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Abstract 

 The local equations that characterize the submanifolds 𝑁𝑁 of a Dirac manifold 𝑀𝑀 is an isotropic (coisotropic) submanifold of 𝑇𝑇𝑀𝑀 endowed with the 
tangent Dirac structure. In the Poisson case which is a result of𝑋𝑋𝑋𝑋: the submanifold 𝑁𝑁 has a normal bundle which is a coisotropic submanifold of 
𝑇𝑇𝑀𝑀 with the tangent Poisson structure if and only if 𝑁𝑁 is a Dirac submanifold. In this paper we have proved a theorem in the general Poisson case 
that the fixed point set  𝑀𝑀𝐺𝐺  has a natural induced Poisson structure that implies a Poisson-Dirac submanifolds, where 𝐺𝐺 × 𝑀𝑀 →  𝑀𝑀 be a proper 
Poisson action. 
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I. Introduction 

𝑋𝑋𝑋𝑋P

1 has proved that the Dirac submanifolds of the Poisson 
manifold (𝑀𝑀,𝑃𝑃) are characterized by the nice property of 
having a normal bundle which is a coisotropic submanifold 
of the tangent manifold 𝑇𝑇𝑀𝑀  endowed with the tangent 
Poisson structure. All the terms of 𝑋𝑋𝑋𝑋’s result, including the 
notion of a tangent Dirac structure2, are also defined for 
Dirac manifolds, and 𝑋𝑋𝑋𝑋 ’s result indicates interesting 
connections between the geometry of a submanifold 𝑁𝑁 of a 
Dirac manifold 𝑀𝑀 and the geometry of a normal bundle of 𝑁𝑁 
in the tangent manifold 𝑇𝑇𝑀𝑀. This is the motivation1 of the 
present paper. We discuss the geometric configuration of 
𝑋𝑋𝑋𝑋’s result in the general case of a Dirac manifold. The 
terms of the theorem are  either new or not popular, and are 
based on either new or not popular geometric constructions. 
Accordingly, it is an objective of the paper to explain these 
terms in detail. Particularly, we recall the general 
construction of the vertical and complete lifts of tensor 
fields from a manifold 𝑀𝑀 to the total space of the tangent 
bundle 𝑇𝑇𝑀𝑀, and the main properties of these operations3. We 
use these lifts in order to give a simple definition of the 
tangent Dirac structure and make some new remarks about 
it. Then, we turn to submanifolds. We define various classes 
of submanifolds of a Dirac manifold and characterize them 
via local coordinates and bases. Furthermore, we obtain the 
local conditions that characterize submanifolds of (𝑀𝑀,𝐷𝐷) 
with a normal bundle 𝑁𝑁 which is either a coisotropic or an 
isotropic submanifold of 𝑇𝑇𝑀𝑀 . These formulas imply the 
result proved by 𝑋𝑋𝑋𝑋  in the case of Poisson manifolds. 
Another consequence of the established formulas is that the 
analogs of Dirac submanifolds of a presymplectic manifold 
𝑀𝑀  are characterized by the existence of a normal bundle 
which is isotropic in 𝑇𝑇𝑀𝑀. 

Theorem 1.1. Let 𝐺𝐺 × 𝑀𝑀 →  𝑀𝑀 be a proper Poisson action. 
Then the fixed point set 𝑀𝑀𝐺𝐺   has a natural induced Poisson 
structure. 

Proper Poisson actions have been studied intensively in the 
last 15 years. For example, the theory of reduction for 
Hamiltonian systems has been developed extensively for 

 

these kinds of actions. We refer the reader to the recent 
monograph by Ortega and Ratiu4 for a survey of results in 
this area. Theorem 1.1 should have important applications in 
symmetry reduction and this is one of our main motivations 
for this work.  

This paper is organized as follows: (i) Section 2 provides a 
simple definition of the tangent Dirac structure; (ii) Section 
3 recalls the notion of a Poisson-Dirac submanifold; (iii) 
some related results needed for the proof of Theorem 1.1 
presented in Section 4 and (iv) deduction of some 
consequences and their applications presented in Section 5.  

II. Tangent Dirac Structures 

Now, we use the complete and vertical lifts in order to 
define the notion of a tangent Dirac structure first 
introduced by Courant2 and make some new remarks about 
it. The Dirac structures are defined as a class of subbundles 
of the vector bundle 𝐸𝐸(𝑀𝑀)  =  𝑇𝑇𝑀𝑀 ⊕  𝑇𝑇∗𝑀𝑀 . The bundle 
𝐸𝐸(𝑀𝑀) has several interesting geometric objects. The first is 
the non degenerate metric of zero signature 

𝑔𝑔�(𝑋𝑋,𝛼𝛼), (𝑌𝑌,𝛽𝛽)� = 1
2
�𝛼𝛼(𝑌𝑌 ) +  𝛽𝛽(𝑋𝑋)�   (2.1) 

where X, Y are tangent vectors and α, α  are tangent 
covectors at 𝑥𝑥 ∈  𝑀𝑀 The second 𝐹𝐹 ∈ 𝛤𝛤𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸(𝑀𝑀))R is given 
by 
 𝐹𝐹(𝑋𝑋,𝛼𝛼)  =  (𝑋𝑋,−𝛼𝛼),                    (2.2)                          
which is a so-called para-Hermitian structure5. The third 
object is the non degenerate 2-form 

((𝑋𝑋,𝛼𝛼), (𝑌𝑌,𝛽𝛽))  =  𝑔𝑔((𝑋𝑋,𝛼𝛼),𝐹𝐹(𝑌𝑌,𝛽𝛽))  = 1
2

((𝛼𝛼(𝑌𝑌 )  −
 𝛽𝛽(𝑋𝑋)).                                (2.3) 

Definition 2.1. A maximal 𝑔𝑔 − isotropic subbundle 𝐴𝐴 ⊆
 𝐸𝐸(𝑀𝑀) is called an almost Dirac structure on M.  

The almost Dirac structure can be interpreted in terms of 
𝑇𝑇𝑀𝑀  alone. The pair (𝐴𝐴,𝜛𝜛), where 𝐴𝐴  is the generalized 
distribution defined as the natural projection of 𝐴𝐴  on 𝑇𝑇𝑀𝑀 
and, ∀𝑥𝑥 ∈  𝑀𝑀,𝜛𝜛𝑥𝑥 ∈ ∧2 𝐴𝐴𝑥𝑥∗   is the 2-form induced by 𝜔𝜔  of 
(2.3) (∀𝑋𝑋,𝑌𝑌 ∈  𝐴𝐴𝑥𝑥 , the value produced by (2.3) does not 
depend on the choice of 𝛼𝛼,𝛽𝛽). Conversely, the pair (𝐴𝐴,𝜛𝜛) 
allows us to reconstruct 𝐴𝐴 as follows: 
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 𝐴𝐴 =  {(𝑋𝑋,𝛼𝛼) /𝑋𝑋 ∈  𝐴𝐴 & 𝛼𝛼|𝐴𝐴  =  𝑖𝑖(𝑋𝑋)𝜛𝜛}.  (2.4) 

The next important thing for the bundle 𝐸𝐸(𝑀𝑀) is the Courant 
bracket6, which is the operation defined on 𝛤𝛤𝐸𝐸(𝑀𝑀)P

 by 

  
[(𝑋𝑋,𝛼𝛼), (𝑌𝑌,𝛽𝛽)]  =
 ([𝑋𝑋,𝑌𝑌 ], 𝐿𝐿𝑋𝑋𝛽𝛽 −  𝐿𝐿𝑌𝑌  𝛼𝛼 +  𝐸𝐸(𝜔𝜔((𝑋𝑋,𝛼𝛼), (𝑌𝑌,𝛽𝛽)))) 

   =  ([𝑋𝑋,𝑌𝑌 ], 𝑖𝑖(𝑋𝑋)𝐸𝐸𝛽𝛽 −  𝑖𝑖(𝑌𝑌 )𝐸𝐸𝛼𝛼 +    1
2
𝐸𝐸(𝛽𝛽(𝑋𝑋)  −  𝛼𝛼(𝑌𝑌 )))                    

  (2.5) 

where 𝑋𝑋,𝑌𝑌 are vector fields and 𝛼𝛼,𝛽𝛽 are differential 1-forms 
on 𝑀𝑀, [𝑋𝑋,𝑌𝑌 ] is the usual Lie bracket and 𝐿𝐿 denotes the Lie 
derivative. The Courant bracket is skew-symmetric but 
satisfies a more complicated than the Jacobi identity. 

Definition 2.2. An almost Dirac structure 𝐷𝐷 ⊆  𝐸𝐸(𝑀𝑀)  is 
called a Dirac structure on 𝑀𝑀  if  𝛤𝛤𝐷𝐷 is closed by Courant 
brackets.  

Xu1 proved that the almost Dirac structure is Dirac if and 
only if the equivalent pair (𝐴𝐴,𝜛𝜛)  satisfies the following 
conditions:  

i) A is a generalized foliation, 

ii) the form 𝜛𝜛 is closed along the leaves of A.  

This means that the leaves of A are presymplectic manifolds 
and are called the presymplectic leaves of 𝐷𝐷. If the leaves 
are symplectic then 𝐷𝐷 is equivalent to a Poisson structure. 
Namely, if 𝑃𝑃 is the corresponding Poisson bi-vector field, 
the Dirac structure is 

𝐷𝐷𝑃𝑃  =  {(𝑖𝑖(𝛼𝛼)𝑃𝑃,𝛼𝛼) / 𝛼𝛼 ∈  𝑇𝑇∗𝑀𝑀}.            (2.6)                                 

If the leaves are the connected components of 𝑀𝑀, 𝐷𝐷  is a 
presymplectic structure on 𝑀𝑀 with the presymplectic form  
𝜛𝜛 such that  

𝐷𝐷 =  𝐷𝐷𝜛𝜛  =  {(𝑋𝑋, 𝑖𝑖(𝑋𝑋)𝜛𝜛) /𝑋𝑋 ∈  𝑇𝑇𝑀𝑀}.   (2.7)                                                   

III. Poisson-Dirac Submanifolds 

Let 𝑀𝑀  be a Poisson manifold. For background in Poisson 
geometry we refer the reader to Vaisman’s book7. We 
denote the Poisson bi-vector field by 𝜋𝜋 ∈  𝜒𝜒2(M) so that the 
Poisson bracket is given by: 

{𝑓𝑓,𝑔𝑔}  =  𝜋𝜋(𝐸𝐸𝑓𝑓,𝐸𝐸𝑔𝑔),∀𝑓𝑓,𝑔𝑔 ∈  𝐶𝐶∞(𝑀𝑀). 

Recall that a Poisson submanifold 𝑁𝑁 ⊂  𝑀𝑀 is a submanifold 
which has a Poisson bracket and for which the inclusion 
𝑖𝑖 ∶  𝑁𝑁 →  𝑀𝑀 is a Poisson map: 

{𝑓𝑓 𝜊𝜊 𝑖𝑖,𝑔𝑔 𝑜𝑜 𝑖𝑖}𝑀𝑀  =  {𝑓𝑓,𝑔𝑔}𝑁𝑁  𝑜𝑜 𝑖𝑖,    ∀𝑓𝑓,𝑔𝑔 ∈ 𝐶𝐶∞(𝑁𝑁). 

Such Poisson submanifolds are, in a sense, extremely rare. 
In fact, they are collections of open subsets of symplectic 
leaves of 𝑀𝑀. 

Example 3.1. Let 𝑀𝑀  be a symplectic manifold with 
symplectic form 𝜔𝜔. Recall that a symplectic submanifold is 
a submanifold  𝑖𝑖 ∶  𝑁𝑁 →  𝑀𝑀 such that the restriction  𝑖𝑖 ∗ 𝜔𝜔 is 
a symplectic form on 𝑁𝑁 . For every even dimension 0 ≤
 2𝑖𝑖 ≤  𝐸𝐸𝑖𝑖𝑑𝑑 𝑀𝑀,   there are symplectic submanifolds of 

dimension 2𝑖𝑖 . On the other hand, the only Poisson 
submanifolds are the open subsets of  𝑀𝑀.  

Crainic and Fernandes8 introduce the following natural 
extension of the notion of a Poisson submanifold:  

Definition 3.1. Let 𝑀𝑀 be a Poisson manifold. A submanifold 
𝑁𝑁 ⊂  𝑀𝑀  is called a Poisson-Dirac submanifold if 𝑁𝑁  is a 
Poisson manifold such that: 

(i)  the symplectic foliation of 𝑁𝑁 is  

        𝑁𝑁 ∩  𝐹𝐹 =  {𝐿𝐿 ∩  𝑁𝑁 ∶  𝐿𝐿 ∈  𝐹𝐹}, and 

(ii) for every leaf 𝐿𝐿 ∈  𝐹𝐹, 𝐿𝐿 ∩  𝑁𝑁  is a symplectic 
submanifold of 𝐿𝐿. 

Note that if (𝑀𝑀, {・,・})  is a Poisson manifold, then the 
symplectic foliation with the induced symplectic forms on 
the leaves, gives a smooth foliation with a smooth family of 
symplectic forms. Conversely, given a manifold 𝑀𝑀 with a 
foliation 𝐹𝐹  furnished with a smooth family of symplectic 
forms on the leaves, then we have a Poisson bracket on 𝑀𝑀 
defined by the formula  

{𝑓𝑓,𝑔𝑔}  ≡  𝑋𝑋𝑓𝑓(𝑔𝑔) 
for which the associated symplectic foliation is precisely 𝐹𝐹. 
Hence, a Poisson structure can be defined by specifying its 
symplectic foliation9. It follows that a submanifold 𝑁𝑁 of a 
Poisson manifold 𝑀𝑀  has at most one Poisson structure 
satisfying conditions (i) and (ii) above, and this Poisson 
structure is completely determined by the Poisson structure 
of  𝑀𝑀. 

Example 3.2. Let 𝐿𝐿  be a symplectic leaf of a Poisson 
manifold, and 𝑁𝑁 ⊂  𝑀𝑀 a submanifold which is transverse to 
𝐿𝐿 at some 𝑥𝑥0: 

𝑇𝑇𝑥𝑥0𝑀𝑀 =  𝑇𝑇𝑥𝑥0𝐿𝐿 ⊕  𝑇𝑇𝑥𝑥0𝑁𝑁. 
Then one can check that conditions (i) and (ii) in Definition 
3.1 are satisfied in some open subset in N containing𝑥𝑥0. In 
other words, if 𝑁𝑁 is small enough then it is a Poisson-Dirac 
submanifold. Sometimes one calls the Poisson structure on 
𝑁𝑁 the transverse Poisson structure to 𝐿𝐿 at 𝑥𝑥0, up to Poisson 
diffeomorphisms, this structure does not depend on the 
transversal 𝑁𝑁.  

The two conditions in Definition 3.1 are not very practical 
to use. Let us give some alternative criteria to determine if a 
given submanifold is a Poisson Dirac submanifold.  

Observe that condition (ii) in the definition means that the 
symplectic forms on a leaf 𝐿𝐿 ∩ 𝑁𝑁 are the pull-backs 𝑖𝑖 ∗ 𝜔𝜔𝐿𝐿, 
where 𝑖𝑖 ∶  𝑁𝑁 ∩ 𝐿𝐿 →  𝐿𝐿 is the inclusion into a leaf and 𝜔𝜔𝐿𝐿 ∈
 𝛺𝛺2(𝐿𝐿)  is the symplectic form. Denoting by #: 𝑇𝑇 ∗ 𝑀𝑀 →
 𝑇𝑇𝑀𝑀  the bundle map determined by the Poisson bivector 
field, we conclude that we must have 

         𝑇𝑇𝑁𝑁 ∩  #(𝑇𝑇𝑁𝑁0)  =  {0},                   (3.1)                  

Since the left-hand side is the kernel of the pull-back 𝑖𝑖 ∗ 𝜔𝜔𝐿𝐿. 
If this condition holds, then at each point 𝑥𝑥 ∈  𝑁𝑁 we obtain 
a bivector 𝜋𝜋𝑁𝑁(𝑥𝑥)  ∈ ∧2 𝑇𝑇𝑥𝑥𝑁𝑁  and one can prove in Crainic 
and Fernandes8. 
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Proposition 3.1. Let 𝑁𝑁  be a submanifold of a Poisson 
manifold 𝑀𝑀 such that 

(a) equation (3.1) holds,  and 

(b) the induced tensor 𝜋𝜋𝑁𝑁 is smooth. 

Then 𝜋𝜋𝑁𝑁  is a Poisson tensor and 𝑁𝑁  is a Poisson-Dirac 
submanifold.  

Remark 3.1. Equation (3.1) can be interpreted in terms of 
the Dirac theory of constraints. This is the reason for the use 
of the term “Poisson-Dirac submanifold”. We refer the 
reader to Crainic and Fernandes8 for more explanations.  

On the other hand, from Proposition 3.1, we deduce the 
following sufficient condition for a submanifold to be a 
Poisson-Dirac submanifold. 

Corollary 3.1. Let 𝑀𝑀 be a Poisson manifold and 𝑁𝑁 ⊂  𝑀𝑀 a 
submanifold. Assume that there exists a subbundle 𝐸𝐸 ⊂
 𝑇𝑇𝑁𝑁𝑀𝑀 such that: 

𝑇𝑇𝑁𝑁𝑀𝑀 =  𝑇𝑇𝑁𝑁 ⊕  𝐸𝐸 and #(𝐸𝐸0)  ⊂  𝑇𝑇𝑁𝑁. 

Then 𝑁𝑁 is a Poisson-Dirac submanifold. 

Proof. Under the assumptions of the corollary, one has a 
decomposition  

α = 𝜋𝜋𝑁𝑁 + 𝜋𝜋𝐸𝐸  

where 𝜋𝜋𝑁𝑁  ∈  𝛤𝛤(∧2 𝑇𝑇𝑁𝑁) and  𝜋𝜋𝐸𝐸  ∈ 𝛤𝛤(∧2E) are both smooth 
bivector fields. On the other hand, one checks easily that 
(2.1) holds. By Proposition 3.1, we conclude that 𝑁𝑁  is a 
Poisson-Dirac submanifold.  

There are Poisson-Dirac submanifolds which do not satisfy 
the conditions of this corollary. Also, the bundle 𝐸𝐸 may not 
be unique. For a detailed discussion and examples we refer 
to Crainic and Fernandes8. Under the assumptions of the 
corollary, the Poisson bracket on the Poisson-Dirac 
submanifold 𝑁𝑁 ⊂  𝑀𝑀 is quite simple to describe: Given two 
smooth functions 𝑓𝑓,𝑔𝑔 ∈  𝐶𝐶∞(𝑁𝑁),  to obtain their Poisson 
bracket we pick extensions  𝑓𝑓,𝑔𝑔�  ∈  𝐶𝐶∞(𝑀𝑀)  such that 
𝐸𝐸𝑥𝑥  𝑓𝑓,𝐸𝐸𝑥𝑥𝑔𝑔�  ∈  𝐸𝐸𝑥𝑥0 . Then the Poisson bracket on 𝑁𝑁  is given 
by: 

  {𝑓𝑓,𝑔𝑔}𝑁𝑁  =  { 𝑓𝑓,𝑔𝑔�}|𝑁𝑁                               (3.2) 

It is not hard to check that this formula does not depend on 
the choice of extensions. 

IV. Fixed Point Sets of Proper Poisson Actions 

In this section we will give a proof of Theorem 1.1, which 
we restate now as follows: 

Theorem 4.1. Let 𝐺𝐺 × 𝑀𝑀 →  𝑀𝑀 be a proper Poisson action. 
Then the fixed point set 𝑀𝑀𝐺𝐺  is a Poisson-Dirac submanifold.  

Since the action is proper, the fixed point set  𝑀𝑀𝐺𝐺  is an 
embedded submanifold of 𝑀𝑀 . Its connected components 
may have different dimensions, but our argument will be 
valid for each such component, so we will assume that  𝑀𝑀𝐺𝐺  
is a connected submanifold. The proof will consist in 
showing that there exists a subbundle 𝐸𝐸 ⊂ 𝑇𝑇 𝑀𝑀𝐺𝐺𝑀𝑀  satisfy 

the conditions of Corollary 3.1. First of all, given any action 
𝐺𝐺 ×  𝑀𝑀 →  𝑀𝑀  (proper or not) there exists a lifted action 
𝐺𝐺 ×  𝑇𝑇𝑀𝑀 →  𝑇𝑇𝑀𝑀.  For proper actions we have the following 
basic property: 

Proposition 4.1. If 𝐺𝐺 × 𝑀𝑀 →  𝑀𝑀  is a proper action then 
there exists a 𝐺𝐺-invariant metric on 𝑇𝑇𝑀𝑀.  

For a proof of this fact and other elementary properties of 
proper actions, we refer to Duistermaat and Kolk10. 
Explicitly, the 𝐺𝐺-invariance of the metric means that:  

〈𝑔𝑔. 𝑣𝑣,𝑔𝑔.𝑤𝑤〉𝑔𝑔 .𝑝𝑝 = 〈𝑋𝑋,𝑤𝑤〉𝑝𝑝    ∀𝑋𝑋,𝑤𝑤 ∈ 𝑇𝑇𝑝𝑝𝑀𝑀 

where 𝑔𝑔 ∈  𝐺𝐺 and 𝑝𝑝 ∈  𝑀𝑀.  

We fix, once and for all, a 𝐺𝐺-invariant metric 〈  , 〉 for our 
proper Poisson action 𝐺𝐺 ×  𝑀𝑀 →  𝑀𝑀.  Let us consider the 
subbundle 𝐸𝐸 ⊂  𝑇𝑇𝑀𝑀𝐺𝐺𝑀𝑀 which is orthogonal to 𝑇𝑇𝑀𝑀𝐺𝐺 :  

𝐸𝐸 =  {𝑣𝑣 ∈  𝑇𝑇𝑀𝑀𝐺𝐺𝑀𝑀 ∶  〈𝑋𝑋, 𝑣𝑣〉 =  0,∀𝑤𝑤 ∈ 𝑇𝑇𝑀𝑀𝐺𝐺}. 

Lemma 4.1. 𝑇𝑇𝑀𝑀𝐺𝐺𝑀𝑀 = 𝑇𝑇𝑀𝑀𝐺𝐺 ⊕  𝐸𝐸 and #(𝐸𝐸0)  ⊂  𝑇𝑇𝑀𝑀𝐺𝐺 . 

Proof.  Since 𝐸𝐸 =  (𝑇𝑇𝑀𝑀𝐺𝐺)⊥ ,  the decomposition 𝑇𝑇𝑀𝑀𝐺𝐺𝑀𝑀 =
 𝑇𝑇𝑀𝑀𝐺𝐺 is obvious. Now for a proper action, we have 
(𝑇𝑇𝑀𝑀)𝐺𝐺 =  𝑇𝑇𝑀𝑀𝐺𝐺  so this decomposition can also be written 
as:  

             𝑇𝑇𝑀𝑀𝐺𝐺𝑀𝑀 =  (𝑇𝑇𝑀𝑀)𝐺𝐺  ⊕  𝐸𝐸             (4.1) 

On the other hand, we have the lifted cotangent action  
𝐺𝐺 ×  𝑇𝑇 ∗ 𝑀𝑀 →  𝑇𝑇 ∗ 𝑀𝑀, which is related to the lifted tangent 
action by 

𝑔𝑔 ・ 𝜉𝜉(𝑣𝑣) =  𝜉𝜉(𝑔𝑔−1・ 𝑣𝑣), 𝜉𝜉 ∈  𝑇𝑇 ∗ 𝑀𝑀, 𝑣𝑣 ∈  𝑇𝑇𝑀𝑀. 

We claim that 

                  𝐸𝐸0 ⊂  (𝑇𝑇 ∗ 𝑀𝑀)𝐺𝐺 .                     (4.2) 

In fact, if 𝑣𝑣 ∈  𝑇𝑇𝑀𝑀  we can use (4.1) to decompose it as 
𝑣𝑣 =  𝑣𝑣𝐺𝐺  +  𝑣𝑣𝐸𝐸 , where 𝑣𝑣𝐺𝐺 ∈  (𝑇𝑇𝑀𝑀)𝑀𝑀  and 𝑣𝑣𝐸𝐸 ∈  𝐸𝐸 . Hence, 
for 𝜉𝜉 ∈  𝐸𝐸0   we find 

 𝑔𝑔 ・ 𝜉𝜉 =  𝜉𝜉(𝑔𝑔−1 ・ 𝑣𝑣𝐺𝐺   +  𝑔𝑔−1 ・𝑣𝑣𝐸𝐸) 

                 =  𝜉𝜉(𝑣𝑣𝐺𝐺)  +  𝜉𝜉(𝑔𝑔−1・ 𝑣𝑣𝐸𝐸) 

                 =  𝜉𝜉(𝑣𝑣𝐺𝐺) 

                 = 𝜉𝜉(𝑣𝑣𝐺𝐺) + 𝜉𝜉(𝑣𝑣𝐸𝐸) = α(𝑣𝑣𝐺𝐺  +  𝑣𝑣𝐸𝐸). 

We conclude that 𝑔𝑔・ 𝜉𝜉 =  𝜉𝜉 and (4.2) follows. 

Since 𝐺𝐺 ×  𝑀𝑀 →  𝑀𝑀  is a Poisson action, we see that 
# ∶  𝑇𝑇 ∗ 𝑀𝑀 →  𝑇𝑇𝑀𝑀 is a 𝐺𝐺-equivariant bundle map. Hence, if 
𝜉𝜉 ∈  𝐸𝐸0, we obtain from (4.2) that: 

𝑔𝑔・#𝜉𝜉 =  #(𝑔𝑔・ 𝜉𝜉)  =  #𝜉𝜉. 

This means that  #𝜉𝜉 ∈  (𝑇𝑇𝑀𝑀)𝐺𝐺  =  𝑇𝑇𝑀𝑀𝐺𝐺 ,  

so the Lemma holds.  

This Lemma shows that the conditions of Corollary 3.1 are 
satisfied, so 𝑀𝑀𝐺𝐺  is a Poisson-Dirac submanifold and the 
proof of Theorem 4.1 is completed. 
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V.  Applications 

Example 5.1. Let ℂ𝐸𝐸+1 be the complex (𝐸𝐸 + 1)-dimensional 
space with holomorphic coordinates (𝑧𝑧0, . . . , 𝑧𝑧𝐸𝐸)  and anti-
holomorphic coordinates (𝑧𝑧0� , . . . , 𝑧𝑧𝐸𝐸�)  . On the (real) 
manifold ℂ𝐸𝐸+1 − 0  we will consider a (real) quadratic 
Poisson bracket of the form: 

 �𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗 � =  𝑎𝑎𝑖𝑖𝑗𝑗 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗  , �𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗�� =  �𝑧𝑧𝑖𝑖� , 𝑧𝑧𝑗𝑗�� = 0.  

where 𝐴𝐴 =  (𝑎𝑎𝑖𝑖𝑗𝑗  ) is a skew-symmetric matrix. 

The group ℂ∗ of non-zero complex numbers acts on 
ℂ𝐸𝐸+1 − 0 by multiplication of complex numbers. This is a 
free and proper Poisson action, so the quotient ℂ𝑃𝑃(𝐸𝐸)  =
 ℂ𝐸𝐸+1 − 0/ℂ∗   inherits a Poisson bracket. 

Let us consider now the action of the 𝐸𝐸 − torus 𝑇𝑇𝐸𝐸 on 
ℂ𝐸𝐸+1 − 0defined by: 

(𝜃𝜃1, . . . ,𝜃𝜃𝐸𝐸)・ (𝑧𝑧0, 𝑧𝑧1, … . , 𝑧𝑧𝐸𝐸)  =  (𝑧𝑧0, 𝑒𝑒𝑖𝑖𝜃𝜃1𝑧𝑧1, … . , 𝑒𝑒𝑖𝑖𝜃𝜃𝐸𝐸 𝑧𝑧𝐸𝐸). 

This is a Poisson action that commutes with the 𝐶𝐶∗-action. It 
follows that the 𝑇𝑇𝐸𝐸 -action descends to a Poisson action on 
ℂ𝑃𝑃(𝐸𝐸). Note that the action of 𝑇𝑇𝐸𝐸  on ℂ𝑃𝑃(𝐸𝐸) is proper but 
not free. The quotient ℂ𝑃𝑃(𝐸𝐸)/𝑇𝑇𝐸𝐸  is not a manifold but it can 
be identified with the standard simplex  

∆𝐸𝐸= �(𝜇𝜇0,・  ・ ・,𝜇𝜇𝐸𝐸) ∈ 𝑅𝑅 𝐸𝐸+1:�𝜇𝜇𝑖𝑖 = 1
𝐸𝐸

𝑖𝑖=0

, 𝜇𝜇𝑖𝑖 ≥ 0�. 

This identification is obtained via the map 𝜇𝜇 ∶  ℂ𝑃𝑃(𝐸𝐸)  →
∆𝐸𝐸  defined by: 

𝜇𝜇([𝑧𝑧0, 𝑧𝑧1,・・・, 𝑧𝑧𝐸𝐸 ])  

= �
|𝑧𝑧0|2

|𝑧𝑧0|2 + ・ ・ ・|𝑧𝑧𝐸𝐸 |2 ・・・
|𝑧𝑧𝐸𝐸 |2

|𝑧𝑧0|2 + ・・・|𝑧𝑧𝐸𝐸 |2� 

Let us describe the Poisson stratification of ∆𝐸𝐸= ℂ𝑃𝑃(𝐸𝐸)/𝑇𝑇𝐸𝐸 . 
The Poisson bracket on ∆𝐸𝐸  is obtained through the 
identification 

𝐶𝐶∞(∆𝐸𝐸)  ≃ 𝐶𝐶∞(ℂ𝑃𝑃(𝐸𝐸)/𝑇𝑇𝐸𝐸  

For that, we simply compute the Poisson bracket between 
the components of the map μ.  A m ore or less 
straightforward computation will show that 

�𝜇𝜇𝑖𝑖 ,𝜇𝜇𝑗𝑗 � = (𝑎𝑎𝑖𝑖𝑗𝑗 −�(𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑗𝑗

𝐸𝐸

𝑖𝑖=0

)𝜇𝜇𝑖𝑖)𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗     

   𝑖𝑖, 𝑗𝑗 = 0,・ ・ ・ 𝐸𝐸.                               (5.1) 

Now notice that (5.1) actually defines a Poisson bracket on 
ℝ𝐸𝐸+1.  For this Poisson bracket, the interior of the simplex 
and its faces are Poisson submanifolds: a face ∆𝑖𝑖1….,𝑖𝑖𝐸𝐸−𝐸𝐸  of 

dimension 0 ≤  𝐸𝐸 ≤  𝐸𝐸 is given by equations of the form: 

∑ 𝜇𝜇𝑖𝑖 = 1𝐸𝐸
𝑖𝑖=0 ,𝜇𝜇𝑖𝑖1 =, … , 𝜇𝜇𝑖𝑖𝐸𝐸−𝐸𝐸 = 0, 𝜇𝜇𝑖𝑖 > 0 for 𝑖𝑖 ≠

{𝑖𝑖1, … , 𝑖𝑖𝐸𝐸−𝐸𝐸} 
These equations define Poisson submanifolds since 

(a) the bracket {𝜇𝜇𝑖𝑖 ,𝜇𝜇𝑖𝑖} vanishes whenever 𝜇𝜇𝑖𝑖  =  0, and  

(b) the bracket {𝜇𝜇𝑖𝑖 ∑ 𝜇𝜇𝑖𝑖𝐸𝐸
𝑖𝑖=0 }  vanishes whenever  

∑ 𝜇𝜇𝑖𝑖 = 1𝐸𝐸
𝑖𝑖=0 . 

Therefore, the Poisson stratification of  ∆𝐸𝐸  consists of strata 
formed by the faces of dimension 0 ≤  𝐸𝐸 ≤  𝐸𝐸, which are 
smooth Poisson manifolds. 

Example 5.2. Let 𝑀𝑀 be a Poisson manifold and 𝑁𝑁 ⊂  𝑀𝑀 a 
submanifold. Assume that there exists a subbundle 𝐸𝐸 ⊂
 𝑇𝑇𝑁𝑁𝑀𝑀  such that 𝐸𝐸0  is a Lie subalgebroid of 𝑇𝑇 ∗
𝑀𝑀 (equivalently, 𝐸𝐸  is a co-isotropic submanifold of the 
tangent Poisson manifold 𝑇𝑇𝑀𝑀 ). Then 𝐸𝐸  satisfies the 
assumptions of the corollary 3.1, so 𝑁𝑁  is a Poisson-Dirac 
submanifold. This class of Poisson-Dirac submanifolds has 
very special geometric properties. They were first studied by 
𝑋𝑋𝑋𝑋P

1 which calls them Dirac submanifolds. They are further 
discussed by Crainic and Fernandes8, where they are called 
Lie-Dirac submanifolds. 
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