_, bb_, cc_]:= Block[{vertex, val, opt, pos, optsol, qpsoln},  
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      vertex = basicfeasible [AA, bb]; 
val = Table[((vertex[[k]].c )+ α)*((vertex[[k]].d )+ β), {k, 1, Length[vertex]}]; 
     opt = Max[val]; 
      pos = Flatten[Position[val, opt]]; 
      optsol = vertex[[pos[[1]]]]; 
      qpsoln =  {optsol, opt}; 
Print ["The optimal value of the objective function of the quasi-concave QP is ", 
qpsoln[[2]]]; 
 

Print ["The optimal solution of the quasi-concave QP is ", qpsoln[[1]]]]

Numerical Examples 

In this section, solve the same problems which were 
solved in section IV by above computer technique. 

Input for Numerical Example 1 
 

A= {{1,2,-1,0,0,0,0,0},{2,3,0,1,0,0,0,0}, 

    {1,0,0,0,-1,0,0,0},{1,0,0,0,0,1,0,0}, 

    {0,1,0,0,0,0,1,0},{0,1,0,0,0,0,0,1}}; 

B = {10,60,5,15,4,30};    

c = {1,3,0,0,0,0,0,0};    

d = {2,3,0,0,0,0,0,0}; 

α = 6;  

β = 12; 

basicfeasible[A,b] 

qpoptimal[A, b, c] 

Output for Numerical Example 1 
The possible all basic solution is: 

{{15,4,13,18,10,0,0,26},{5,4,3,38,0,10,0,26
},{15,10,25,0,10,0,6,20},{5,50/3,85/3,0,0,1
0,38/3,40/3}} 

The optimal value of the objective function 
of the quasi-concave QP is   4392 

The optimal solution of the quasi-concave 
QP is {5,50/3,85/3,0,0,10,38/3,40/3} 

Input for Numerical Example 2 
A = {{5,1,1,0,0,0,0,0,0,0}, 

    {4,0,-1,1,0,0,0,0,0,0}, 

    {1,0,0,0,-1,0,0,0,0,0}, 

    {1,0,0,0,0,1,0,0,0,0}, 

    {0,1,0,0,0,0,-1,0,0,0}, 

    {0,1,0,0,0,0,0,1,0,0}, 

    {0,0,1,0,0,0,0,0,1,0}, 

    {0,0,0,1,0,0,0,0,0,1}}; 

B = {20,14,2,5,4,12,25,18};    

c = {5,1,0,0,0,0,0,0,0,0};    

d = {4,2,0,0,0,0,0,0,0,0}; 

α = 10;  

β = 12; 

basicfeasible[A,b] 

qpoptimal[A, b, c] 

Output for Numerical Example 2 
The possible all basic solution is: 

{{2,4,6,12,0,3,0,8,19,6},{16/5,4,0,6/5,6/5,
9/5,0,8,25,84/5},{2,10,0,6,0,3,6,2,25,12}} 

The optimal value of the objective function 
of the quasi-concave QP is   984 

The optimal solution of the quasi-concave 
QP is {16/5,4,0,6/5,6/5,9/5,0,8,25,84/5} 

We observed that the result obtained by computer 
technique is completely identical with the result obtained 
by our proposed method for solving quasi-concave 
QPBV problems. In fact, it converges quickly. In our 
computer technique, we just had to compute the 
coefficient matrix , right hand side constant , cost 
coefficient vectors  and  and the constants  and  in 
the same program and easily obtained the optimal 
solution. Also we observed that our computer oriented 
method can solve any quasi-concave QPBV problems.  

VI. Conclusions 

The aim of the research was to develop an easy technique 
for solving quasi-concave QPBV problems. So in this 
paper, we developed a new method for finding an optimal 
solution to a Quasi-Concave Quadratic Programming 
Problem with Bounded Variables in which the objective 
function involving the product of two indefinite factorized 
linear functions and constraints functions are in the form 
of linear inequalities. We illustrate some numerical 
examples to demonstrate our proposed method. We also 
developed a computer technique by using programming 
language MATHEMATICA for quasi-concave QPBV 
problems. We therefore, hope that our proposed method 
and computer technique can be used as an effective tool 
for solving quasi-concave QPBV problems and hence our 
time and labor can be saved. 
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