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Abstract

In this paper, Galerkin weighted residual method is presented to find the numerical solutions of the general fourth order linear and nonlinear
differential equations with essential boundary conditions. For this, the given differential equations and the boundary conditions over
arbitrary finite domain [a, b] are converted into its equivalent form over the interval [0, 1]. Here the Legendre polynomials, over the interval
[0, 1], are chosen as trial functions satisfying the corresponding homogeneous form of the Dirichlet boundary conditions. Details matrix
formulations are derived for solving linear and nonlinear boundary value problems (BVPs). Numerical examples for both linear and
nonlinear BVPs are considered to verify the proposed formulation and the results obtained are compared.
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I. Introduction

Many higher order boundary value problems (BVPs) arise in
the mathematical modeling of viscoelastic and inelastic
flows, deformation of beams and plates deflection theory,
beam element theory and many more applications of
engineering and applied mathematics which are solved
either analytically" or numerically®® . Only a limited number
of such type of BVPs can be solved by using analytical
methods leading to closed form solutions. For this, many
researchers have attempted for the numerical solutions of
fourth order BVPs to obtain high accuracy rapidly by using
a numerous method such as, finite difference method, Sinc-
Galerkin method and also some other methods using
polynomial and nonpolynomial spline functions. Among the
various researchers, Usmani® and Usmani and Warsi®
developed and analyzed second order and fourth order
convergent methods for the solution of linear fourth order
two-point boundary problem using quartic, quintic and
sextic polynomial spline functions, respectively. Al-Said
and Noor® and Al-Said et al’ demonstrated second order
convergent method based on cubic and quartic polynomial
spline functions for the solution of fourth order obstacle
problems. Usmani® established and discussed convergent
second order and fourth order methods for this problem with
the change in the boundary conditions for first order
instead of second order derivatives using quintic and
sextic polynomial spline functions, respectively. Also,
Rashidinia and Golbabaee®, and Siddigi and Akram®®
generated a deference scheme via quintic spline functions
for this problem. Loghmani and Alavizadeh®* converted this
problem into an optimal control problem and then
constructed the approximate solution as a combination of
quartic B-splines.

Van Daele et al*? introduced a new second order method for

solving the BVPs involving first derivatives based on
nonpolynomial spline function. Siraj et al * solved a system
of third order boundary value problems using
nonpolynomial spline functions. Ramadan et al** proposed a
second order convergent method for the numerical solution
of second order BVP. Later Ramadan et al*® and Siraj-ul-
Islam et al*® have solved fourth order two-point boundary
value problems using quintic nonpolynomial spline
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functions. Smith et al'” solved only linear while El-Gamel et

al®® solved the nonlinear BVPs by the technique of Sinc-
Galerkin method. Very recently Kasi et al*® used Quintic B-
splines for solving fourth order BVP by the Galerkin
method®. Thus from the numerical survey, for fourth order
BVPs, we note that a large number of authors have solved
fourth order BVPs using spline functions which can be
exploited easily but the numerical results converge slowly.
Besides spline functions, there is another type of piecewise
continuous polynomials, namely Legendre polynomials,
which is available in the book? may be used for numerical
solutions of fourth order BVPs. Therefore, in this paper we
try to present a simple Galerkin approach with Legendre
polynomials as basis functions to solve the fourth order
BVPs with essential boundary conditions.

However, in section Il of this paper, a short description on
Legendre polynomials is mentioned. In section I, the
formulation of the Galerkin method with Legendre
polynomials as basis functions are to be presented for
solving linear fourth order BVP. Then we deduce the similar
formulation for nonlinear problems in the next section with
particular problems. The proposed formulation is verified on
four linear and two nonlinear BVPs in section IV. Finally, in
the last section, the conclusion of the paper is presented.

I1. Legendre Polynomials
The general form of the Legendre polynomials [2] of degree
N is defined by

(2n-2r)!
2"ri(n—=r)I(n—=2n)!

where N :g forneven and N =n7_1 for n odd.

N
Ly (x) =2 (-1 X" (1)
r=0

The first few Legendre polynomials are given below:
L (x) =x

L,(x)=(3x?-1)/2

Ls(x) = (5x% -3x)/2

L, (x) = (35x* —30x% +3)/8

Ls(x) = (63x° —70x* +15x) /8
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Lg (x) = (231x°
L, (x) = (429x’

—315x* +105x? —5)/16
—693x° +315x° —35x) /16

Modified Legendre polynomials

Here the Legendre polynomials are chosen such that they
bijectively maps the interval [0, 1] to the interval [ -],
implying that the polynomials are orthogonal on [0, 1].

The analogue of Rodrigues’ formula for the Legendre
polynomials is
n

P () = 0C = X)" @

To satisfy the condition p,(0)= p,(1)=0, n>1, we modify
the Legendre polynomials in Eq. (2) as

Pn(X) = le n( —XT D" }(x 1). (3)

Now from Eq. (3) we can write first few modified Legendre
polynomials over the interval [0, 1]:
p(X) =-2x+ 2x2

p,(X) = 6x —12x% +6x°

pa(X) = —12x + 42x* — 50 + 20x*

P, (X) = 20x —110x? + 230x* — 210x* + 70x°

ps (X) = —30x + 240x? — 770x% +1190x*

—882x° +252x°
Pe (X) = 42x — 462x? + 2100x°® — 4830x*
+5922x° —3696x° +924x’
p;(X) = —56x +812x? — 4956x> +15750x*
—28182x° +28644x° —15444x" +3432x8.

Since modified Legendre polynomials have special
properties at x=0 and x=1: p,(0)=0 and

P, =0, n>1 respectively, so that they can be used as

set of basis function to satisfy the corresponding
homogeneous form of the Dirichlet boundary conditions to
derive the matrix formulation of fourth order BVP over the
interval [0,1].

I11. Matrix Formulation

In this section we first obtain the rigorous formulation for

fourth order linear BVP and then we extend our idea for

solving nonlinear BVP. For this, we consider a general

fourth order linear differential equation given by

. d4u+a d3u+a d2u+a du
Yokt T Tk dx

with Dirichlet boundary conditions

u(@) = Ay, u(b) =By (®)

+agu=r,a<x<b 4)
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and the first derivative boundary conditions
u’(a) = A,u’'(b) =By, (6)

Ay, AL,By, B, are finite real constants and
a,, as, a,, &, 8 and r are all continuous functions of

X defined on the interval [a, b]. Since our aim is to use the
Legendre polynomials as trial functions which are derived
over the interval [0, 1], so the BVP, defined in Egs. (4) -
(6), is to be converted to an equivalent problem on [0, 1] by
replacing x by (b—a)x+a,and thus we have
c ﬂ+c ﬂ+ d’u +<:1
Yaxt
subject to the boundary conditions:

u(0) = A, u(l) = By,

where

+cou:b, 0<x<1,(7)

1 ., 3 (8)
(0= By,
where

Cy = (b— 2 ——((b-a)x+a),

C3 m((b a)X+a)

C, = (b— a)? ———((b-a)x+a),

Cl:b—
Co =qy((b—a)x+a),b=r((b—a)x+a). 9)

Using Legendre polynomials p; , we assume an approximate
solution in a form

=1
Il

n
28D (10)
i=1
Here @, is specified by the essential boundary conditions
and p;(0) = p;(») =0 foreach i=12,...n
Using Eqg. (10) into Eq. (7), the Galerkin weighted residual
equations are
4 3 2 ~
IC4_E1J+C3 g+c2d—lzj+c1d—u+c0u b|xpjdx=0,
oL ox dx dx dx
j=12,...,n.  (11)

Integrating by parts the terms up to second derivative on the
left hand side of Eq. (11), we can obtain each term after
applying the conditions prescribed in Eq. (8) as

144 4% 1
c dx=|c
I4dx p |:4pj d :I

0

ld[ ]dudx

0

[since p;(0)=p;(1)=0]
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_ | d
" |dx

__icp_dzﬁl+ d2[ o, du
dx 4T dx? 0 dx? C4 dx

1 42 2~
]d u . d c _]d udx
4pJJdx L ‘([dx2[4|C)Jde2

g3 da
_gdx3 [ ca P d_dx

2 2
:l: [4pj]d L {37[04 pj]L:1X(b_a)Bl

1
{ [c4 p]]} x (h-a)Aq - J—[c4 pJ —dx (12)
x=0 0

=0

x(b- a)Al+J' [c3p] —ax (13)

1 —_~

d du
=—|—]Jcop; —dx 14
g leap I (14)
Substituting Egs. (12) — (14) into Eq. (11) and using
approximation for U(x) given in Eq. (10), and after
rearranging the terms for the resulting equations, we get a

system of equations in the matrix form as

n
Y Kija=Fj, i=L2...n, 15)
i=1

- n b Lo

0

d dp;
_&[Czpj]+clpj:|d_xl+copipj}dx

d’p
e
x=1
d d’p
+|:dX|: 4p ]dX2 :|X01 (16)
1 2
Fi:f{s { [4p1] dX [C3pl]
0
di[czp] C.P; }de +—CoPj Ho}dx
{ [c3pj] [C4pj]} x(b-a)By
x=1
_{:—X[C3pj]—jx—2[C4pj]‘|X=0X(b—a.)Al

2 2
bep,]d '90} {%[@pj]%} . an

x=0
Solving the system of equations specified by Eq. (15), we
find the values of the parameters a;, and then substituting

these parameters into Eq. (10), we get the approximate
solution of the BVP defined in Egs. (7) — (9). If we replace

x=1

X by ;(;a in U, then we get the desired approximate

solution of the BVP defined in Egs. (4) — (6).

For nonlinear fourth order BVP, we first compute the initial
values neglecting the nonlinear terms and use the system
(15). Then using the iterative method we find the numerical
approximations for desired nonlinear BVP. This formulation
is described through the numerical examples in the next
section.

1V. Numerical Results

To test the applicability of the proposed method, we
consider two linear and two nonlinear problems with
boundary conditions of the type (5) and (6) because the
exact solutions for these problems are available in the
literature. For all the examples, the solutions obtained by the
proposed method are compared with the exact solutions. All
the computations are performed using MATLAB. The
convergence of linear BVP is calculated by

E= |Jn+1(x)_ L-In (X)| <9,

where Up(x) denotes the approximate solution using n
polynomials and & depends on the problem which varies
from 107 to 107'°. In addition, the convergence of

nonlinear BVP is assumed when the absolute error of two
consecutive iterations, 5 satisfies

~N+l_a~N

u, <9,
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where N is the Newton’s iteration number and & varies
from 107 to 10713,

Example 1. Consider the linear BVP® 1% 1

4
d—:‘+4u:1, “1<x<1 (18)
dx
subject to the boundary conditions
sinh2-sin2
u-)=u@=0,u(-)=-u'l)=———m——, 19
=ud = e 4(cosh2 +c0s2) (19)

whose exact solution is,
u(x) = %—%(sinhlsinlsinh Xsin x

+coshlcoslcosh xcosx)/(cosh 2 + cos2).

The equivalent BVP over [0, 1] to the BVP defined in Egs.
(18) and (19) is,

4
i4d—2+4u=1, 0<x<1 (20)
27 dx
subject to the boundary conditions
u(0)=u() =0,
Eu’(O):—lu'(l): sinh2-sin2 . (21)
2 2 4(cosh2 +cos2)
Using the method illustrated in section 11,
n
ZKiyjai:Fj,j:l,Z,...,n (22)
i=1
where
Ll d’p; d
_ i 9p;
Ki | _£ —Wd—x'+64p,pj X
_ dp; dzpi dp; dzpi
2 | T 2 (23)
dx dx dx dx
L x=1 x=0
1 d2 ‘_ . i
Fj:jlepjdx+ 2, sinh2-sin2
0 dx . 2(cosh2+cos2)

sinh2 —sin?2

] )
+ > (24)
dx o 2(cosh2+co0s2)

Table 1. Numerical results of example 1.

Proposed method

X Exact Solutions using 11 Absolute Error
polynomials
-1.0 0.0000000000 0.0000000000 0.000000000000
-0.8 0.0397692607 0.0397692607 4.6837534E-015
-0.6 0.0749849828 0.0749849828 1.7749691E-014

-0.4 0.1023106409
-0.2 0.1195382314
0.0 0.1254157424
0.2 0.1195382314
0.4 0.1023106409

0.1023106409
0.1195382314
0.1254157424
0.1195382314
0.1023106409

7.2997164E-015
7.9422580E-014
1.3106183E-016
9.5423669E-014
1.5751289E-014

0.6 0.0749849828 0.0749849828 2.3370195E-014
0.8 0.0397692607 0.0397692607 3.1780134E-015
1.0 0.0000000000 0.0000000000 0.000000000000

Solving the system in Eq. (22), we obtain the values of the
parameters and then substituting these parameters into the
similar form of Eq. (10), we get the approximate solution to

Md. Bellal Hossain and Md. Shafiqul Islam

the BVP, defined in Egs. (20) and (21), for different values
of n. If we replace Xby XTH in U(x), then we get the

desired approximate solution of the BVP defined in Egs.
(18) and (19). The numerical results for this problem are
shown in Table 1. The maximum absolute error obtained by

the proposed method is 9.542x107**. On the contrary, the
errors have been obtained by Rashidinia and Golbabaee®,

Siraj-ul-Islam et al*® and Kasi et al*® are 6.22x107°,
2.82x107%2 and 1.303x107%, respectively.

Example 2. Consider the linear BVP>**°
d4u (847 - 0 . ”s
d—4+xu——(+ X+x°)e", 0<x< (25)
subject to the boundary conditions
u(0)=u@@ =0, u'(0)=1 u'@)=-e. (26)

whose exact solution is u(x) = x(1-x)e*.

Applying the proposed method, mentioned in section 111, the
numerical results for this problem are given in Table 2. The
maximum absolute error obtained by the proposed method is

2.502x10713 . It is observed that using splines the maximum
errors have been found by Al-Said et al’, Rashidinia and

Golbabaee® , and Kasi et al® are upto 2.36x107,
5.37x107° and 5.99x107°, respectively.

Table 2. Numerical results of example 2.

Proposed
X Exact Solutions | method using 11|  Absolute Error
polynomials
0.0 0.0000000000 0.0000000000 | 0.000000000000
0.1 0.0994653826 | 0.0994653826 | 4.6490589E-014
0.2 0.1954244413 0.1954244413 | 1.2767565E-013
0.3 0.2834703496 0.2834703496 | 1.7824631E-013
0.4 0.3580379274 0.3580379274 | 2.8310687E-015
0.5 0.4121803177 0.4121803177 | 2.5018876E-013
0.6 0.4373085121 0.4373085121 | 1.8657298E-013
0.7 0.4228880686 0.4228880686 | 8.5431662E-014
0.8 0.3560865486 | 0.3560865486 | 2.0078383E-013
0.9 0.2213642800 | 0.2213642800 | 1.4432899E-013
1.0 0.0000000000 0.0000000000 | 0.000000000000
Example 3. Consider the nonlinear BVP*
4 2\
d—g:sinx+sin2x—[d—g] ,0<x<1 (27)
dx dx
subject to boundary conditions:
u(0) =0,u(d) =sinl, u’(0) =1,u’() = cosl. (28)

The exact solution of this BVP is u(x) =sin x.
Consider the approximate solution of u(x) as

(29)

(|

n
=6+ 3 p;j, n>1.
i1
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Here 6, =xsinl is specified by the essential boundary
conditions in Eq. (28). Also p;(0)= p;(1) =0for each
i=12,...,n

Using Eq. (29) into Eq. (27), the Galerkin weighted residual
equation is

} ﬁ+ a0 2—sinx—sinzx p,dx =0 (30)
ol dx* { dx® “

Integrating first term of Eq. (30) by parts, we obtain

4% a~1 1 3~
d°u dp, d°u

— P dx = - dx
I P {pk dx® L i dx dx®

[since py (1)=p(0)=0]
1 -
_ | dp d% +}d2pkd2udx
dx dx? o 0 dx? dx®
1 1
[dﬁﬂ] +[diﬂ] [Wp Ay
2 2 3
dx dx o L O dx o 0 & dx
{dﬂ} [ +Za,p1 J{ﬂ} {€0+Za|p,1
x=1] =1 dx x=0

2 2 1.3 1
ﬂd Pk} XC0S 1—{M} —Jd—psk{ﬁ(’ﬁZai pi’}dx (31)
dx
x=1 x=0 0

x=0

Putting Eg. (31) into Eqg. (30) we obtain the equivalent
matrix form

(D+B)A=G, (32)

where the elements of A, B, D, G are a,b;,d;, and

g, respectively, given by

1 3 2 2
d dp: d d-p:
dik:J. - F;k p|+2 920 gl pk dX
Tl dx® dx dx® dx
| dpy d?p; dpy d”p;
|: dX dX2 j|x=1 |: dX dX :|x:0 (33)
. (d2p, d®p;
b, =) a; ! dx
ik 12:1 a2 Pk (34)
; 2 d°p, déy [ d*G, 2
=||(sinx+sin“ x)p, + - dx
gk E'; ( )pk dX3 dx [dXZJ pk

L[ 4% | | dp 4%
dx dx? dx dx?
x=1 x=0

2 2
_|d gk xcos 14| 2 gk (35)
dx® | ax® |
x=1 x=0

The initial values of these coefficients a; are obtained by

applying Galerkin method to the BVP neglecting the
nonlinear terms in Eq. (27). That is, to find initial
coefficients we will solve the system

DA=G (36)

whose matrices are constructed from

0 2} d’p dpi | | dpy d7p,
B A o de d |

dp, dzpi
+ —_—
[dx dx? - 37)
1
pk d‘90
= [ (sin x +sin? x) p, +—X dx
9 J(;( ) Py o3 dx
| d’6 | [dp 4’6,
dx dx? | ox dx? 1o
2 [ 42
9P as 1| 9P (38)
dx? dx?
=1 L x=0

Table 3. Numerical results of example 3.

Proposed method
X Exact Solutions using 8 Absolute Error
polynomials
0.0 0.0000000000 0.0000000000 0.00000000000
0.1 0.0998334166 0.0998334165 1.573325E-010
0.2 0.1986693308 0.1986693307 1.140406E-010
0.3 0.2955202067 0.2955202065 1.492606E-010
0.4 0.3894183423 0.3894183422 9.988721E-011
0.5 0.4794255386 0.4794255385 6.413814E-011
0.6 0.5646424734 0.5646424733 7.907730E-011
0.7 0.6442176872 0.6442176872 6.589806E-011
0.8 0.7173560909 0.7173560909 2.166500E-011
0.9 0.7833269096 0.7833269096 1.818679E-011
1.0 0.8414709848 0.8414709848 0.00000000000

Once the initial values of the a; are obtained from Eq. (36),
they are substituted into Eq. (32) to obtain new estimates for
the values of a;. This iteration process continues until the
converged values of the unknown parameters are obtained.
Substituting the final values of the parameters into Eq. (29),
we obtain an approximate solution of the BVP defined in
Egs. (27) and (28). The numerical results for this problem
are presented in Table 3. The maximum absolute error

obtained by the proposed method is 1.573x107° using 5
iterations. On the other hand, the maximum absolute error

has been obtained by Kasi et al'® is 1.359x107° .
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Example 4. Consider the nonlinear BVP*
du . 4 y
d—4—69 =-12(1+x)", 0<x<1 (39)
X

subject to the boundary conditions:
u@=0,u@®=In2, U'0)=Lu'()=05 (40
The exact solution is u(x) =In(1+x) .

Following the proposed method illustrated as in example 3
the numerical results for this problem are summarized in
Table 4. The maximum absolute error obtained by the

present method is 4.075x107® using 5 iterations. The
maximum absolute error has been obtained so far by El-

Gamel et al *® and Kasi et al'® are 2.2x10°® and
4.917x107° respectively.

Table 4. Numerical results of example 4.

. Proposed method
X Exact Solutions using 9 polynomials Absolute error
0.0 0.0000000000 0.0000000000 0.00000000000
0.1 0.0953101798 0.0953101410 3.883659E-008
0.2 0.1823215568 0.1823215160 4.074934E-008
0.3 0.2623642645 0.2623642240 4.050873E-008
0.4 0.3364722366 0.3364722108 2.582027E-008
0.5 0.4054651081 0.4054650836 2.446640E-008
0.6 0.4700036292 0.4700036072 2.206729E-008
0.7 0.5306282511 0.5306282371 1.392392E-008
0.8 0.5877866649 0.5877866546 1.032887E-008
0.9 0.6418538862 0.6418538815 4.673076E-009
1.0 0.6931471806 0.6931471806 0.00000000000

V. Conclusion

We have presented a simple and accurate method to solve a
fourth order BVPs. We have extended a Galerkin method
with Legendre polynomials as basis functions for solving
fourth order BVPs with essential boundary conditions. The
concentration has given not only on the performance of the
results but also on the formulation. The proposed method is
applied to solve a several number of linear and nonlinear
problems to test the efficiency of the method. The numerical
results obtained by the proposed method are in good
agreement with the exact solutions and also confirm with
great accuracy than the results obtained by the previous
methods so far. In addition, to the knowledge of the present
authors’, none has attempted to solve the fourth order BVP
using Legendre polynomials. Further we wish to extend our
idea for solving any higher even order BVPs by the
proposed method.
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	(3)
	Now from Eq. (3) we can write first few modified Legendre polynomials over the interval [0, 1]:

