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Abstract 

In this paper, Galerkin weighted residual method is presented to find the numerical solutions of the general fourth order linear and nonlinear 
differential equations with essential boundary conditions. For this, the given differential equations and the boundary conditions over 
arbitrary finite domain [a, b] are converted into its equivalent form over the interval [0, 1]. Here the Legendre polynomials, over the interval 
[0, 1], are chosen as trial functions satisfying the corresponding homogeneous form of the Dirichlet boundary conditions. Details matrix 
formulations are derived for solving linear and nonlinear boundary value problems (BVPs). Numerical examples for both linear and 
nonlinear BVPs are considered to verify the proposed formulation and the results obtained are compared. 
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I. Introduction 

Many higher order boundary value problems (BVPs) arise in 
the mathematical modeling of viscoelastic and inelastic 
flows, deformation of beams and plates deflection theory, 
beam element theory and many more applications of 
engineering and applied mathematics which are solved 
either analytically1 or numerically2,3 . Only a limited number 
of such type of BVPs can be solved by using analytical 
methods leading to closed form solutions. For this, many 
researchers have attempted for the numerical solutions of 
fourth order BVPs to obtain high accuracy rapidly by using 
a numerous method such as, finite difference method, Sinc-
Galerkin method and also some other methods using 
polynomial and nonpolynomial spline functions. Among the 
various researchers, Usmani4 and Usmani and Warsi5 
developed and analyzed second order and fourth order 
convergent methods for the solution of linear fourth order 
two-point boundary problem using quartic, quintic and 
sextic polynomial spline functions, respectively. Al-Said 
and Noor6 and Al-Said et al7 demonstrated second order 
convergent method based on cubic and quartic polynomial 
spline functions for the solution of fourth order obstacle 
problems. Usmani8 established and discussed convergent 
second order and fourth order methods for this problem with 
the change in  the  boundary  conditions  for  first  order  
instead  of  second  order  derivatives  using quintic and 
sextic polynomial spline functions, respectively. Also, 
Rashidinia and Golbabaee9, and Siddiqi and Akram10 
generated a deference scheme via quintic spline functions 
for this problem. Loghmani and Alavizadeh11 converted this 
problem into an optimal control problem and then 
constructed the approximate solution as a combination of 
quartic B-splines.  

Van Daele et al12 introduced a new second order method for 
solving the BVPs involving first derivatives based on 
nonpolynomial spline function. Siraj et al 13 solved a system 
of third order boundary value problems using 
nonpolynomial spline functions. Ramadan et al14 proposed a 
second order convergent method for the numerical solution 
of second order BVP. Later Ramadan et al15 and Siraj-ul-
Islam et al16 have solved fourth order two-point boundary 
value problems using quintic nonpolynomial spline 

functions. Smith et al17 solved only linear while El-Gamel et 
al18  solved the nonlinear BVPs by the technique of Sinc-
Galerkin method. Very recently Kasi et al19 used Quintic B-
splines for solving fourth order BVP by the Galerkin 
method3. Thus from the numerical survey, for fourth order 
BVPs, we note that a large number of authors have solved 
fourth order BVPs using spline functions which can be 
exploited easily but the numerical results converge slowly. 
Besides spline functions, there is another type of piecewise 
continuous polynomials, namely Legendre polynomials, 
which is available in the book2 may be used for numerical 
solutions of fourth order BVPs. Therefore, in this paper we 
try to present a simple Galerkin approach with Legendre 
polynomials as basis functions to solve the fourth order 
BVPs with essential boundary conditions.  

However, in section II of this paper, a short description on 
Legendre polynomials is mentioned. In section III, the 
formulation of the Galerkin method with Legendre 
polynomials as basis functions are to be presented for 
solving linear fourth order BVP. Then we deduce the similar 
formulation for nonlinear problems in the next section with 
particular problems. The proposed formulation is verified on 
four linear and two nonlinear BVPs in section IV. Finally, in 
the last section, the conclusion of the paper is presented. 

II. Legendre Polynomials 

The general form of the Legendre polynomials [2] of degree 
n  is defined by 
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The first few Legendre polynomials are given below: 
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16/)5105315231()( 246
6 −+−= xxxxL     

16/)35315693429()( 357
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 Modified Legendre polynomials 

 Here the Legendre polynomials are chosen such that they 
bijectively maps the interval [0, 1] to the interval [ −1, 1], 
implying that the polynomials are orthogonal on [0, 1]. 

The analogue of Rodrigues' formula for the Legendre 
polynomials is 
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To satisfy the condition ( ) ( ) 1,010 ≥== npp nn , we modify 

the Legendre polynomials in Eq. (2) as 
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Now from Eq. (3) we can write first few modified Legendre 
polynomials over the interval [0, 1]: 
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Since modified Legendre polynomials have special 
properties at 0=x  and 1=x : 0)0( =np  and 

1,0)1( ≥= npn  respectively, so that they can be used as 

set of basis function to satisfy the corresponding 
homogeneous form of the Dirichlet boundary conditions to 
derive the matrix formulation of fourth order BVP over the 
interval [0,1]. 

III. Matrix Formulation 

In this section we first obtain the rigorous formulation for 
fourth order linear BVP and then we extend our idea for 
solving nonlinear BVP. For this, we consider a general 
fourth order linear differential equation given by 
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with Dirichlet boundary conditions                                          
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and the first derivative boundary conditions 
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where 1010 ,,, BBAA  are finite real constants and 

,4a ,3a ,2a 1a , 0a   and r  are all continuous functions of 

x  defined on the interval [a, b]. Since our aim is to use the 
Legendre polynomials as trial functions which are derived 
over the interval [0, 1], so the BVP, defined in Eqs. (4) – 
(6), is to be converted to an equivalent problem on [0, 1] by 
replacing x by ,)( axab +− and thus we have 
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Using Legendre polynomials ip , we assume an approximate 

solution in a form 
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Here 0θ  is specified by the essential boundary conditions 

and 0)1()0( == ii pp  for each ni ,2,1= .  

Using Eq. (10) into Eq. (7), the Galerkin weighted residual 
equations are 
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Integrating by parts the terms up to second derivative on the 
left hand side of Eq. (11), we can obtain each term after 
applying the conditions prescribed in Eq. (8) as 
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Substituting Eqs. (12) – (14) into Eq. (11) and using 
approximation for )(~ xu  given in Eq. (10), and after 

rearranging the terms for the resulting equations, we get a 
system of equations in the matrix form as  
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Solving the system of equations specified by Eq. (15), we 
find the values of the parameters ia , and then substituting 

these parameters into Eq. (10), we get the approximate 
solution of the BVP defined in Eqs. (7) – (9). If we replace 

x  by 
ab

ax

−
−

 in u~ , then we get the desired approximate 

solution of the BVP defined in Eqs. (4) – (6). 

For nonlinear fourth order BVP, we first compute the initial 
values neglecting the nonlinear terms and use the system 
(15). Then using the iterative method we find the numerical 
approximations for desired nonlinear BVP. This formulation 
is described through the numerical examples in the next 
section.  

IV. Numerical Results 

To test the applicability of the proposed method, we 
consider two linear and two nonlinear problems with 
boundary conditions of the type (5) and (6) because the 
exact solutions for these problems are available in the 
literature. For all the examples, the solutions obtained by the 
proposed method are compared with the exact solutions. All 
the computations are performed using MATLAB. The 
convergence of linear BVP is calculated by 
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where )(~ xnu  denotes the approximate solution using n 

polynomials and δ  depends on the problem which varies 

from 710−  to 1010− . In addition, the convergence of 
nonlinear BVP is assumed when the absolute error of two 
consecutive iterations, δ  satisfies  
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N
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where N  is the Newton’s iteration number and δ  varies 

from 1110−  to 1310− .  

Example 1.  Consider the linear BVP9, 16, 19  
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Using the method illustrated in section III,  
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Table 1. Numerical results of example 1. 

x  Exact Solutions 
Proposed method 

using 11 
polynomials 

Absolute Error 

-1.0 
-0.8 
-0.6 
-0.4 
-0.2 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0000000000 
0.0397692607 
0.0749849828 
0.1023106409 
0.1195382314 
0.1254157424 
0.1195382314 
0.1023106409 
0.0749849828 
0.0397692607 
0.0000000000 

0.0000000000 
0.0397692607 
0.0749849828 
0.1023106409 
0.1195382314 
0.1254157424 
0.1195382314 
0.1023106409 
0.0749849828 
0.0397692607 
0.0000000000 

0.000000000000 
4.6837534E-015 
1.7749691E-014 
7.2997164E-015 
7.9422580E-014 
1.3106183E-016 
9.5423669E-014 
1.5751289E-014 
2.3370195E-014 
3.1780134E-015 
0.000000000000 

Solving the system in Eq. (22), we obtain the values of the 
parameters and then substituting these parameters into the 
similar form of Eq. (10), we get the approximate solution to 

the BVP, defined in Eqs. (20) and (21),  for different values 

of n. If we replace x by 
2

1+x
 in )(~ xu , then we get the 

desired approximate solution of the BVP defined in Eqs. 
(18) and (19). The numerical results for this problem are 
shown in Table 1. The maximum absolute error obtained by 

the proposed method is 9.542 1410−× . On the contrary, the 

errors have been obtained by Rashidinia and Golbabaee9, 

Siraj-ul-Islam et al16 and Kasi et al19  are 61022.6 −× ,  
121082.2 −×  and 610303.1 −× , respectively. 

Example 2. Consider the linear BVP5, 9, 19 

  10,)78( 3
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dx

ud x             (25) 

subject to the boundary conditions 
.)1(,1)0(,0)1()0( euuuu −=′=′==   (26) 

whose exact solution is xexxxu )1()( −= . 

Applying the proposed method, mentioned in section III, the 
numerical results for this problem are given in Table 2. The 
maximum absolute error obtained by the proposed method is 

2.502 1310−× . It is observed that using splines the maximum 
errors have been found by Al-Said et al5, Rashidinia and 

Golbabaee9 , and Kasi et al19  are upto 71036.2 −× , 
61037.5 −×  and 61099.5 −× , respectively. 

Table 2. Numerical results of example 2. 

x  Exact Solutions 
Proposed 

method using 11 
polynomials 

Absolute Error 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0000000000 
0.0994653826 
0.1954244413 
0.2834703496 
0.3580379274 
0.4121803177 
0.4373085121 
0.4228880686 
0.3560865486 
0.2213642800 
0.0000000000 

0.0000000000 
0.0994653826 
0.1954244413 
0.2834703496 
0.3580379274 
0.4121803177 
0.4373085121 
0.4228880686 
0.3560865486 
0.2213642800 
0.0000000000 

0.000000000000 
4.6490589E-014 
1.2767565E-013 
1.7824631E-013 
2.8310687E-015 
2.5018876E-013 
1.8657298E-013 
8.5431662E-014 
2.0078383E-013 
1.4432899E-013 
0.000000000000 

Example 3. Consider the nonlinear BVP19  
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Here 1sin0 x=θ  is specified by the essential boundary 

conditions in Eq. (28). Also 0)1()0( == ii pp for each 

ni ,,2,1 = . 

Using Eq. (29) into Eq. (27), the Galerkin weighted residual 
equation is 
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 Integrating first term of Eq. (30) by parts, we obtain 
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 Putting Eq. (31) into Eq. (30) we obtain the equivalent 
matrix form 

 ,)( GABD =+              (32)  

where the elements of A, B, D, G are kikii dba ,, ,, and 

kg respectively, given by 
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The initial values of these coefficients ia  are obtained by 

applying Galerkin method to the BVP neglecting the 
nonlinear terms in Eq. (27). That is, to find initial 
coefficients we will solve the system  
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whose matrices are constructed from 
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Table 3. Numerical results of example 3.  

x  Exact Solutions 
Proposed method 

using 8 
polynomials 

Absolute Error 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0000000000 
0.0998334166 
0.1986693308 
0.2955202067 
0.3894183423 
0.4794255386 
0.5646424734 
0.6442176872 
0.7173560909 
0.7833269096 
0.8414709848 

0.0000000000 
0.0998334165 
0.1986693307 
0.2955202065 
0.3894183422 
0.4794255385 
0.5646424733 
0.6442176872 
0.7173560909 
0.7833269096 
0.8414709848 

0.00000000000 
1.573325E-010 
1.140406E-010 
1.492606E-010 
9.988721E-011 
6.413814E-011 
7.907730E-011 
6.589806E-011 
2.166500E-011 
1.818679E-011 
0.00000000000 

Once the initial values of the ia  are obtained from Eq. (36), 

they are substituted into Eq. (32) to obtain new estimates for 
the values of ia . This iteration process continues until the 

converged values of the unknown parameters are obtained. 
Substituting the final values of the parameters into Eq. (29), 
we obtain an approximate solution of the BVP defined in 
Eqs. (27) and (28). The numerical results for this problem 
are presented in Table 3. The maximum absolute error 

obtained by the proposed method is 1.573 1010−×  using 5 
iterations. On the other hand, the maximum absolute error 

has been obtained by Kasi et al19  is 1.359 510−× . 
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Example 4. Consider the nonlinear BVP18, 19 

10,)1(126 44
4

4

<<+−=− −− xxe
dx

ud u
             (39) 

subject to the boundary conditions: 

.5.0)1(,1)0(,2ln)1(,0)0( =′=′== uuuu       (40) 

The exact solution is )1ln()( xxu += .  

Following the proposed method illustrated as in example 3 
the numerical results for this problem are summarized in 
Table 4. The maximum absolute error obtained by the 

present method is 4.075 810−×  using 5 iterations. The 
maximum absolute error has been obtained so far by El-

Gamel et al 18 and Kasi et al19 are 2.2 810−×  and 

4.917 610−×  respectively.  

Table 4. Numerical results of example 4.  

x  Exact Solutions 
Proposed method 

using 9 polynomials 
Absolute error 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0000000000 
0.0953101798 
0.1823215568 
0.2623642645 
0.3364722366 
0.4054651081 
0.4700036292 
0.5306282511 
0.5877866649 
0.6418538862 
0.6931471806 

0.0000000000 
0.0953101410 
0.1823215160 
0.2623642240 
0.3364722108 
0.4054650836 
0.4700036072 
0.5306282371 
0.5877866546 
0.6418538815 
0.6931471806 

0.00000000000 
3.883659E-008 
4.074934E-008 
4.050873E-008 
2.582027E-008 
2.446640E-008 
2.206729E-008 
1.392392E-008 
1.032887E-008 
4.673076E-009 
0.00000000000 

V. Conclusion 

We have presented a simple and accurate method to solve a 
fourth order BVPs. We have extended a Galerkin method 
with Legendre polynomials as basis functions for solving 
fourth order BVPs with essential boundary conditions. The 
concentration has given not only on the performance of the 
results but also on the formulation. The proposed method is 
applied to solve a several number of linear and nonlinear 
problems to test the efficiency of the method. The numerical 
results obtained by the proposed method are in good 
agreement with the exact solutions and also confirm with 
great accuracy than the results obtained by the previous 
methods so far. In addition, to the knowledge of the present 
authors’, none has attempted to solve the fourth order BVP 
using Legendre polynomials. Further we wish to extend our 
idea for solving any higher even order BVPs by the 
proposed method. 
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	(3)
	Now from Eq. (3) we can write first few modified Legendre polynomials over the interval [0, 1]:

