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Abstract 

The present paper deals with the numerical analysis of the combined effect of heat generation and thermal radiation on the 

flow of a time dependent elastico-viscous Maxwell nanofluid passing over a stretching porous inclined surface with slip 

boundary. Appropriate similarity transformations are used to decorate the governing equations into a set of ordinary non-

linear differential equations. The coupled ordinary equations are solved numerically using the Nachtsheim-Swigert shooting 

method together with the Runge-Kutta iterative technique for various values of the flow control parameters. In addition, the 

built-in function bvp4c of MATLAB is used to enhance the consistency of numerical results. The numerical results, 

demonstrated graphically, are described from the physical point of view. Finally, the effects of relevant parameters on the 

local skin-friction coefficient, the local Nusselt number, and the local Sherwood number, which are of material concern, are 

demonstrated in tabular form. 
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I. Introduction 

The low thermal conductivity of traditional heat transfer 

fluids like water, engine oil, kerosene and ethylene glycol is 

a prime limitation in developing the performance of modern 

engineering equipments. Nanofluids are the new-generation 

heat transfer fluids which hold higher thermal conductivity 

at very low particle concentrations than the conventional 

fluids. They are engineered by the uniform dispersion and 

stable suspension of a small amount of nanometer-sized (1–

100 nm in diameter) ultrafine metallic, nonmetallic, 

ceramic or oxide particles in ordinary heat transfer fluids. 

Choi and Eastman
1
 first developed the thought of nanofluid 

following the idea of colloidal suspension in regular fluid. 

Wong and Leon
2
 reported that recent researchers have 

identified that the substitution of the usual refrigerants for 

nanofluids can be advantageous in processes such as the 

development of heat transport efficiency in the nuclear 

space and engineering, the cooling of motors and 

microelectronics, chillers, domestic refrigerators / freezers. 

Due to the mounting demand for encompassing 

extraordinary characteristics of providing unique physical 

and chemical properties nanofluids are receiving significant 

interest of many scientists and researchers
3,4

. 

Mushtaq et al.
5
 reported that the multiplicity practical 

purposes of non-Newtonian fluids are the main focus of the 

last decades on technology and industrial processes, for 

example in geophysics, petroleum, biomedical and 

chemistry. Mustafa and Mushtaq
6
 explicated that the 

equations of momentum of these fluids are extremely 

nonlinear and the Navier-Stokes equations certainly are not 

sufficient to demonstrate the non-Newtonian fluid flow. 

Almost all rheological complex fluids for examples 

industrial and biological fluids such as polymer solutions, 

paints, pulps, fossil fuels, molten plastics, liquid foods, 

jams, and blood exhibit the non-linear bonding between 

stress and deformation rate
7,8

. The Maxwell fluid model 

enclosed with viscoelastic material is the simplest subclass 

of rate-type non-Newtonian fluids and capable of 

explaining the characteristics of relaxation time effects on 

fluid, sorted out by Gallegos and Martínez-Boza
9
. An 

innovative work done by Harris
10

 portraying 2D flow of 

Maxwell fluids is promoting the researchers to explore the 

more potential. Following this route, Fetecau et al.
11

 have 

recently explored the viscoelastic fluid flow by way of 

fractional Maxwell model subjected to time dependent 

shear stress. Sochi
12

 condensed the Maxwell fluid model 

into the Navier-Stokes relation when the relaxation time 

effect is deficient.  

Very recent, a number of researchers investigated a choice 

of parametric effects like thermal radiation, Joule heating 

and heat source on fluid flow passing above a stretching 

porous sheet
13-16

. Sparrow and Cess
17

 explained Rosseland 

approximation to describe the radiation heat flux in the 

energy equation in their book.  

The objective of this article is to analyze the combined 

effect of thermal radiation and heat source on unsteady two-

dimensional laminar flow of elastico-viscous silver (Ag)-

water nanofluid passing over the porous stretching surface 

with slip boundary applying the Maxwell rheological fluid 

model. The present Maxwell nanofluid model has been 

considered to study the time dependent stress relaxation of 

viscoelastic fluid hosting solid nanoparticles. In fact, the 

Maxwell non-Newtonian fluid with enhanced heat transfer 

offers an excellent opportunity to contribute to industrial 

and hemodynamic purposes.   

II.  Mathematical Formulation 

The present model is made by considering a two-

dimensional unsteady flow of an electrically conducting 

elastico-viscous non-Newtonian nanofluid in presence of 
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magnetic field with the combined effect of radiation and 

heat generation passing a semi-infinite stretching porous 

surface with slip boundary inclined with an angle   to the 

vertical. When elastic stress is applied to a non-Newtonian 

fluid, the resulting strain is time dependent characterized by 

the relaxation time. The constitutive equation for a Maxwell 

fluid
8,18

 is  

= p T I S ,  (1) 

where T is the Cauchy stress tensor and the extra stress 

tensor S satisfies 

tr
0 1

d
k

dt


 
    

 

S
S LS SL A  (2) 

in which 0  is the viscosity, 0k  is the relaxation time 

and the Rivlin–Ericksen tensor 1A  is defined through 

 
tr

1  A V + V . (3) 

The relaxation time for Maxwell fluid is considered by

0(1 )k k t  , where 0k  is the initial value at 0t  . 

Moreover, the nanofluid as a mixture of the water and Ag 

nanoparticles is discussed here. To explain the physical 

configuration, the Cartesian coordinate system is introduced 

such a way that x  axis is measured along the plate surface 

and y  axis is perpendicular to the plate. The plate surface 

is placed at the plane 0y  shown in Fig. 1. The free fluid 

flow  ( , ) / 1U x t ax t    is assumed to be detained to 

0y   due to the buoyancy force and non-uniform magnetic 

field of strength 0 / 1B B t   applied normal to the 

surface; 0B  is the initial strength of the magnetic field. It is 

important to note here that, the expressions for ( , )U x t and 

B  are valid only for time 1t   unless 0  .  

 

Fig. 1. Flow geometry of the model 

Taking the above observations into account and using the 

Buongiorno nanofluid model incorporating the combined 

effect of thermophoresis and Brownian motion
19,20

, the 

equations for mass, momentum, thermal energy, and 

nanoparticles concentration for a Maxwell fluid are
21
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Considering the velocity slip proportional to the local shear 

stress, the governing equations are associated with the 

boundary conditions: 

( , ) ( , ), ,

, at 0

0, , as

w slip w

w w

u u x t u x t v v

T T C C y
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
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 (8) 

where g0 is the acceleration due to gravity, T  is the 

volumetric coefficient of thermal expansion,  
*
T  is due to 

concentration, DB and DT are the Brownian and 

thermophoresis diffusion respectively.  ( , ) / 1wu x t bx t 
 

is the stretching velocity, where the initial stretching rate b  

and the time scale   are the positive constants having 

dimensions time
–1

, and / (1 )b t  is the effective increasing 

stretching rate with time. ( , ) 1 u
slip y

u x t N t 


   is the slip 

velocity,  
2

/ 1wT T ax t  
 
and  

2
/ 1wC C ax t  

 
are the temperature and concentration respectively assumed 

to vary both along the surface and with time, T  and C are 

the temperature and concentration of free stream 

respectively. Relations among the physical properties of 

nanofluid
22,23

 are given by 
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Here the nanoparticles volume fraction is represented by φ. 

Also ρ, κ, α, Cp and σ are the density, thermal conductivity, 

thermal diffusivity, heat capacitance and electrical 

conductivity respectively. Here, suffices f, s and nf 

represent the base fluid, solid nanoparticles and nanofluid 

respectively. 3n


  is the nanoparticles shape factor for 

thermal conductivity and 1   for spherical shape of 

nanoparticles is defined by Maxwell
22

. The thermo-physical 

properties of base fluid water and other different 

nanoparticles (Ag, Cu, Al2O3, and TiO2) are given in the 

Table 1.  

Table 1. Thermo-physical properties of water as the 

base fluid and different nanoparticles
6,23 

Materials   Cp    

Water 997.1 4179 0.613 

Silver (Ag) 10500 235 429 

Copper (Cu) 8933 386 401 

Alumina (Al2O3) 3970 765 40 

Tinanium Oxide (TiO2) 4250 686.2 8.9538 

To describe the transport mechanisms in nanofluids, it is 

significant to make the equations dimensionless using the 

similarity transformations. The main outcomes of making 

the equations dimensionless are (i) to understand the 

controlling flow parameters of the system (ii) to get rid of 

dimensional constraint. Form the above point of view, the 

governing equations can be reduced to dimensionless forms 

using the following similarity transformations
24
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Using the above transformations, equation (4) is satisfied 

and the equations (5)–(7) are reduced to  
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Subjected to the dimensionless boundary conditions: 
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Here b
a

   is the stretching parameter; 
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slip parameter; 
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is the suction 

parameter; and f

BD
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
  is the Lewis number.  

The parameters of engineering interest for the present 

problem are the skin friction coefficient Cf, the Nusselt 

number Nu and Sherwood number Sh which indicate 

physically wall shear stress, rate of heat transfer, and mass 

transfer rate respectively.  

2.5

1
(0)

(1 )
fC f





, (0)

nf

f

Nu





  , (0)Sh F 
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III.  Numerical Computation 

Equations (9)–(11) combined with the boundary conditions 

(12) are solved numerically using the Runge-Kutta method 

with the Nachtsheim-Swigert shooting technique
25

 for 

various values of the parameters nanoparticle volume 

fraction parameter (φ) , Deborah number (β) , magnetic 

field parameter ( )M , unsteadiness parameter ( )A , slip 

parameter (δ) , stretching parameter ( ) , suction parameter 

( )wf , Prandtl number (Pr) , Radiation parameter ( )Rn , heat 

generation parameter ( )Q , thermophoretic parameter ( )Nt , 

Brownian motion parameter ( )Nb , Lewis number ( )Le . 

The step size is taken as 0.01   and the tolerance criteria 

are set to 10
−6

. In order to strengthen the reliability of our 

results, a MATLAB boundary value problem solver called 

bvp4c is used. On the basis of a number of computational 

experiments, we are considering [0,5]  as the domain of the 

problem instead of [0, )  because for 5   there is no 

significant variation in the results. The parametric values 
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φ 0.05, β 0.5, 1,M   0.5,A   γ 0.1,  δ 0.5,

0.5,wf 
 

1.0,Rn    0 . 5 ,Q    P r 6 . 2 ,   0 . 1 ,Nt   
0.4,Nb  and 10Le 

21,24,26
 are set for Ag-water nanofluid 

to verify the numerical results for both shooting method and 

MATLAB code showing in the Fig. 2.   

 

Fig. 2.  Computational results from both Shooting Method (SM) 

and bvp4c function. 

IV.  Results and Discussion 

Figure 2 is giving significant agreement to validate the 

numerical results obtained by shooting method and bvp4c 

function. But still for more contentment, it is necessary to 

certify our codes by comparing with some published works 

of similar nature. For this purpose, we have analyzed the 

numerical values of local skin friction coefficient  0f  for 

the models investigated by several researchers.  A 

remarkable agreement of our results with those of models 

can be seen in Table 2.  

Table 2. Comparison of f

(0) for taking Pr = 0.71, 

Nb=0.1, Nt = 0.1, Le = 5, =1.  

A 
Madhu et 

al.
21

 

Sharidan et 

al.
27

 

Present work 

bvp4c SM 

0.8 

1.2 

-1.261211 

-1.377625 

-1.261042 

-1.377722 

-1.261042 

-1.377724 

-1.261495 

-1.377644 

First, the nume  rical calculation of the velocity, temperature, 

concentration, skin friction, heat and mass transfer profiles is 

performed for water-based nanofluids containing different 

solid nanoparticles (Ag, Cu, Al2O3, TiO2) individually using a 

volume fraction of 5%, in Fig. 3–8. It is observed that Al2O3-

water has higher velocity (in Fig. 3) as well as friction rate 

(in Fig. 6) and mass transfer rate (in Fig. 8). But Ag-water has 

higher temperature and concentration distribution (in Fig. 4–

5). At the same phase, the heat transfer rate of TiO2-water 

nanofluid is higher (in Fig. 7). Ag-water nanofluid is 

considered for the present model because of its valuable use 

in medical science
28,29

.  

When the elastic stress is applied to the non-Newtonian 

fluid, the time during which the fluid gains its stability is 

the relaxation time, which is greater for highly viscous 

fluids. The Deborah number   is a dimensionless variable 

that deals with fluid relaxation time to its characteristic time 

scale. Here =0 gives the result for Newtonian viscous 

incompressible fluid. Fluids with small Deborah number 

exhibit liquid-like behavior whereas large Deborah number 

communicates with solid-like substances able to conduct 

and retain heat better. Therefore, it is observed physically 

that gradually increasing the Deborah number can increase 

the fluid viscosity, which enhances resistance to flow and, 

as a result, the hydrodynamic boundary layer thickness 

reduces for Maxwell fluid, as revealed in Fig. 9 for both 

steady (A=0) and unsteady (A=0.5) motion. This result is in 

agreement with the previous  

 

Fig. 3. Effect of nanoparticle volume fraction φ  on velocity 

for different solid particles 

 

Fig. 4. Effect of nanoparticle volume fraction φ  on 

temperature for different solid particles 
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Fig. 5. Effect of nanoparticle volume fraction φ  on concentration 

for different solid particles 

study of Sadeghy et al.
30

. The positive effect of   is more 

prominent for steady motion. Figures 10–11 show very 

negligible effect of the Deborah number on the thermal 

boundary layer and solutal distribution respectively for both 

A = 0 and A = 0.5. These outcomes make a good agreement 

with Shateyi
15

. Such observations have a great contribution 

in the fiberglass industries
30

. 

From Fig. 12 it is seen that velocity decreases significantly 

with the increase of the radiation parameter Rn for cooling 

plate. It is also noticed that an increase in the magnetic 

parameter M reduces the velocity profiles. This is the result 

of the effect of the magnetic field imposed on an 

electrically conductive fluid, which generates a drag force 

called Lorentz force against the flow direction along the 

surface to slow down velocity. This is in accordance with 

the fact that the magnetic field is responsible for reducing 

the velocity of fluid flow. From Fig. 13 it is observed that 

the temperature decreases rapidly with the increase of Rn 

for both in the presence and absence of magnetic field 

because of emitting energy from thermal boundary layer. 

So, it is possible to control the flow characteristic and 

temperature using radiation parameter Rn. But in the same 

situation, concentration of fluid is getting higher due to the 

effect of radiation, in Fig. 14. These results are very similar 

to the work of Samad and Karim
31

. The analysis of such 

results could be beneficial to the polymer engineering 
21

. 

For different values of heat generating parameter Q, the 

profile distributions are exposed for both porous (fw=0.5) 

and flat (fw=0) surface in Fig. 15–17. It is observed in Fig. 

15 that due to the generation of heat, the buoyancy force 

increases, which accelerates the velocity in the boundary 

layer. Because of heat generation, the maximum velocity 

arises near the surface of the stretching plate for both 

situations fw=0 and fw=0.5. This is corroborated by Fig. 16 

that the temperature do indeed rapid increase as higher Q 

affixes supplementary heat to the fluid. The hydrodynamic 

and thermal boundary layers thickness increase but the 

higher heat generation increase the molecular movement in 

fluid and hence reduce the concentration layer, in Fig. 17.  

The effect of the surface inclination angle   on velocity is 

revealed in Fig. 18. From this figure it is depicted that that 

the velocity reduces with higher angle
31

   where the dashed 

line represents the horizontal surface for  / 2  . As angle 

increases, the buoyancy force reduces and hence the velocity 

decreases. Figure 19 shows that temperature rise rapidly with 

the higher . Finally, it is seen in Fig. 20 that the angle of 

inclination shows very irrelevant effect on the concentration.  

 
Fig. 6. Effect of nanoparticle volume fraction φ  on velocity 

gradient for different solid particles 

 
Fig. 7. Effect of nanoparticle volume fraction φ  on 

temperature gradient for different solid particles 

 
Fig. 8. Effect of nanoparticle volume fraction φ  on 

concentration gradient for different solid particles 
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Fig. 9. Effect of Deborah number β  on velocity for different 

solid particles 

 

Fig. 10. Effect of Deborah number β  on temperature for 

different solid particles 

 

Fig. 11. Effect of Deborah number β  on concentration for 

different solid particles 

 

Fig. 12. Effect of radiation parameter Rn on velocity for different 

solid particles 

 

Fig. 13. Effect of radiation parameter Rn on temperature for 

different solid particles 

 

Fig. 14. Effect of radiation parameter Rn on concentration for 

different solid particles 
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Fig. 15. Effect of heat generation parameter Q on velocity for 

different solid particles 

 

Fig. 16. Effect of heat generation parameter Q on temperature 

for different solid particles 

 

Fig. 17. Effect of heat generation parameter Q on concentration 

for different solid particles 

 

Fig. 18. Effect of inclination angle α  on velocity for different 

solid particles 

 

Fig. 19. Effect of inclination angle α  on temperature for 

different solid particles 

 

Fig. 20. Effect of inclination angle α  on concentration for 

different solid particles 
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Fig. 21. Effect of stretching parameter γ  on velocity for 

different solid particles 

 

Fig. 22. Effect of stretching parameter γ  on temperature for 

different solid particles 

 

Fig. 23. Effect of stretching parameter γ on concentration for 

different solid particles 

 

Fig. 24. Effect of slip parameter δ  on velocity for different 

solid particles 

 

Fig. 25. Effect of slip parameter δ  on temperature for different 

solid particles 

 

Fig. 26. Effect of slip parameter δ  on concentration for 

different solid particles 
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Figure 21–23 depict the stretching parameter effect on 

momentum, energy and solutal distributions, respectively. 

From these figures it is observed that the stretching velocity 

enhances strength to the fluid velocity to increase the 

momentum distribution with the increase of stretching 

effect   near the surface but away from the surface there 

occurs a cross flow and hence momentum distribution starts 

to decrease for both cases, in the presence and absence of 

suction parameter. The energy as well as solutal distribution 

is decreasing function of stretching parameter, showing 

good agreement with Nayak
32

, for both suction and flat 

boundary surface. In addition, the imposed suction brings 

the distance of the fluid by improving the viscosity which in 

turn decelerates the fluid motion.  

The results found from Fig. 24–26, similar to the findings 

carried out by Straughan and Harfash
33

, are expressing the 

fact that the velocity increases near the surface but decrease 

away from the surface as the slip parameter δ  increases 

both in the presence and absence of suction parameter. The 

energy as well as solutal distribution is falling function of 

δ . Slip factor is effective for the industrial purposes of 

reducing friction
34

. 

Finally, from the point of view of physical interest, the skin 

friction coefficient is useful to estimate the total frictional 

drag exerted on the surface. The Nusselt Number is used to 

characterize the heat flux from a heated solid surface to a 

fluid. The Sherwood number is used in mass-transfer 

operation. The Sherwood number is used in mass-transfer 

operation. Additionally, the effect of several variables on 

the skin fraction coefficient ( )f  , the local Nusselt number 

( ) and the local Sherwood number ( )F   are arranged 

in the Table 3. 

Table 3. The effects of  and Q on the skin fraction 

coefficient, the local Nusselt number and the 

local Sherwood number. 

β  Q  f      F  

0 0.5 0.69033 -1.15540 -5.55136 

0.2 0.5 0.72341 -1.16007 -5.56030 

0.3 0.5 0.74103 -1.16231 -5.56474 

0.5 0 0.67741 -1.61303 -4.38525 

0.5 0.3 0.69116 -1.46167 -4.83277 

0.5 0.8 0.72619 -1.17011 -5.64329 

 

V.   Conclusions 

The major outcomes drawn from the study of the present 

model can be summarized as follows:   

 The heat transfer rate of TiO2-water nanofluid is higher.  

 The friction rate is lower for the increasing unsteadiness 

parameter and the mass transfer rates are much higher.  

 The hydrodynamic boundary layer thickness reduces for 

the Maxwell fluid.  

 Stretching and slip parameters can rule the model 

significantly.  

 The magnetic field and the thermal radiation are liable 

for reducing the velocity of fluid flow.  

In conclusion of the current study, it can be argued that the 

Maxwell parameter’s velocity control phenomena and 

enhanced heat transfer in the liquid provide a great 

opportunity to develop cooling performance of mechanical 

system like bearings and automotive pistons with less 

friction.  
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