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Abstract 

In the present paper some aspects of tensor algebra, tensor product, exterior algebra, symmetric algebra, module of section, 

graded algebra, vector subbundle are studied. A Theorem 1.32. is established by using sections and fibrewise orthogonal 

sections of an application of Gran-Schmidt. 
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1. Introduction  

Multilinear algebra and tensor algebra of   𝑅𝑅 −modules are 
needed to use higher order tensors. The tangent bundle, 
various tensor bundle, subbundle and associated frame 
bundles will play important roles as the theory of manifolds 
is developed. A theorem related with subbundle is treated 
with various tensor, graded algebra, tensor product, and 
trivial bundles. 

II. Tensor Algebra 

In order to study 𝑅𝑅 −multilinear maps, we build a universal 
model of multilinear objects called the tensor algebra over 
𝑅𝑅, where 𝑅𝑅 will be the ring  𝐶𝐶∞(𝑀𝑀). 

Definition 1.1. An  𝑅𝑅 −module 𝑉𝑉 is free if there is a 
subset 𝐵𝐵 ⊂ 𝑉𝑉 such that every nonzero element 𝑣𝑣 ∈ 𝑉𝑉 can be 
written uniquely as a finite 𝑅𝑅 −linear combination of 
elements of 𝐵𝐵. The set 𝐵𝐵 will be called a (free) basis of  𝑅𝑅. 

Example 1.2. Let 𝜋𝜋 ∶ 𝐸𝐸 → 𝑀𝑀 be a trivial 𝑛𝑛 − plane bundle 
[1]. Then Γ(𝐸𝐸) is a free 𝐶𝐶∞(𝑀𝑀) 

−module on a basis of n elements. Another example is the 
integer lattice ℤ𝑘𝑘 , a free ℤ −module. 
Definition 1.3. If 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3 are objects in ℳ(𝑅𝑅), 
 a map  𝜑𝜑 ∶  𝑉𝑉1 × 𝑉𝑉2 → 𝑉𝑉3  is 𝑅𝑅 − 𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 if  
 
𝜑𝜑(.  ,𝑉𝑉2) ∶  𝑉𝑉1 → 𝑉𝑉3 

𝜑𝜑(𝑉𝑉1, . ) ∶  𝑉𝑉2 → 𝑉𝑉3 
 
are  𝑅𝑅 − linear,  ∀  𝑣𝑣𝑙𝑙 ∈ 𝑉𝑉𝑙𝑙 , 𝑙𝑙 = 1,2. 
 
Definition 1.4. [2] A tensor product of   𝑅𝑅 − 
modules  𝑉𝑉1,𝑉𝑉2 is an  𝑅𝑅 −module  𝑉𝑉1⨂ 𝑉𝑉2, 
together with an 𝑅𝑅 −bilinear map 
 
⨂ ∶  𝑉𝑉1 × 𝑉𝑉2 → 𝑉𝑉1⨂ 𝑉𝑉2 

with the following “universal property”: 

given any 𝑅𝑅 −modules 𝑉𝑉3 and any  𝑅𝑅 −bilinear map 

 𝜑𝜑 ∶  𝑉𝑉1 × 𝑉𝑉2 → 𝑉𝑉3, 
 

there is a unique 𝑅𝑅 −linear map 𝜑𝜑� ∶  𝑉𝑉1⨂ 𝑉𝑉2 → 𝑉𝑉3  such that 
the diagram 

                  ⨂ 

     𝑉𝑉1 × 𝑉𝑉2                  𝑉𝑉1⨂ 𝑉𝑉2      

                    𝜑𝜑            𝜑𝜑�                                            

                                   𝑉𝑉3               

commutes. Write  ⨂ (𝑣𝑣,𝑤𝑤) = 𝑣𝑣 ⨂ 𝑤𝑤. 

Corollary 1.5. If  𝑉𝑉𝑙𝑙  is an 𝑅𝑅 −module, 𝑙𝑙 = 1, 2, 3, there are 
unique 𝑅𝑅 −linear isomorphism 

𝑉𝑉1 ⨂ (𝑉𝑉2 ⨂ 𝑉𝑉3) = (𝑉𝑉1⨂ 𝑉𝑉2) ⨂ 𝑉𝑉3 

 = 𝑉𝑉1 ⨂ 𝑉𝑉2 ⨂ 𝑉𝑉3 

identifying 

𝑣𝑣1 ⨂ (𝑣𝑣2 ⨂ 𝑣𝑣3) = (𝑣𝑣1⨂ 𝑣𝑣2) ⨂ 𝑣𝑣3 

                           = 𝑣𝑣1 ⨂ 𝑣𝑣2 ⨂ 𝑣𝑣3,      

                             ∀  𝑣𝑣𝑙𝑙 ∈ 𝑉𝑉𝑙𝑙 , 𝑙𝑙 = 1,2,3. 

Definition 1.6. An element 𝑣𝑣 ∈  𝑉𝑉1⨂…⨂ 𝑉𝑉𝑘𝑘  is said to be 
decomposable if it can be written as a monomial 𝑣𝑣 =
 𝑣𝑣1⨂  …⨂ 𝑣𝑣𝑘𝑘 ,  for suitable elements  𝑣𝑣𝑙𝑙 ∈ 𝑉𝑉𝑙𝑙 , 1 ≤ 𝑙𝑙 ≤
𝑘𝑘. Otherwise, 𝑣𝑣 is said to be indecomposable. 

Lemma 1.7. If 𝑉𝑉 and 𝑊𝑊 are 𝑅𝑅 −modules with respective 
bases 𝐴𝐴 and 𝐵𝐵, then 𝑉𝑉 ⨂ 𝑊𝑊 is free with basis 𝐶𝐶 =
{𝑙𝑙 ⨂ 𝑏𝑏 | 𝑙𝑙 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵}. 

Proof. An arbitrary element 𝑣𝑣 ∈ 𝐴𝐴 ⨂ 𝐵𝐵 can be written as a 
linear combination of decom-posable. A decomposable 
element 𝑉𝑉 ⨂ 𝑊𝑊  can be expanded the multilinearity of 
tensor product, to a linear combination of elements of C, 
proving that 𝐶𝐶 spans  𝑉𝑉 ⨂ 𝑊𝑊. It remains to show that, if 

� 𝑐𝑐𝑙𝑙𝑖𝑖  𝑙𝑙𝑙𝑙  ⨂ 𝑏𝑏𝑖𝑖

𝑝𝑝 ,𝑞𝑞

𝑙𝑙 ,𝑖𝑖=1

= � 𝑑𝑑𝑙𝑙𝑖𝑖  𝑙𝑙𝑙𝑙  ⨂ 𝑏𝑏𝑖𝑖

𝑝𝑝 ,𝑞𝑞

𝑙𝑙 ,𝑖𝑖=1

, 
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where 𝑙𝑙𝑙𝑙 ∈ 𝐴𝐴 and 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵, 1 ≤ 𝑙𝑙 ≤ 𝑝𝑝, 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞   then all 
𝑐𝑐𝑙𝑙,𝑖𝑖 = 𝑑𝑑𝑙𝑙 ,𝑖𝑖 . Subtracting one expression from the other, we 
only need to prove that 

∑ 𝑐𝑐𝑙𝑙𝑖𝑖  𝑙𝑙𝑙𝑙  ⨂ 𝑏𝑏𝑖𝑖
𝑝𝑝 ,𝑞𝑞
𝑙𝑙 ,𝑖𝑖=1 = 0 ... (4.1) 

implies that all  𝑐𝑐𝑙𝑙,𝑖𝑖 = 0. The bilinear functional  𝜑𝜑 ∶ 𝑉𝑉 ×
𝑊𝑊 → 𝑅𝑅 correspond one to one to any functions  𝑓𝑓 ∶ 𝐴𝐴 ×
𝐵𝐵 → 𝑅𝑅.The correspondence is  𝜑𝜑 ↔ 𝜑𝜑 | (𝐴𝐴 × 𝐵𝐵). Thus, the 
linear functionals 𝜑𝜑� ∶  𝑉𝑉 ⨂ 𝑊𝑊 → 𝑅𝑅 also correspond one to 
one to these functions  𝑓𝑓 ∶ 𝐴𝐴 × 𝐵𝐵 → 𝑅𝑅. 

If  (𝑙𝑙,𝑏𝑏) ∈ (𝐴𝐴 × 𝐵𝐵),   let  𝑓𝑓𝑙𝑙 ,𝑏𝑏 ∶  (𝐴𝐴 × 𝐵𝐵) → 𝑅𝑅  be the 
function taking the value 1on (a,b) and the value 0  on every 
other element of  (𝐴𝐴 × 𝐵𝐵). 

The corresponding linear functional will be denoted by  
𝜑𝜑�𝑙𝑙 ,𝑏𝑏 . Applying  𝜑𝜑�𝑙𝑙𝑙𝑙  ,𝑏𝑏𝑖𝑖  to equation (4.1), we see that all  

𝑐𝑐𝑙𝑙𝑖𝑖 = 0. This completes the proof. 

Proposition 1.8. If  𝜆𝜆𝑙𝑙 ∶  𝑉𝑉𝑙𝑙 → 𝑊𝑊𝑙𝑙   is an  𝑅𝑅 − 

linear map,1 ≤ 𝑙𝑙 ≤ 𝑘𝑘, there is a unique 𝑅𝑅 −linear map 

𝜆𝜆1⨂  … … .⨂ 𝜆𝜆𝑘𝑘 ∶  𝑉𝑉1⨂  … … .⨂ 𝑉𝑉𝑘𝑘  

→ 𝑊𝑊1⨂  … … .⨂ 𝑊𝑊𝑘𝑘  

which, on decomposable elements, has the formula 
(𝜆𝜆1⨂  … … .⨂ 𝜆𝜆𝑘𝑘) (𝑣𝑣1⨂  … … .⨂ 𝑣𝑣𝑘𝑘) 

                                  = 𝜆𝜆1(𝑣𝑣1)⨂  … … .⨂  𝜆𝜆𝑘𝑘(𝑣𝑣𝑘𝑘). 

Proof. We know the decomposable span. So, the uniqueness 
is immediate. For existence, let us define the multilinear 
map 

𝜆𝜆 ∶  𝑉𝑉1 ×  … … .×  𝑉𝑉𝑘𝑘 → 𝑊𝑊1⨂  … … .⨂ 𝑊𝑊𝑘𝑘  

by 

𝜆𝜆(𝑣𝑣1, … … . , 𝑣𝑣𝑘𝑘) = 𝜆𝜆1(𝑣𝑣1)⨂  … … .⨂  𝜆𝜆𝑘𝑘(𝑣𝑣𝑘𝑘). 

Then  𝜆𝜆1⨂  … … .⨂ 𝜆𝜆𝑘𝑘  is defined to be the unique associated 
linear map. Hence, the proof is complete. 

Definition 1.9. For the module of 𝑅𝑅 −linear functionals, the 
𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙  𝑉𝑉∗ of an 𝑅𝑅 −module 𝑉𝑉 is  𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅(𝑉𝑉,𝑅𝑅). 

Lemma 1.10. If  𝑉𝑉 has a finite free basis {𝑣𝑣1, …  
… … , 𝑣𝑣𝑛𝑛},  then  𝑉𝑉∗  has a finite free basis  {𝑣𝑣1, … 

… … , 𝑣𝑣𝑛𝑛},  called the basis and defined by  𝑣𝑣𝑙𝑙∗�𝑣𝑣𝑖𝑖 � 
= 𝛿𝛿𝑖𝑖𝑙𝑙 ,    1 ≤ 𝑙𝑙, 𝑖𝑖 ≤ 𝑛𝑛. 
Corollary  1.11. If  𝑉𝑉1, … … . ,𝑉𝑉𝑘𝑘  are free  𝑅𝑅 − 

modules on bases 𝐵𝐵1, … … . ,𝐵𝐵𝑘𝑘 , respectively, then  
𝑉𝑉1⨂  … … .⨂ 𝑉𝑉𝑘𝑘   is a free 𝑅𝑅 −module with basis 

𝐵𝐵 = {𝑣𝑣1⨂  … … .⨂ 𝑣𝑣𝑘𝑘 | 𝑣𝑣𝑙𝑙 ∈ 𝐵𝐵𝑙𝑙 ,   1 ≤ 𝑙𝑙 ≤ 𝑘𝑘}. 
Proposition 1.12. There is a unique 𝑅𝑅 −linear map 

𝑙𝑙 ∶  𝑉𝑉1
∗⨂… … …⨂𝑉𝑉𝑘𝑘∗ → (𝑉𝑉1⨂  … … .⨂ 𝑉𝑉𝑘𝑘)∗ 

which on decomposable elements has the formula 

𝑙𝑙(𝜂𝜂1⨂  … … .⨂ 𝜂𝜂𝑘𝑘) (𝑣𝑣1⨂  … … .⨂ 𝑣𝑣𝑘𝑘) 

                            = 𝜂𝜂1(𝑣𝑣1)⨂  … … .⨂  𝜂𝜂𝑘𝑘(𝑣𝑣𝑘𝑘). 

If the  𝑅𝑅 −modules  𝑉𝑉𝑙𝑙  are all free on finite bases, then  𝑙𝑙  is 
a canonical isomorphism.  

Proof. Since the decomposable span, uniqueness is 
immediate. For existence, consider the multi linear 
functional 

𝜃𝜃 ∶  𝑉𝑉1
∗ × … … … × 𝑉𝑉𝑘𝑘∗ × 𝑉𝑉1 × … … .×  𝑉𝑉𝑘𝑘 → 𝑅𝑅 

by 

𝜃𝜃(𝜂𝜂1, … … . , 𝜂𝜂𝑘𝑘 ,𝑣𝑣1  … … , 𝑣𝑣𝑘𝑘) 

                        = 𝜂𝜂1(𝑣𝑣1) … … .  𝜂𝜂𝑘𝑘(𝑣𝑣𝑘𝑘). 

by the universal property, this gives the associated linear 
functional 

𝜃𝜃 � : 𝑉𝑉1
∗⨂… … …⨂ 𝑉𝑉𝑘𝑘∗ ⨂ 𝑉𝑉1⨂  … … .⨂ 𝑉𝑉𝑘𝑘 → 𝑅𝑅, 

and we define  

𝑙𝑙 ∶  𝑉𝑉1
∗⨂… … …⨂𝑉𝑉𝑘𝑘∗ → (𝑉𝑉1⨂  … … .⨂ 𝑉𝑉𝑘𝑘)∗ 

by  

𝑙𝑙(𝜂𝜂)(𝑣𝑣) = 𝜃𝜃 �(𝜂𝜂 × 𝑣𝑣). 

If �𝑣𝑣𝑙𝑙,1, … … , 𝑣𝑣𝑙𝑙 ,𝐻𝐻𝑙𝑙� is a basis of  𝑉𝑉𝑙𝑙 , 1 ≤ 𝑙𝑙 ≤ 𝑘𝑘, let 

�𝑣𝑣𝑙𝑙,1∗ , … … , 𝑣𝑣𝑙𝑙 ,𝐻𝐻𝑙𝑙
∗ �  be the dual basis. Let 𝐵𝐵 and 𝐵𝐵∗ 

be the respective bases of 𝑉𝑉1⨂  … … .⨂ 𝑉𝑉𝑘𝑘  and  
𝑉𝑉1
∗⨂… … …⨂ 𝑉𝑉𝑘𝑘∗ given by the Corollary 1.11. The formula  

𝑙𝑙(𝑣𝑣1,𝑖𝑖1
∗ ⨂… …⨂ 𝑣𝑣𝑘𝑘 ,𝑖𝑖𝑘𝑘

∗ )(𝑣𝑣1,𝑙𝑙1⨂… …⨂𝑣𝑣𝑘𝑘 ,𝑙𝑙𝑘𝑘 ) 

                            = 𝛿𝛿𝑙𝑙1
𝑖𝑖1 … … 𝛿𝛿𝑙𝑙𝑘𝑘

𝑖𝑖𝑘𝑘 = 𝛿𝛿𝑙𝑙1…..….𝑙𝑙𝑘𝑘
𝑖𝑖1……𝑖𝑖𝑘𝑘  

shows that 𝑙𝑙 carries the basis 𝐵𝐵∗ one to one onto the basis 
dual to 𝐵𝐵, so 𝑙𝑙  is an isomorphism. This completes the proof. 

Definition 1.13. [3] A graded (associated) algebra 𝐴𝐴 over 𝑅𝑅 
is a sequence  {𝐴𝐴𝑛𝑛}𝑛𝑛=0

∞  of  𝑅𝑅 −modules, together 
with  𝑅𝑅 −bilinear maps (multiplication) 

𝐴𝐴𝑛𝑛 × 𝐴𝐴𝐻𝐻 → 𝐴𝐴𝑛𝑛+𝐻𝐻 ,   ∀𝑛𝑛,𝐻𝐻 ≥ 0, 

which is strongly associative in the sense that the 
compositions 

(𝐴𝐴𝑛𝑛 × 𝐴𝐴𝐻𝐻) × 𝐴𝐴𝑙𝑙
.×𝑙𝑙𝑑𝑑
�⎯� 𝐴𝐴𝑛𝑛+𝐻𝐻 × 𝐴𝐴𝑙𝑙

.
→ 𝐴𝐴𝑛𝑛+𝐻𝐻+𝑙𝑙 , 

𝐴𝐴𝑛𝑛 × (𝐴𝐴𝐻𝐻 × 𝐴𝐴𝑙𝑙)
𝑙𝑙𝑑𝑑×.
�⎯� 𝐴𝐴𝑛𝑛 × 𝐴𝐴𝐻𝐻+𝑙𝑙 .

→ 𝐴𝐴𝑛𝑛+𝐻𝐻+𝑙𝑙  

are equal,  ∀ 𝑛𝑛,𝐻𝐻, 𝑙𝑙 ≥ 0. 

Definition 1.14. If   𝑉𝑉 is an 𝑅𝑅 −module, then    𝒯𝒯(𝑉𝑉) with 
multiplication  ⨂,  is called the tensor algebra of  𝑉𝑉. It is 
clear that the tensor algebra  𝒯𝒯(𝑉𝑉)  is connected.   

Theorem 1.15.  If   𝜆𝜆 ∶ 𝑉𝑉 → 𝑊𝑊  is an  𝑅𝑅 −linear map, then 
there is a unique induced homomorphism  𝒯𝒯(𝜆𝜆):𝒯𝒯(𝑉𝑉) →
𝒯𝒯(𝑊𝑊) of graded 𝑅𝑅 −algebras such that  𝒯𝒯0(𝜆𝜆) = 𝑙𝑙𝑑𝑑𝑅𝑅   and  
𝒯𝒯1(𝜆𝜆) = 𝜆𝜆. 

This homomorphism satisfies 
𝒯𝒯𝑛𝑛(𝜆𝜆)(𝑣𝑣1 ⨂ 𝑣𝑣2 ⨂… … .⨂ 𝑣𝑣𝑛𝑛) 

             = 𝜆𝜆 (𝑣𝑣1) ⨂ 𝜆𝜆 (𝑣𝑣2) ⨂  … … .⨂ 𝜆𝜆(𝑣𝑣𝑛𝑛), 
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∀ 𝑛𝑛 ≥ 2, ∀ 𝑣𝑣𝑙𝑙 ∈ 𝑉𝑉, 1 ≤ 𝑙𝑙 ≤ 𝑛𝑛.  

Finally, this induced homomorphism makes  𝒯𝒯  a covariant 
function from the category of  𝑅𝑅 −modules 𝑅𝑅 −linear maps 
to the category of graded algebras over  𝑅𝑅  and graded 
algebra homomorphisms. 

Definition 1.16. The space of tensors on 𝑉𝑉 of type  (𝑙𝑙, 𝑠𝑠)  is 
the tensor product 

𝒯𝒯𝑠𝑠𝑙𝑙(𝑉𝑉) = 𝒯𝒯0
𝑙𝑙(𝑉𝑉) ⨂  𝒯𝒯𝑠𝑠0(𝑉𝑉). 

III. Exterior Algebra 

The 𝑅𝑅 −module  Λ𝑘𝑘(𝑉𝑉) is called the k th exterior power 
of  𝑉𝑉. The connected graded  𝑅𝑅 −algebra 

Λ(V) = {Λ𝑘𝑘(𝑉𝑉)}k=0
∞    

with multiplication 

Λ𝑝𝑝(𝑉𝑉) × Λ𝑞𝑞(𝑉𝑉)
Λ
→ Λ𝑝𝑝+𝑞𝑞(𝑉𝑉) 

is called the exterior algebra of   𝑉𝑉  [4]. 

Lemma 1.17. Let  𝑉𝑉  be an 𝑅𝑅 −module,  𝑣𝑣 ∈ 𝑉𝑉. Then  
𝑣𝑣 = −𝑣𝑣 ⟺ 𝑣𝑣 = 0. 

Proof. Let  𝑉𝑉  be an 𝑅𝑅 −module where 𝑣𝑣 ∈ 𝑉𝑉. Then  

𝑣𝑣 = 0 ⇒ 𝑣𝑣 = −𝑣𝑣. 

For the converse 

𝑣𝑣 = −𝑣𝑣 ⇒ 2𝑣𝑣 = 0 

   ⇒ 𝑣𝑣 = 1/2(2𝑣𝑣) 

   ⇒ 𝑣𝑣 = 1/2(0) 

      ∴ 𝑣𝑣 = 0. 

This completes the proof. 

Definition 1.18. Let  𝑉𝑉 and  𝑊𝑊  be  𝑅𝑅- modules.  

An antisymmetric  𝐾𝐾 − 𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 𝐻𝐻𝑙𝑙𝑝𝑝  𝜑𝜑 ∶  𝑉𝑉𝑘𝑘 → 𝑊𝑊  is a  
𝐾𝐾 − linear map such that 

𝜑𝜑�𝑣𝑣𝜎𝜎(1), … … … , 𝑣𝑣𝜎𝜎(𝑘𝑘)� 

= (−1)𝜎𝜎  𝜑𝜑 (𝑣𝑣1,𝑣𝑣2, … … , 𝑣𝑣𝑘𝑘),    ∀𝑣𝑣1,𝑣𝑣2, … … , 𝑣𝑣𝑘𝑘  

 ∈ 𝑉𝑉,∀ 𝜎𝜎 ∈ ∑𝑘𝑘 

where    (−1)𝜎𝜎 = � 1,     σ an even permutation,
−1, σ an odd permutation.

� 

Lemma 1.19. If  𝜑𝜑 ∶  𝑉𝑉𝑘𝑘 → 𝑊𝑊  is antisymmetric, then  
𝜑𝜑 � �𝔄𝔄𝑘𝑘(𝑉𝑉)� = {0}.  

Proof. It will be enough to show that  𝜑𝜑 � vanishes on a set 
spanning 𝔄𝔄𝑘𝑘(𝑉𝑉). Thus, if  𝑤𝑤 ∈ 𝒯𝒯𝑝𝑝(𝑉𝑉), 

𝑑𝑑 ∈ 𝒯𝒯𝑞𝑞(𝑉𝑉), 𝑝𝑝 + 𝑞𝑞 = 𝑘𝑘 − 2, and  𝑣𝑣1,𝑣𝑣2 ∈ 𝑉𝑉, we 

will show that 

𝜑𝜑 � (𝑤𝑤 ⨂ (𝑣𝑣1⨂ 𝑣𝑣2 + 𝑣𝑣2⨂ 𝑣𝑣1) ⨂ 𝑑𝑑) = 0. 

But the antisymmetry of   𝜑𝜑  implies that 

𝜑𝜑 � (𝑤𝑤 ⨂ 𝑣𝑣1⨂ 𝑣𝑣2⨂  𝑑𝑑) = −𝜑𝜑 � (𝑤𝑤 ⨂ 𝑣𝑣2⨂ 𝑣𝑣1⨂ 𝑑𝑑), 

and the assertion follows the linearity. 

Definition 1.20. An element  𝑤𝑤 ∈ Λ𝑘𝑘(𝑉𝑉)  that can be 
expressed in the form 𝑣𝑣1 ∧ 𝑣𝑣2 ∧ … …∧ 𝑣𝑣𝑘𝑘 ,   where 𝑣𝑣𝑙𝑙 ∈ 𝑉𝑉,
1 ≤ 𝑙𝑙 ≤ 𝑘𝑘, is said to be decomposable. Otherwise, 𝑤𝑤 is 
indecomposable. 

Definition 1.21. A graded algebra  𝐴𝐴  is anti 

commutative if  𝛼𝛼 ∈ 𝐴𝐴𝑘𝑘  and 𝛽𝛽 ∈ 𝐴𝐴𝑙𝑙 ⇒ 𝛼𝛼𝛽𝛽 = 

(−1)𝑘𝑘𝑙𝑙𝛽𝛽𝛼𝛼.  

Corollary 1.22. [3] The graded algebra  Λ(V)  is 
anticommutative. 

Proof. It is enough to verify the Definition 1.20. for 
decomposable elements of Λ𝑘𝑘(𝑉𝑉)and  Λ𝑙𝑙(𝑉𝑉). But that case 
is an elementary consequence of the case  𝑘𝑘 = 𝑙𝑙 = 1, and 
this latter case is given by 

   𝑣𝑣 ∧ 𝑤𝑤 = 𝑣𝑣 ⨂ 𝑤𝑤 + 𝔄𝔄2(𝑉𝑉) 

              = 𝑤𝑤 ⨂ 𝑣𝑣 + 𝔄𝔄2(𝑉𝑉) 

              = −𝑤𝑤 ∧ 𝑣𝑣, 

∀ 𝑣𝑣,𝑤𝑤 ∈ 𝑉𝑉. Thus the graded algebra Λ(V) is ticommutative. 

Corollary 1.23. If 𝑤𝑤 ∈ Λ2𝑙𝑙+1(𝑉𝑉), then  𝑤𝑤 ∧ 𝑤𝑤 = 0. 

 Proof. Let  𝑤𝑤 ∈ Λ2𝑙𝑙+1(𝑉𝑉). Then 

  𝑤𝑤 ∧ 𝑤𝑤 = (−1)(2𝑙𝑙+1)(2𝑙𝑙+1)(𝑤𝑤 ∧ 𝑤𝑤) 

             = 𝑤𝑤 ∧ 𝑤𝑤 

Now, by using Lemma 1.17., we have 

𝑤𝑤 ∧ 𝑤𝑤 = 0. 

This completes the proof 

Lemma 1.24. If 𝜆𝜆 ∶ 𝑉𝑉 → 𝑉𝑉 is linear, then  Λ𝐻𝐻 (𝜆𝜆 ) ∶
 Λ𝐻𝐻(𝑉𝑉) → Λ𝐻𝐻(𝑉𝑉)  is multiplication by  det(𝜆𝜆). 

Proof. Relative to a basis  {𝑙𝑙1, … … , 𝑙𝑙𝐻𝐻 }  of   𝑉𝑉, write 

𝜆𝜆(𝑙𝑙𝑙𝑙) = �𝑙𝑙𝑙𝑙
𝑖𝑖 𝑙𝑙𝑖𝑖 ,    1 ≤ 𝑙𝑙 ≤ 𝐻𝐻

𝐻𝐻

𝑖𝑖=1

 

then, 

Λ𝐻𝐻(𝜆𝜆 )(𝑙𝑙1 ∧ … …∧ 𝑙𝑙𝐻𝐻) 

= 𝜆𝜆 (𝑙𝑙1) ∧ … …∧ 𝜆𝜆 (𝑙𝑙𝐻𝐻) 

= ��𝑙𝑙1
𝑖𝑖 𝑙𝑙𝑖𝑖

𝐻𝐻

𝑖𝑖=1

� ∧ … …∧ ��𝑙𝑙𝐻𝐻
𝑖𝑖 𝑙𝑙𝑖𝑖

𝐻𝐻

𝑖𝑖=1

� 

= � 𝑙𝑙1
𝑖𝑖1 … …𝑙𝑙𝐻𝐻

𝑖𝑖𝐻𝐻  𝑙𝑙𝑖𝑖1 ∧ … …∧ 𝑙𝑙𝑖𝑖𝐻𝐻 .
1≤𝑖𝑖1,……,𝑖𝑖𝐻𝐻≤𝐻𝐻

 

Any term with a repeated j index vanishes. If   𝐽𝐽 =
(𝑖𝑖1, 𝑖𝑖2, … … , 𝑖𝑖𝐻𝐻) contains no repetitions, there is a unique 
permutation  𝜎𝜎 𝑖𝑖 ∈ ∑𝐻𝐻  such that 

𝑖𝑖𝜎𝜎𝑖𝑖 (𝑙𝑙) = 𝑙𝑙, 1 ≤ 𝑙𝑙 ≤ 𝐻𝐻. 
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Thus, 

Λ𝐻𝐻(𝜆𝜆 )(𝑙𝑙1 ∧ … …∧ 𝑙𝑙𝐻𝐻) 

= � � (−1)𝜎𝜎𝑙𝑙𝜎𝜎(1)
1 … …𝑙𝑙𝜎𝜎(𝐻𝐻)

𝐻𝐻

𝜎𝜎∈∑𝐻𝐻

� 𝑙𝑙1 ∧ … …∧ 𝑙𝑙𝐻𝐻  

= det(𝜆𝜆)(𝑙𝑙1 ∧ … …∧ 𝑙𝑙𝐻𝐻). 

Hence, the proof is complete. 

Lemma 1.25. If 𝑅𝑅 is a field, a set of vectors  
𝑤𝑤1,𝑤𝑤2, … … ,𝑤𝑤𝑘𝑘 ∈ 𝑉𝑉, 𝑘𝑘 ≥ 2, is linearly indepen- 

dent if and only if  𝑤𝑤1 ∧ 𝑤𝑤2 ∧ … …∧ 𝑤𝑤𝑘𝑘 ≠ 0. 

Proof. If 𝑅𝑅 is a field then consider the set of 
vectors  𝑤𝑤1,𝑤𝑤2, … … ,𝑤𝑤𝑘𝑘 ∈ 𝑉𝑉, 𝑘𝑘 ≥ 2. Again if the set is 
dependent, the existence of universe in 𝑅𝑅 allows us to 
assume, without loss of generality, that 

𝑤𝑤1 = �𝑙𝑙𝑙𝑙𝑤𝑤𝑙𝑙 .
𝑘𝑘

𝑙𝑙=2

 

Then 

 𝑤𝑤1 ∧ 𝑤𝑤2 ∧ … …∧ 𝑤𝑤𝑘𝑘   

= �𝑙𝑙𝑙𝑙𝑤𝑤𝑙𝑙 ∧ 𝑤𝑤2 ∧ … …∧ 𝑤𝑤𝑘𝑘 = 0.
𝑘𝑘

𝑙𝑙=2

 

Conversely, if the set is linearly independent, extend it to a 
basis by suitable choices of  𝑤𝑤𝑘𝑘+1, … … ,𝑤𝑤𝐻𝐻 ∈ 𝑉𝑉. Then, we 
have 

𝑤𝑤1 ∧ 𝑤𝑤2 ∧ … …∧ 𝑤𝑤𝑘𝑘 ∧ … …∧ 𝑤𝑤𝐻𝐻  

is a basis of the one-dimensional space  Λ𝐻𝐻(𝑉𝑉),  hence is not  
0. 

This completes the proof. 

Lemma 1.26. If 𝑉𝑉 is a free 𝑅𝑅 −module on a finite basis, then 
each  𝐴𝐴𝑘𝑘   is one to one, hence  𝐴𝐴 ∶  Λ(V)  ↪ 𝒯𝒯(𝑉𝑉) is a 
canonical graded linear imbedding. 

Proof. Let  {𝑙𝑙1, … … , 𝑙𝑙𝐻𝐻 } ⊂ 𝑉𝑉  be a basis and consider the 
basis 

 

�𝑙𝑙𝑙𝑙1 ∧ … …∧ 𝑙𝑙𝑙𝑙𝑘𝑘 �1≤𝑙𝑙1≤⋯…<𝑙𝑙𝑘𝑘≤𝑙𝑙𝐻𝐻
 

of  Λ𝑘𝑘(𝑉𝑉). Let {𝑙𝑙1
∗, … … , 𝑙𝑙𝑘𝑘∗} ⊂ 𝑉𝑉∗ be the dual basis. 

Since  𝒯𝒯𝑘𝑘(𝑉𝑉∗) = 𝒯𝒯𝑘𝑘(𝑉𝑉)∗, we obtain a subset   

 

�𝑙𝑙𝑖𝑖1
∗ ⨂… …⨂ 𝑙𝑙𝑖𝑖𝑘𝑘

∗ �
1≤𝑖𝑖1<⋯…<𝑖𝑖𝑘𝑘≤𝑖𝑖𝐻𝐻

⊂ 𝒯𝒯𝑘𝑘(𝑉𝑉)∗, 

which is a part of a free basis. Then, since   𝑖𝑖1 < ⋯ < 𝑖𝑖𝑘𝑘   
and   𝑙𝑙1 < ⋯ < 𝑙𝑙𝑘𝑘  , 

(𝑙𝑙𝑖𝑖1
∗ ⨂… …⨂ 𝑙𝑙𝑖𝑖𝑘𝑘

∗ )(𝐴𝐴𝑘𝑘(𝑙𝑙𝑙𝑙1 ∧ … …∧ 𝑙𝑙𝑙𝑙𝑘𝑘 ))  

= (𝑙𝑙𝑖𝑖1
∗ ⨂… …⨂ 𝑙𝑙𝑖𝑖𝑘𝑘

∗ )� � (−1)𝜎𝜎𝑙𝑙𝑙𝑙𝜎𝜎(1)⨂… … ⨂ 𝑙𝑙𝑙𝑙𝜎𝜎(𝑘𝑘)
𝜎𝜎∈∑𝑘𝑘

� 

= (𝑙𝑙𝑖𝑖1
∗ ⨂… …⨂ 𝑙𝑙𝑖𝑖𝑘𝑘

∗ )(𝑙𝑙𝑙𝑙1⨂… …⨂ 𝑙𝑙𝑙𝑙𝑘𝑘 ) 

= 𝛿𝛿  𝑙𝑙1…𝑙𝑙𝑘𝑘
 𝑖𝑖1…𝑖𝑖𝑘𝑘  

and the assertion follows. 

IV. Symmetric Algebra  

A  𝐾𝐾 −linear map  𝜑𝜑 ∶  𝑉𝑉𝑘𝑘 → 𝑊𝑊  is symmetric if, for each  
𝜎𝜎 ∈ ∑𝑘𝑘, 

𝜑𝜑 �𝑣𝑣𝜎𝜎(1), … … , 𝑣𝑣𝜎𝜎(𝑘𝑘)� = 𝜑𝜑(𝑣𝑣1, 𝑣𝑣2, … … , 𝑣𝑣𝑘𝑘), 

                               ∀ 𝑣𝑣1,𝑣𝑣2, … … , 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉. 

In the usual way, we build a universal, symmetric, 
 𝐾𝐾 −linear map   

𝑉𝑉𝑘𝑘  →̇ 𝔄𝔄𝑘𝑘(𝑉𝑉), 

Usually written with the dots  

 (𝑣𝑣1, 𝑣𝑣2, … … , 𝑣𝑣𝑘𝑘) ⟼ 𝑣𝑣1𝑣𝑣2 … … 𝑣𝑣𝑘𝑘 . 

Definition 1.27. [5] The space  𝔄𝔄𝑘𝑘(𝑉𝑉)  is called the k th 
symmetric power of  𝑉𝑉, where, as usual, 𝔄𝔄0(𝑉𝑉) =
𝑅𝑅 and  𝔄𝔄1(𝑉𝑉) = 𝑉𝑉. The connected, graded algebra  𝔄𝔄(𝑉𝑉) =
{𝔄𝔄𝑘𝑘(𝑉𝑉)}𝑘𝑘=0

∞  , with multiplication  ". ",  is called the 
symmetric algebra of  𝑉𝑉. 

Definition 1.28. Let 𝑉𝑉 be a finite dimensional vector space 
over a field  𝔽𝔽. A function  𝑓𝑓 ∶  𝑉𝑉 → 𝔽𝔽  is a homogeneous 
polynomial of degree  𝑘𝑘  on  𝑉𝑉  if, related to some basis  
{𝑙𝑙1, … … , 𝑙𝑙𝐻𝐻 }  of   𝑉𝑉, 

𝑓𝑓 ��𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙

𝐻𝐻

𝑙𝑙=1

� = 𝑃𝑃(𝑥𝑥1, … … , 𝑥𝑥𝐻𝐻) 

is a homogeneous polynomial of degree  𝑘𝑘  in the variables  
𝑥𝑥1, … … , 𝑥𝑥𝐻𝐻 . The vector space    of all homogeneous 
polynomials of degree  𝑘𝑘  on  𝑉𝑉  will be denoted by  𝑃𝑃𝑘𝑘(𝑉𝑉). 

V. The Module of Sections 

We are going to view the set of all vector bundles over a 
fixed manifold  𝑀𝑀 [5] as the objects of a category  𝑉𝑉𝑀𝑀 . Let 

𝜋𝜋 ∶ 𝐸𝐸 → 𝑀𝑀 

𝜌𝜌 ∶ 𝐹𝐹 → 𝑀𝑀 

be vector bundles (of possibly differing fibers dimensions). 
A homomorphism of the  𝑛𝑛 −plane bundle  𝐸𝐸  to the 
 𝐻𝐻−plane bundle 𝐹𝐹  is denoted by HOM (𝐸𝐸,𝐹𝐹)  is naturally 
called  𝐶𝐶∞(𝑀𝑀) − module. 

 

Theorem 1.29. [5] The 𝐶𝐶∞(𝑀𝑀) −linear map 𝛼𝛼 is a canonical 
isomorphism of   𝐶𝐶∞(𝑀𝑀) − modules. 

𝛤𝛤(𝐸𝐸) ⨂𝐶𝐶∞ (𝑀𝑀)𝛤𝛤(𝐹𝐹) = 𝛤𝛤(𝐸𝐸 ⨂ 𝐹𝐹). 
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Corollary 1.30. [5] There are canonical iso- morphisms  
𝐶𝐶∞(𝑀𝑀) − modules 

𝛤𝛤�𝒯𝒯𝑘𝑘(𝐸𝐸)� = 𝒯𝒯𝑘𝑘(𝛤𝛤(𝐸𝐸)) 

𝛤𝛤�𝛬𝛬𝑘𝑘(𝐸𝐸)� = 𝛬𝛬𝑘𝑘(𝛤𝛤(𝐸𝐸)) 

𝛤𝛤�𝑆𝑆𝑘𝑘(𝐸𝐸)� = 𝑆𝑆𝑘𝑘�𝛤𝛤(𝐸𝐸)�. 
Proof. The first part of these identities is an immediate 
consequence of theorem 1.29. There is canonical inclusion 

𝐴𝐴𝑘𝑘 ∶ 𝛬𝛬𝑘𝑘(𝛤𝛤(𝐸𝐸)) ↪ 𝒯𝒯𝑘𝑘(𝛤𝛤(𝐸𝐸)) 

 𝐴𝐴𝑘𝑘 ∶ 𝛤𝛤�𝛬𝛬𝑘𝑘(𝐸𝐸)� ↪ 𝛤𝛤�𝒯𝒯𝑘𝑘(𝐸𝐸)�. 
The second part comes from the bundle inclusions. The 
images of these inclusions correspond perfectly under the 
identification   𝒯𝒯𝑘𝑘�𝛤𝛤(𝐸𝐸)� = 𝛤𝛤�𝒯𝒯𝑘𝑘(𝐸𝐸)�, proving the second 
identity. Similarly the third part can be proof which is same 
as proof of second part.  

Lemma 1.31. If  F and  𝐸𝐸  are trivial bundles, then 𝛼𝛼 is an 
isomorphism of  𝐶𝐶∞(𝑀𝑀) − modules. 

Proof. In this case we choose the global sections 
{𝜎𝜎1, … … ,𝜎𝜎𝑛𝑛} of  𝐸𝐸 and  {𝒯𝒯1, … … ,𝒯𝒯𝐻𝐻 } of  𝐹𝐹 which trivialize 
these bundles. These are free bases of the respective 
 𝐶𝐶∞(𝑀𝑀) − modules  𝛤𝛤(𝐸𝐸)  and  𝛤𝛤(𝐹𝐹), so 

�𝜎𝜎𝑙𝑙⨂𝐶𝐶∞ (𝑀𝑀)𝒯𝒯𝑖𝑖 �𝑙𝑙,𝑖𝑖=1
𝑛𝑛 ,𝐻𝐻

 

is a free basis of   𝛤𝛤(𝐸𝐸) ⨂𝐶𝐶∞ (𝑀𝑀) 𝛤𝛤(𝐹𝐹). The set 

�𝜎𝜎𝑙𝑙  ⨂ 𝒯𝒯𝑖𝑖 �𝑙𝑙,𝑖𝑖=1
𝑛𝑛 ,𝐻𝐻

 

of point wise tensor products of sections trivializes the 
bundle  𝐸𝐸⨂𝐹𝐹, hence this is also a free basis of   𝛤𝛤(𝐸𝐸⨂𝐹𝐹). 
Since 

𝛼𝛼 �𝜎𝜎𝑙𝑙⨂𝐶𝐶∞ (𝑀𝑀)𝒯𝒯𝑖𝑖 � = 𝜎𝜎𝑙𝑙  ⨂ 𝒯𝒯𝑖𝑖 , 

for all relevant indices, we see that  𝛼𝛼  is an isomorphism of   
𝐶𝐶∞(𝑀𝑀) − modules. This completes the proof. 

Theorem 1.32. If  𝐹𝐹 ⊆ 𝐸𝐸  is a vector subbundle and if there 
is given Riemannian metric on 𝐸𝐸,  then the subset  𝐹𝐹� ⊆ 𝐸𝐸,  
fiber wise perpendicular to  𝐹𝐹,  is a subbundle. 

Proof. Here the local triviality all that needs to be proven. 
There are sections  𝜎𝜎1, … … ,𝜎𝜎𝑙𝑙 ,𝜎𝜎𝑙𝑙+1, 

  … … ,𝜎𝜎𝑛𝑛  of  𝐸𝐸|𝑈𝑈, trivializing that bundle, where 𝑈𝑈 is a 
neighborhood of an arbitrary point of  𝑀𝑀. These can be 
chosen so that  𝜎𝜎1, … … ,𝜎𝜎𝑙𝑙  are sections of 𝐹𝐹|𝑈𝑈 which 
trivialize that bundle an application of Gran-Schmidt turns 
these into fiberwise orthonormal sections  𝑆𝑆1, … … , 𝑆𝑆𝑙𝑙 , 𝑆𝑆𝑙𝑙+1 

  , … … , 𝑆𝑆𝑛𝑛   with the same properties. It follows that 
  𝑆𝑆𝑙𝑙+1, … … , 𝑆𝑆𝑛𝑛  are trivializing sections of  𝐹𝐹�|𝑈𝑈, proving that 
 𝐹𝐹� is a subbundle of  𝐸𝐸. Hence the proof is complete. 
 
VI. Conclusion 

A theorem 1.32 is established which is related with a 
Riemannian metric on the bundle  𝑀𝑀 × 𝑉𝑉. For each  𝑥𝑥 ∈ 𝑀𝑀,  
let  𝐸𝐸�𝑥𝑥 ⊂ {𝑥𝑥} × 𝑉𝑉 be the subspace orthogonal to  𝐸𝐸𝑥𝑥⊥ . 
Consequently the set  𝐸𝐸� = ⋃  𝐸𝐸�𝑥𝑥𝑥𝑥∈𝑀𝑀   is a subbundle of   
𝑀𝑀 × 𝑉𝑉. Also this theorem will follow form a theorem in 
dimension theory. 
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