Study of Graded Algebras and General Linear Group with Lie Superalgebras and R-Algebra

Khondokar M. Ahmed^{1*}, S. K. Rasel², Jyoti Das³, Saraban Tahura⁴ and Salma Nasrin⁵

^{1,5}Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh.
 ²Department of General Educational Development, Daffodil International University, Dhaka-1207, Bangladesh.
 ³Department of Mathematics, Comilla University, Comilla, Bangladesh.
 ⁴Department of Natural Sciences, University of Information Technology and Sciences, Dhaka 1212, Bangladesh.

(Received: 22 July 2018; Accepted: 7 January 2020)

Abstract

Some elements of theory of \mathbb{Z}_2 -graded rings, modules and algebras. \mathbb{Z}_2 -graded tensor algebra, Lie superalgrbras and matrices with entries in a \mathbb{Z}_2 -graded commutative ring are treated in our present paper. At last a **Theorem 4.4.** on the set of square matrices in the graded R-algebra $M_R[m|n]$ is established.

Keywords: \mathbb{Z}_2 -graded rings, modules, commutative ring and graded algebras, tensor calculus, general graded linear group GL[m|n], the set of graded matrices $M_R[(p+q)\times(m+n)]$ and graded R-algebra.

I. Introduction

Nowadays a large body of literature is available concerning graded algebras, mainly over the real or complex numbers (usually called superalgebras), their representations, etc. Classical references are [3], [6], [7], [8], [10]. The most common notations and basic results are treated in this article.

II. Graded Algebraic Structures

In general, given an arbitrary group G, we can introduce G-graded algebraic objects [5], [10]. Since in order to develop a 'supergeometry' only \mathbb{Z}_2 -graded structures are needed, we shall only consider here that particular case. We shall assume as a rule that

$$graded \equiv \mathbb{Z}_2 - graded$$

Definition 2.1. A ring $(R, +, \cdot)$ is said to be graded if (R, +) has two subgroups R_0 and R_1 such that $R = R_0 \oplus R_1$ and R_α , $R_\beta \subset R_{\alpha+\beta}$ for all $\alpha, \beta \in \mathbb{Z}_2$.

An element $a \in R$ is said to be homogeneous if either $a \in R_0$ or $a \in R_1$. On the set h(R) of homogeneous elements an application | is defined by

$$| \ | : h(R) \to \mathbb{Z}_2$$

 $a \mapsto \alpha \Leftrightarrow a \in R_{\alpha}.$

The elements of degree 0 and 1 are called even and odd respectively.

Obviously, any ring R can be trivially graded: $R_0 = R$, $R_1 = \{0\}$.

Example 2.2. Let R be a \mathbb{Z} -graded ring, namely, $R = \bigoplus_{p \in \mathbb{Z}} \hat{R}_p$ and $\hat{R}_p \cdot \hat{R}_q \subset \hat{R}_{p+q}$ then R can be graded by takig R_0 as the sum of the even components and R_1 as the sum of the odd ones.

For any graded ring R, a graded commutator<,>: $R \times R \rightarrow R$ is defined by letting

$$\langle a, b \rangle = ab - (-1)^{|a||b|} ba \ \forall \ a, b \in h(R)$$
 (2.1)

The centre of R is defined as the set

$$C(R) \equiv \{a \in R \mid \langle a, b \rangle = 0 \ \forall \ b \in R\},\$$

i.e. C(R) is the set of the elements of R which graded – commute with any other elements.

A graded ring R is said to be graded-commutative if $\langle a, b \rangle = 0 \ \forall a, b \in R$, that is, if C(R) = R.

Let *R* be a graded ring and *M* be a left(right) *R*-module.

Definition 2.3. Mis a left (right) graded R-module if it has two subgroups M_0 and M_1 such that $M = M_0 \oplus M_1$ and for all $\alpha, \beta \in \mathbb{Z}_2$, one has $R_{\alpha}M_{\beta} \subset M_{\alpha+\beta}(M_{\alpha}R_{\beta} \subset M_{\alpha+\beta})$.

If R is graded-commutative, which we shall henceforth assume, we shall use the term 'graded R-module' without ambiguity.

Having fixed two graded R-modules M and N, we say that a morphism $f: M \to N$ is R-linear on the right if f(xa) = f(x)a for all $x \in M$ and $a \in R$. Unless otherwise stated, by 'linear' we mean 'linear on the right'. Moreover, we say that f has degree $|f| = \beta \in \mathbb{Z}_2$, if $f(M_\alpha) \subset N_{\alpha+\beta}$ for all $\alpha \in \mathbb{Z}_2$. The set Hom(M,N) of R-linear morphisms $M \to N$ (that will be denoted simply by Hom(M,N)) has a natural grading, with $f \in Hom(M,N)_\alpha$ whenever $|f| = \alpha$. If R is graded-commutative, Hom(M,N) is a graded R-module, with the multiplication rule (af)(x) = af(x).

One of the most basic results in commutative ring theory, namely the Nakayama lemma, can be generalized to the graded setting. Let us define the radical of a graded-commutative ring R as the graded ideal \mathcal{R} obtained by intersecting all maximal graded ideals of R.

Proposition 2.4.(Graded Nakayama Lemma) Let R be a graded-commutative ring R, I be a graded ideal contained in the radical \mathcal{R} of R and M be a graded finitely generated R-module.

^{*}Author for correspondence. e-mail: meznang@yahoo.co.uk

- (a) If IM = M, then M = 0.
- If N is a graded submodule of M and M = IM + N, (b) then M = N.
- If $x^1, ..., x^m$ are even elements and $y^1, ..., y^n$ are (c) elements in M oddsuch that the images $(\bar{x}^1,...,\bar{x}^m,\bar{y}^1,...,\bar{y}^n)$ are generators of M/IMover R/I, then $(x^1, ..., x^m, y^1, ..., y^n)$ are generators of Mover R.

Definition 2.5. A graded Rmodule F is said to be free if it has a basis formed by homogeneous elements.

A basis of F of finite cardinality is of type (m, n), if it is formed by m even elements $\{f_i^0 \in F_0 | i = 1, ..., m\}$ and nodd elements $\{f_{\alpha}^1 \in F_1 | \alpha = 1, ..., n\}$.

We have a canonical isomorphism

$$F \simeq \begin{pmatrix} m \\ \bigoplus_{i=1}^{n} Rf_{i}^{0} \end{pmatrix} \oplus \begin{pmatrix} n \\ \bigoplus_{\alpha=1}^{n} Rf_{\alpha}^{1} \end{pmatrix}.$$

For each pair of natural numbers m, n such that m + n = p, the R-module R^p can be regarded as a free graded Rmodule endowed with a basis of type (m, n), by letting,

$$(R^{m+n})_0 \equiv R^{m,n} = R_0^m \oplus R_1^n;$$

$$(R^{m+n})_1 \equiv R^{\bar{m},\bar{n}} = R_0^n \oplus R_1^m \tag{2.2}$$

 R^{m+n} equipped with this gradation will be denoted by $R^{m|n}$.

Example 2.6. (cf. [5]) Let R be a commutative ring, and Mbe an R-module. The exterior algebra of M over R, denoted by $\Lambda_R M$, is a \mathbb{Z} -graded algebra, namely $\bigoplus_{p \in \mathbb{Z}} \Lambda_R^p M$, and is alternating, i.e. $x^2 = 0$ for all $x \in \bigwedge_{R}^{2p+1} M$. If M is free and finitely generated, with a basis $\{e_i|i=1,...,N\}$, then Λ_R M is a free finitely generated R-module, with a canonical basis(relative to the basis $\{e_i\}$) which can be described as follows. Let Ξ_N denote the set

$$\left\{ \begin{aligned} & \mu \colon \{1,\dots,r\} \to \\ \{1,\dots,N\} \text{strictly increasing} \ \middle| 1 \le r \le N \right\} \cup \{\mu_0\}, \end{aligned}$$

where μ_0 is the empty sequence, and let

$$\beta_{\mu} = e_{\mu(1)} \wedge ... \wedge e_{\mu(r)} \text{ for } \mu \neq \mu_0, \ \beta_{\mu_0} = 1.$$

Then $\{\beta_{\mu} | \mu \in \Xi_{N}\}$ is the canonical basis of $\Lambda_{R} M$.

The cases $R = \mathbb{R}$ and $R = \mathbb{C}$ have a particular interest and deserve ad hoc notations:

$$\Lambda_{\mathbb{R}} \mathbb{R}^L \equiv B_L; \ \Lambda_{\mathbb{C}} \mathbb{C}^L \equiv C_L \tag{2.3}$$

 B_L is a vector space, with a canonical basis obtained from the canonical basis of \mathbb{R}^L according to the above described procedure. If m_L is the ideal of nilpotents of B_L , the vector space direct sum decomposition $B_L = \mathbb{R} \oplus \mathbb{m}_L$ defines two projections

$$\sigma: B_L \to \mathbb{R}; \quad s: B_L \to \mathbb{m}_L$$
 (2.4)

which are sometimes called body and soul maps.

Tensor Products: Let us recall that we are considering a graded-commutative ring R. The graded tensor product of two graded R-modules M, N is by definition the usual tensor product $M \oplus_R N$, obtained by regarding M as a right module, and Nas a left module, equipped with the gradation

$$(M \oplus_R N)_{\gamma} = \bigoplus_{\alpha + \beta = \gamma} \left\{ \sum m_i \otimes n_j | m_i \in M_{\alpha}, n_j \in N_{\beta} \right\}$$

Evidently, $M \otimes_R N$ has a natural structure of graded Rmodule:

$$a(x \otimes y) = ax \otimes y = (-1)^{|a||x|} xa \otimes y$$
$$= (-1)^{|a||x|} x \otimes ay$$

$$= (-1)^{|a|(|x|+|y|)} (x \otimes y)a. \tag{2.5}$$

The graded tensor product can be characterized as a 'universal object'. To this end, given graded R-modules M, N and Q, we introduce the set $\mathcal{L}(M, N; Q)_{\alpha}$ (with $\alpha \in$ \mathbb{Z}_2) of the graded R-bilinear morphisms $f: M \times N \to Q$, homogeneous of degree α : if $f \in \mathcal{L}(M, N; Q)_{\alpha}$, then f is a morphism of degree α such that f(xa, y) = f(x, ay) = $(-1)^{|a||y|} f(x,y)a$ for all $a \in R$. The set

$$\mathcal{L}(M, N; Q) \equiv \mathcal{L}(M, N; Q)_0 \oplus \mathcal{L}(M, N; Q)_1$$

is endowed with a structure of graded R-module by enforcing the multiplication rule (fa)(x,y) = f(ax,y). In the same way, if $M_1, ..., M_n, Q$ are graded R-modules, we define the graded R-module $\mathcal{L}(M_1, ..., M_n; Q)$ formed by the graded *R*-multilinear morphisms $M_1 \times \cdots \times M_n \to Q$.

Proposition 2.7. There are natural isomorphisms in the category R - G Module

$$\mathcal{L}(M, N; Q) \simeq Hom_R(M \bigotimes_R N, Q)$$

 $\simeq Hom_R(M, Hom_R(N, Q)).$

Proposition 2.8. Let M, M', M" be graded R-modules; the following natural isomorphisms of graded R-modules hold:

(a)
$$M \otimes_R M' \simeq M' \otimes_R M$$
, achieved by the morphism $x \otimes x' \mapsto (-1)^{|x||x'|}x' \otimes x$;
(b) $(M \otimes_R M') \otimes_R M''$

(b)

 $\simeq M' \otimes_R (M' \otimes_R M'')$, achieved by the morphism $(x \otimes x') \otimes x'' \mapsto x \otimes (x' \otimes x'')$;

(c)
$$R \otimes_R M \simeq M \simeq M \otimes_R R$$
.

If $f: M \to P$, $g: N \to Q$ are morphisms of graded modules over a graded ring R, the tensor product $f \otimes g: M \otimes_R N \rightarrow$ $P \otimes_R Q$ is the morphism defined by the condition

$$(f \otimes g)(m \otimes n) = (-1)^{|g||m|} f(m) \otimes g(n). \tag{2.6}$$

III. Graded Algebras and Graded Tenso Calculus

Let R be a graded-commutative ring.

Definition 3.1. A graded R-algebra Pis a graded R-module endowed with a graded R-bilinear multiplication

$$P \otimes P \to P$$
$$x \otimes y \mapsto x \cdot y.$$

A graded R-algebra P is said to be graded-commutative if all graded commutators

$$\langle x, y \rangle = x \cdot y - (-1)^{|x||y|} y \cdot x,$$

defined on the analogy of equation (2.1), vanish.

Example 3.2. The graded module $B_L(C_L)$ in traduced in Example 2.6. , equipped with the exterior product, is a graded-commutative \mathbb{R} -algebra(\mathbb{C} -algebra).

The graded tensor product $P \otimes_R Q$ of two graded R-algebras P and Q is defined as the tensor product of the underlying R-modules equipped with the multiplication naturally induced by those of P and

$$Q: (x_1 \otimes y_1) \cdot (x_2 \otimes y_2)$$

= $(-1)^{|y_1||x_2|} (x_1 \cdot x_2) \otimes (y_1 \cdot y_2).$

Definition 3.3. A graded Lie R-algebra (or Lie R-superalgebra) B is a graded R-algebra, whose multiplication, called graded Lie bracket and denoted by [,], satisfies the following identities:

$$[x,y] = -(-1)^{|x||y|}[y,x]; \tag{3.1}$$

$$(-1)^{|x||z|} [x, [y, z]] + (-1)^{|y||x|} [y, [z, x]] + (-1)^{|z||y|} [z, [x, y]] = 0.$$
 (3.2)

Remark 3.4. Given a graded Lie algebra \mathfrak{B} , its even part \mathfrak{B}_0 is a Lie algebra over the ring R_0 .

An important class of graded Lie algebras can be constructed in terms of the notion of graded derivation.

Let Pbe a graded-commutative R-algebra.

Definition 3.5. A homogeneous morphism $D \in End_RP$ is a graded derivation of P over R if it fulfills the following condition (called the graded Leibnitz rule)

$$D(x \cdot y) = D(x) \cdot y + (-1)^{|x||D|} x \cdot D(y). \tag{3.3}$$

The graded R-submodule of End_RP generated by the graded by the derivations of P will be denoted by Der_RP , or simply DerP.

Proposition 3.6. DerP, equipped with the graded Lie bracket

$$[D_1, D_2] \equiv D_1 \circ D_2 - (-1)^{|D_1||D_2|} D_2 \cdot D_1, \tag{3.4}$$

 $is\ a\ graded\ Lie\ R-algebra.$

By identifying R with the submodule R. $1 \subset P$, condition (3.4) implies that, for all $D \in DerP$, D(R) = 0. We notice that DerP is a (left) graded P-module in a natural way, by letting $(xD)(y) = x \cdot D(y)$.

Definition 3.7. A graded derivation of P over R with values in M is a homogeneous element $D \in Hom_R(P, M)$ which fulfills a graded Leibnitz rule formally identical with equation (3.3).

The graded P-submodule of $Hom_R(P, M)$ generated by the graded derivations of P with values in M will be denoted by $Der_R(P, M)$.

Proposition 3.8. Let M and N be R-modules. There is a natural morphism of graded R-modules

$$\phi: N \otimes M^* \to Hom(M, N)$$

described by $\phi(n \otimes \omega)(m) = n\omega(m)$. This induces a morphism

$$\gamma: M^* \otimes N^* \to (M \otimes N)^*$$

whose expression is

$$\gamma(\omega \otimes \eta)(m \otimes n) = (-1)^{|\eta||m|} \omega(m) \eta(n).$$

Both morphisms are bijective whenever Mis free and finitely generated.

Graded Exterior Algebra: Let M be a graded R-module and let us denote by

$$T^p M = M \underbrace{\otimes \cdots \otimes}_{P} M$$

(3.1) The p-th tensor power of M, graded as usual. We can consider as in the non-graded setting the graded tensor algebra of M,

$$\mathcal{T}(M) = \bigotimes_{p=0}^{\infty} T^p M, \tag{3.5}$$

which is in a natural way a bigraded R-algebra (i.e. it has the usual \mathbb{Z} -gradation of the tensor algebra, together with the \mathbb{Z}_2 -gradation it carries as a graded R-algebra).

The graded exterior algebra $\Lambda_R M$ of M(denoted simply by ΛM) is defined as the quotient of $\mathcal{T}(M)$ by the graded ideal $\mathfrak{F}(M)$ generated by elements of the form $m_1 \otimes m_2 + (-1)^{|m_1||m_2|}m_2 \otimes m_1$, with m_1,m_2 homogeneous. The product induced in ΛM by this quotient is denoted by Λ and is called the (graded) wedge product, as usual. If we let $\mathfrak{F}^p(M) = \mathfrak{F}(M) \cap T^pM$, since $\mathfrak{F}(M)$ is generated by homogeneous elements, we obtain $\mathfrak{F}(M) = \bigotimes_{p=0}^{\infty} \mathfrak{F}^p(M)$ and therefore,

$$\wedge M = \bigotimes_{p=0}^{\infty} \wedge^p M$$

with $\wedge^p M = T^p M / \mathfrak{I}^p(M)$.

We wish to ascertain the relationship existing between the exterior algebra $\wedge M^*$ and the modules of alternating graded multilinear forms: this will be realized by a morphism analogous to the morphism

$$\gamma \colon M_1^* \otimes \cdots \otimes M_n^* \to (M_1 \otimes \cdots \otimes M_n)^* \simeq \mathcal{L}(M_1, \dots, M_n; R).$$
(3.6)

If $F_p \in HOm(T^pM, R)$ and $F_q \in Hom(T^pM, R)$ are homogeneous graded multilinear forms, $F_p \otimes F_q$ acts on a family of homogeneous elements according to the formula:

$$\begin{split} \big(F_p \otimes F_q\big) \big(m_1, \dots, m_{p+q}\big) \\ &= (-1)^{|F_q| \big(|m_{p+1}| + \dots + |m_{p+q}|\big)} F_p(m_1, \dots, m_n) \\ &F_q \big(m_{p+1}, \dots, m_{p+q}\big). \end{split}$$

Let S_p be the group of permutation of p objects. For any $\sigma \in S_p$ and any $F_p \in Hom(T^pM, R)$, we write, for homogeneous elements $m_1, ..., m_p \in M$,

$$\begin{split} &F_p^\sigma \Big(m_1,\ldots,m_p\Big)\\ &= \qquad (-1)^{\Delta_1(\sigma,m)} F_p\Big(m_{\sigma(1)},\ldots,m_{\sigma(p)}\Big), \end{split}$$

where

$$\Delta_1(\sigma, m) = \sum_{1 \le i < j \le p} \sum_{\sigma(i) > \sigma(j)} |m_{\sigma(i)}| |m_{\sigma(j)}|. \tag{3.7}$$

Definition 3.9. A graded multilinerar form $F_p \in Hom(T^pM,R)$ is said to be alternating if $F_p^{\sigma} = (-1)^{|\sigma|}F_p$ for every $\sigma \in \mathcal{S}_p$, where $|\sigma|$ is the parity of the permutation σ .

The set
$$Alt\left(M \underset{p}{\underbrace{\times \cdots \times}} M; R\right) \equiv Alt(M^p, R)$$
 of all

alternating graded multilinear forms is a submodule of $Hom(T^pM,R)$; we can introduce a projection morphism, which is no more than the graded anti-symmetrization:

$$A_p: Hom(T^pM, R) \to Alt(M^p; R)$$

$$F_p \to A_p(F_p) = \frac{1}{p!} \sum_{\sigma \in \mathcal{S}_p} (-1)^{|\sigma|} F_p^{\sigma}.$$

Proposition 2.10. The morphism A_p has the following properties:

- (a) $A_p(F_p) = F_p$ for any alternating form F_p ;
- (b) $A_{p+q}(F_q \otimes F_p) = (-1)^{pq+|F_p||F_q|} A_{p+q}(F_p \otimes F_q)$ for homogeneous F_p, F_q ;

(c)
$$A_{p+q}(A_p(F_p) \otimes F_q) = A_{p+q}(F_p \otimes F_q).$$

We assume that M is a free and finitely generated module, so that we may identify $T^p(M^*)$ with $Hom(T^pM,R)$. In this way, the morphism A_p yields the exact sequence of graded R-modules

$$0 \to \mathfrak{J}(M^*) \to T^p M^* \xrightarrow{A_p} Alt(M^p; R) \to 0, \tag{3.8}$$

and therefore we obtain an isomorphism $\Lambda^p M^* \simeq Alt(M^p;R)$. Thus, for a free and finitely generated module M, the homogeneous elements in the graded exterior algebra ΛM^* can be interpreted as alternating graded multilinear forms on M. In particular, we may interpret the wedge product of two elements $w^p \in \Lambda^p M^*$ and $w^q \in \Lambda^q M^*$ as a graded multilinear form, which acts on homogeneous elements m_1, \ldots, m_{p+q} according to [9];

$$(\omega^p \wedge \omega^q) \Big(m_1, \dots, m_{p+q} \Big) = \frac{1}{(p+q)!}$$

$$\sum_{\sigma \in \mathcal{S}_p} (-1)^{|\sigma| + \Delta_2(\sigma, m, \omega^q)} \omega^p \Big(m_{\sigma(1)}, \dots, m_{\sigma(p)} \Big)$$

where in terms of the symbol $\Delta_1(\sigma, m)$ previously defined, we get

$$\Delta_2(\sigma, m, \omega^q) = \Delta_1(\sigma, m) + |\omega^q| \sum_{i=1}^p |m_{\sigma(i)}|. \tag{2.9}$$

IV. Matrices

Given a graded-commutative ring R, an R-module morphism $R^{m|n} \to R^{p|q}$ can be regarded, relative to the canonical bases of $R^{m|n}$ and $R^{p|q}$, as a $(p+q) \times (m+n)$ matrix with entries in R,

$$X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} \tag{4.1}$$

which acts on column vectors in $R^{nt|n}$ from the left. The set $M_R[(p+q)\times(m+n)]$ of such matrices can be graded so as to be naturally isomorphic to the graded R-module $Hom_R(R^{m|n},R^{p|q})$, by decreeing that:

- X is even if X_1 and X_4 have even entries, while X_2 and X_3 have odd entries;
- •*X* is odd if X_1 and X_4 have odd entries, while X_2 and X_3 have even entries;

The set of matrices of the form (4.1), equipped with this gradation, will be denoted by $M_R[p|q;m|n]$. The set of square matrices $M_R[m|n]$ (which are obtained by letting p = m, q = n) is a graded R-algebra.

The usual notation of trace and determinant of a matrix can be expended to the matrices in $M_R[m|n]$, thus obtaining the concepts of graded trace and Berezinian (also called supertrace and superdeterminant respectively). For any matrix $X \in M_R[p|q;m|n]$, regarded as a morphosm $X: R^{m|n} \to R^{m|n}$, we define the graded transpose of X-denoted by X^{gt} -as the matrix corresponding to the morphism $X^*: (R^{p|q})^* \to (R^{m|n})^*$ dual to X. With reference to equation (4.1), one obtains the following relations, where the superscript t denotes the usual matrix transportation:

$$\begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}^{gt} = \begin{cases} \begin{pmatrix} X_1^t & X_2^t \\ -X_3^t & X_4^t \end{pmatrix} & \text{if } |X| = 0 \\ \begin{pmatrix} X_1^t & -X_3^t \\ X_2^t & X_4^t \end{pmatrix} & \text{if } |X| = 1 \end{cases}$$
 (4.2)

The graded transportation behaves naturally with respect to matrix multiplication:

$$(XY)^{gt} = (-1)^{|X||Y|} Y^{gt} X^{gt}.$$

The graded trace of X is the element $StrX = \sum_i a_i^*(a^i) \in R$. Alternatively, one can give a direct characterization by letting, for all homogeneous $X \in M_R[m|n]$,

$$Str = TrX_1 - (-1)^{|X|} TrX_4 \tag{4.3}$$

where Tre designates the usual trace operation. The graded trace determines an R-module morphism $Str: M_R[m|n] \rightarrow R$, which is natural with respect to graded transportation and matrix multiplication:

$$Str(X^{gt}) = StrX$$

$$Str(XY) = (-1)^{|X||Y|} Str(YX).$$
 (4.4)

Let us notice that, by denoting by $I_{m|n}$ the identity matrix, one has $Str\ I_{m|n} = m - n$.

In order to extend the notion of determinant, we must consider the subgroup $GL_R[m|n]$ of the matrices in $M_R[m|n]$ corresponding to an even invertible endomorphisms. $GL_R[m|n]$ is the natural extension of the notion of general linear group, so that it will be called the general graded linear group.

Proposition 4.1. A matrix $x \in M_R[m|n]_0$ is in $GL_R[m|n]$ if and only if $X_1 \in GL_R[m|0]$ and $X_4 \in GL_R[0|n]$, i.e. X is invertible if and only if X_1 and X_4 are invertible as ordinary matrices with entries in R_0 .

Definition 4.2. [1], [3], [4] Let $X \in GL_R[m|n]$. the Berezinian of X is the element in $GL_R[1|0]$ given by

$$BerX = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$$

$$= \det(X_1 - X_2 X_4^{-1} X_3) (\det X^{-1}). \tag{4.5}$$

Proposition 4.3. The mapping $Ber : GL_R[m|0] \rightarrow GL_R[0|n]$ is a group morphism, that coincides with the determinant whenever n = 0:

$$Ber(XY) = BerX BerY \ \forall X, Y \in GL_R[m|n]$$
 (4.6)

Theorem 4.4. A matrix in $X \in M_R[m|n]_0$ is invertible if and only if $\sigma(X) \in GL[m+n]$.

Proof. The 'only if' part is trivial, since σ is ring morphism. To show the converse, it suffices to prove that a matrix $Z \in M_{B_I}[p|0]_0$ is invertible as a matrix with entries

in $(B_L)_0$ if $\sigma(Z)$ is invertible. In the case p=1 this is a consequence of the fact that in B_L the morphism σ is the natural projection $(B_L)_0 \to (B_L)_0/(n_L)_0$. The result is easily extended to p>1 by inclusion.

V. Conclusion

We start with given an arbitrary group G and introducing G-graded algebraic objects and for a given graded-commutative ring R and R-module morphism can be regarded, relative to the canonical bases of relative to the canonical bases of $R^{m|n}$ and $R^{p|q}$, as a $(p+q)\times(m+n)$ matrix with entries in R, $X=\begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$, which acts on column vectors in $R^{nt|n}$ from the left. Finally, this article induces a **Theorem 4.4.**on a matrix of graded R-algebra. This paper will be helpful for other researchers.

References

- 1. Arnowitt, R., Nath, P., Zumino, B. 1975. Superfield densities and action principle in superspace, *Phys. Lett.* 56B, 81-84.
- 2. Atiyah, M. F., Macdonal, I. G. 1969. *Introduction to commutative algebra*, Addision-Wesley, Reading, MA.
- 3. Bartocci, C., Bruzzo, U., Hernández Ruipérez, D. 1991. *The geometry of supermanifolds*. Kluwer, Dordrecht,.
- Berezin, F. A., Leĭtes, D.A. 1975. Supermanifolds, Soviet Math. Dokl. 16,1218-1222.
- 5. Bourbaki, N. 1970. Elément de mathématique. Algèbrel(Chapitres 1 à 3), Hermann, Parish.
- Corwin, L., Ne'eman, Y., Sternberg, S. 1975. Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry), *Rev. Modern Phys.* 47, 573-603.
- 7. Kac, V.G. 1977. Lie superalgebras, Adv. In Math. 26, 8-96.
- 8. Kac, V.G. 1977, A sketch of Lie Superalgebra theory, *Commun. Math. Phys.*53, 31-64.
- 9. Kobayashi, S., Nomizu, K. 1963. Foundations of differential geometry. I, Inter-science Publ., New York.
- Năstăsescu, C., Van Oystaeyen, F. 1982. Graded ring theory, North-Holland, Amsterdam.
- 11. Scheunert, M. 1979. *The theory of Lie Superalgebra, Lecture Notes Math.*, Springer Verlag, Berlin,716.