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Abstract

Some elements of theory of Z,-graded rings, modules and algebras. Z,-graded tensor algebra, Lie superalgrbras and
matrices with entries in a Z,-graded commutative ring are treated in our present paper. At last a Theorem 4.4.on the set of
square matrices in the graded R-algebra Mp[m|n] is established.
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. Introduction

Nowadays a large body of literature is available concerning
graded algebras, mainly over the real or complex numbers
(usually called superalgebras), their representations, etc.
Classical references are [3], [6], [7], [8], [10]. The most
common notations and basic results are treated in this
article.

I1. Graded Algebraic Structures

In general, given an arbitrary group G, we can introduce G-
graded algebraic objects [5], [10]. Since in order to develop
a ‘supergeometry’ only Z,-graded structures are needed, we
shall only consider here that particular case. We shall
assume as a rule that

graded = Z, — graded

Definition 2.1. A ring (R, +, ) is said to be graded if
(R, +) has two subgroups Ryand R; such that R = R, @
Ry and Ry, Rg © Ry p foralla, B € Z,.

An element a € R is said to be homogeneous if either
a € Rjor a€R;. On the set h(R) of homogeneous
elements an application | | is defined by

[1:h(R) = Z,
a-aeac€R,.

The elements of degree 0 and 1 are called even and odd
respectively.

Obviously, any ring R can be trivially graded: R, =R,
R1 = {0}.

Example 2.2. Let R be a Z-graded ring, namely, R =
®pez R, and R,.R, c R, then R can be graded by takig
R, as the sum of the even components and R; as the sum of
the odd ones.

For any graded ring R, a graded commutator<,>:R X R —
R is defined by letting
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<a,b>=ab— (-1)""baVva,b e h(R) (2.1)
The centre of R is defined as the set
C(R)={a€eR|<ab>=0VbeER}

i.e. C(R) is the set of the elements of R which graded —
commute with any other elements.

A graded ring R is said to be graded-commutative if
<ab>=0VabeR,thatis, if C(R) =R.

Let R be a graded ring and M be a left(right) R-module.

Definition 2.3. Mis a left (right) graded R-module if it has
two subgroups M, and M; such that M = M, @ M, and for
all a,B € Z,, one has RyMg © My, 3(MgRg © Mg.ip).

If R is graded-commutative, which we shall henceforth
assume, we shall use the term ‘graded R-module’ without
ambiguity.

Having fixed two graded R-modules Mand N, we say that a
morphism f:M — N is R-linear on the right if f(xa) =
f(x)a forall x € M and a € R. Unless otherwise stated, by
‘linear’ we mean ‘linear on the right’. Moreover, we say
that f has degree |f| = B € Z,, if f(M,) < N4y p for all
a € Z,. The set Hom(M,N) of R-linear morphisms M —
N (that will be denoted simply by Hom(M, N)) has a natural
grading, with f € Hom(M, N), whenever |f| = a. If R is
graded-commutative, Hom(M,N) is a graded R-module,
with the multiplication rule (af)(x) = af (x).

One of the most basic results in commutative ring theory,
namely the Nakayama lemma, can be generalized to the
graded setting. Let us define the radical of a graded-
commutative ring R as the graded ideal R obtained by
intersecting all maximal graded ideals of R.

Proposition 2.4.(Graded Nakayama Lemma) Let R be a
graded-commutative ring R, I be a graded ideal contained
in the radical R of R and M be a graded finitely generated
R-module.
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@ IfIM =M, thenM = 0.

(b) If Nis a graded submodule of Mand M = IM + N,
then M = N.

(c) If x1,...,x™ are even elements and y?,...,y" are

odd elements in M such that the images
(x%, .., x™ ¥y, ...,y™) are generators of M/IMover R/I,
then (x%, ..., x™, y1, ..., y™) are generators of Mover R.

Definition 2.5. A graded Rmodule F is said to be free if it
has a basis formed by homogeneous elements.

A basis of F of finite cardinality is of type (m,n), if it is
formed by m even elements {f° € Fy|i = 1,...,m} and n
odd elements {f;} € F;|la =1, ...,n}.

We have a canonical isomorphism
m n
Fz( ® Rﬁ-")@( ) Rﬁ%)-
i=1 a=1
For each pair of natural numbers m, n such that m + n = p,
the R-module RP can be regarded as a free graded R-
module endowed with a basis of type (m, n), by letting,
(R™*™)o = R™ = RY @ RY;

(RM*™), = R™" = R} @ R (2.2)
R™*"equipped with this gradation will be denoted by R™I™.
Example 2.6. (cf. [5]) Let R be a commutative ring, and M
be an R-module. The exterior algebra of Mover R, denoted
by Ag M, is a Z-graded algebra, namely @,czA; M, and is
alternating, i.e. x2 = 0 for all x €A’*" M. If Mis free and
finitely generated, with a basis {e;|i = 1, ..., N}, then Ay M
is a free finitely generated R-module, with a canonical

basis(relative to the basis {e;}) which can be described as
follows. Let Zy denote the set

{{1 w:AL, ..,r} -

<r<
., N}strictly increasing |1 s=r= N} U {1o},

where p, is the empty sequence, and let
By = euy A - Neymfor w# poy, By, = 1.
Then {B,|u € Ex} is the canonical basis of Ap M.

The casesR = R and R = C have a particular interest and
deserve ad hoc notations:

AR RL = BL! /\(C (CL = CL (23)

B, is a vector space, with a canonical basis obtained from
the canonical basis of RE according to the above described
procedure. If m; is the ideal of nilpotentsof B, the vector
space direct sum decomposition B, = R @ m;, defines two
projections
0:B, >R, s:B,—»>my (2.4)
which are sometimes called body and soul maps.

Tensor Products: Let us recall that we are considering a
graded-commutative ring R. The graded tensor product of

two graded R-modules M, N is by definition the usual
tensor product M @y N, obtained by regarding M as a
right module, and Nas a left module, equipped with the
gradation

(M @y N)y =@qspy {10 @ 1ylmi € My, € Ny}

Evidently, M @ N has a natural structure of graded R-
module:

ax @) =ax®y = (-D""xa @y
= (=D @ ay
= (_1)Ia|(IXI+IyI)(x ® y)a. (2.5)

The graded tensor product can be characterized as a
‘universal object’. To this end, given graded R-modules
M,N and @, we introduce the set L(M,N; Q), (with a €
Z,) of the graded R-bilinear morphisms f:M X N — Q,
homogeneous of degree a: if f € L(M,N;Q),, then f is a
morphism of degree a such that f(xa,y) = f(x,ay) =
(=)' f(x,y)a for all a € R. The set

L(M,N; Q) = LIM,N;Q)o ® LIM,N; Q)4

is endowed with a structure of graded R-module by
enforcing the multiplication rule (fa)(x,y) = f(ax,y). In
the same way, if M;,...,M,, Q are graded R-modules, we
define the graded R-module L(M4, ..., M,,; Q) formed by the
graded R-multilinear morphisms M; X -+ X M,, = Q.

Proposition 2.7. There are natural isomorphisms in the
category R — G Module

L(M,N;Q) =~ Homg(M Qg N, Q)
~ Homgz(M, Homg(N, Q)).

Proposition 2.8. Let M,M’,M"" be graded R-modules; the

following natural isomorphisms of graded R-modules hold:

@ M Qg M =M Qr M, achieved by the morphism
xQ@x'— (—1)|x||"’|x’ R x;

(b) Mg M) @ M"

=M Qr (M Qg M'), achieved by the morphism

CRxX)Qx"—xQ (x' @x");
() R@rM=M=MQyR.

If f:M - P, g:N — Q are morphisms of graded modules
over a graded ring R, the tensor product f ® g:M @z N —
P @ Q is the morphism defined by the condition

f®9mn) = (=DM fm) @ gn). (2.6)
I11. Graded Algebras and Graded Tenso Calculus
Let R be a graded-commutative ring.

Definition 3.1. A graded R-algebra Pis a graded R-module
endowed with a graded R-bilinear multiplication

PRP->P
XQyrx-y.
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A graded R-algebra P is said to be graded-commutative if
all graded commutators

<xy>=x-y—(=1)*Wy.y
defined on the analogy of equation (2.1), vanish.
Example 3.2. The graded module B, (C.)in traduced in

Example 2.6. , equipped with the exterior product, is a
graded-commutative R-algebra(C-algebra).

The graded tensor product P ®z Q@ of two graded R-
algebras Pand Q is defined as the tensor product of the
underlying R-modules equipped with the multiplication
naturally induced by those of P and

Q: (s ®y1) (x2 ® y2)
= (D2l (e - x) @ (v - y3).

Definition 3.3. A graded Lie R-algebra ( or Lie R-
superalgebra ) 8B is a graded R-algebra, whose
multiplication, called graded Lie bracket and denoted by
[, ], satisfies the following identities:

[x,Y] = _(_1)|X||y|[yﬂx]; (31)
(=DM [x, [y, 21] + (=DM ]y, [z, x]] +
(_1)I2Ilyl[z’ [x, y]] =0. (3.2)

Remark 3.4. Given a graded Lie algebra 3B, its even part
B,is a Lie algebra over the ring R,.

An important class of graded Lie algebras can be
constructed in terms of the notion of graded derivation.

Let Pbe a graded-commutative R-algebra.

Definition 3.5. A homogeneous morphism D € EndgP is a
graded derivation of P over R if it fulfills the following
condition (called the graded Leibnitz rule)

D(x-y) =D(x) -y + (=DXPlx-D(y). 3.3)

The graded R-submodule of EndgzP generated by the
graded by the derivations of P will be denoted by DergxP, or
simply DerP.

Proposition 3.6. DerP, equipped with the graded Lie
bracket

[Dy,D,] = D; o D, — (—1)!PalliP2lp, - p, | (3.4)
is a graded Lie R-algebra.

By identifying R with the submodule R. 1 c P, condition
(3.4) implies that, for all D € DerP,D(R) = 0. We notice
that DerP is a (left) graded P-module in a natural way, by
letting (xD)(y) = x - D(y).

Definition 3.7. A graded derivation of P over R with values
in M is a homogeneous element D € Homg(P, M) which
fulfills a graded Leibnitz rule formally identical with
equation (3.3).

The graded P-submodule of Homg (P, M) generated by the
graded derivations of P with values in M will be denoted by
Dery (P, M).

Proposition 3.8. Let M and N be R-modules. There is a
natural morphism of graded R-modules

¢:N Q M* - Hom(M, N)
described by ¢(n ® w)(m) = nw(m). This induces a
morphism

y:M* QN > (M QN)*
whose expression is

Y@ @n)m@n) = (—D)"™wm)n(n).

Both morphisms are bijective whenever Mis free and
finitely generated.

Graded Exterior Algebra : Let M be a graded R-module and
let us denote by

¢ i
The p-th tensor power of M, graded as usual. We can

consider as in the non-graded setting the graded tensor
algebra of M,

oo

® TPM, (3.5)
p=0

T(M) =

which is in a natural way a bigradedR-algebra (i.e. it has the
usual Z-gradation of the tensor algebra, together with the
Z,-gradation it carries as a graded R-algebra).

The graded exterior algebra Ax M of M(denoted simply by
A M) is defined as the quotient of T (M) by the graded
ideal (M) generated by elements of the form m; @ m, +
(=1)Imlim2lym, ® m,, with m,;, m, homogeneous. The
product induced in A M by this quotient is denoted by A and
is called the (graded) wedge product, as usual. If we let
JIP(M) =J3(M)nTPM, since J(M) is generated by
homogeneous elements, we obtain I(M) =Q,~-, IP (M)
and therefore,

(0]

Q APM
p=20

with AP M = TPM /P (M).

AM =

We wish to ascertain the relationship existing between the
exterior algebra A M*and the modules of alternating graded
multilinear forms: this will be realized by a morphism
analogous to the morphism

VM@ - QMy—> (M, Q- QM) =

L(My, ..., My; R). (3.6)
If FE, € HOm(T?M,R) and F;, € Hom(TPM,R) are
homogeneous graded multilinear forms, F, ® F, acts on a
family of homogeneous elements according to the formula:
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(B ® Fy)(my, e, mypq)
= (—DlFal(mpsal+-+impral g (my, ..., my)

Fq(mpH, ...,mp+q).

Let S, be the group of permutation of p objects. For any
c€S, and any F, € Hom(TP?M,R), we write, for
homogeneous elements my, ...,m, € M,

F7(my, ..., my)
= (—D)MOME (M4 1), s Mo,

where
(3.7)
A, (o,m) = Z Mo |[mogy|-
1<i<jsp a(i)>0(j)
Definition 3.9. A graded multilinerar form F, €

Hom(TPM,R) is said to be alternating if 7 = (—1)!°IF,
for every o € §,,, where |o| is the parity of the permutation
ag.

The set Alt(M XX M;R)EAlt(MP,R) of all

P
alternating graded multilinear forms is a submoduleof

Hom(TPM, R); we can introduce a projection morphism,
which is no more than the graded anti-symmetrization:

A,:Hom(TPM,R) — Alt(MP; R)

1
F, - A,(F,) = o Z (-Dl°lEg.

0ESY

Proposition 2.10. The morphism A, has the following
properties:

(a) A,(F,) = F,for any alternating form F,;

() A,..(E, QF)=(-1)PtlmllFalg ., (F, ®F) for
p+qa\’q p p+q\"p q
homogeneous F,, F,;

(©) Ap+q (Ap(F) ® Fy) = Apiq(F, ® Fy)-

We assume that M is a free and finitely generated module,
so that we may identify T? (M™*)with Hom(T?M, R). In this
way, the morphism A,, yields the exact sequence of graded
R-modules

0 - S(M*) - TPM* 3 41t (MP; R) — 0, (3.8)

and  therefore we obtain an isomorphism AP M* =
Alt(MP; R). Thus, for a free and finitely generated module
M, the homogeneous elements in the graded exterior
algebra A M* can be interpreted as alternating graded
multilinear forms on M. In particular, we may interpret the
wedge product of two elements wP? eA? M* and w? €
AT M* as a graded multilinear form, which acts on
homogeneous elements m;, ..., m, 4 according to [9];

1
@+ !

q
Z (_1)IGI+A2(G'm'w dwP (ma(l)' ""md(p))
gESy

(wP A a)q)(ml, . mp+q) =

wq(md(p+1)' S ma(p+q))

where in terms of the symbol A, (o, m) previously defined,
we get

A, (o,m,w?) = A(o,m) + || Zlelmg(iﬂ. (2.9)
V. Matrices

Given a graded-commutative ring R, an R-module
morphism R™™ — RPI4 can be regarded, relative to the
canonical bases of R™™ and RP19, as a (p + q) x (m +n)
matrix with entries in R,

= x) &

which acts on column vectors in R™™ from the left. The set
Mgp[(p + q) X (m + n)] of such matrices can be graded so
as to be naturally isomorphic to the graded R-module
Homg(R™™, RP12), by decreeing that:

X iseven if X; and X, have even entries, while X, and X;
have odd entries;

*X is odd if X; and X, have odd entries, while X, and X;
have even entries;

The set of matrices of the form (4.1), equipped with this
gradation, will be denoted by Mg[p|q; m|n]. The set of
square matrices Mgz[m|n](which are obtained by letting
p =m, q = n) isagraded R-algebra.

The usual notation of trace and determinant of a matrix can
be expended to the matrices in M;[m|n], thus obtaining the
concepts of graded trace and Berezinian (also called
supertrace and superdeterminant respectively). For any
matrix X € Mg[plq ; m|n], regarded as a
morphosmX: R™™ — R™I™ 'we define the graded transpose
of X-denoted by X9¢-as the matrix corresponding to the
morphism ~ X*: (RP19)" - (R™")'dual to X. With
reference to equation (4.1), one obtains the following
relations, where the superscript ¢t denotes the usual matrix
transportation:

xt  xt
. ( - Zt)ilel =0
(X1 X2>g _)\=X; X; 4.2)
X, X - t _xyt '
X; X

The graded transportation behaves naturally with respect to
matrix multiplication:

(XY)9t = (—1)XlIvlygt xat,
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The graded trace of X is the element StrX = ¥; a; (a') € R.
Alternatively, one can give a direct characterization by
letting, for all homogeneous X € Mz[m|n],

Str =TrX, — (-D)¥ITrX, (4.3)

where Tre designates the usual trace operation. The graded
trace determines an R-module morphism Str: Mz[m|n] -
R, which is natural with respect to graded transportation
and matrix multiplication:

Str(X9t) = StrX
Str(XY) = (=D)XIIser(vx). (4.4)

Let us notice that, by denoting by I,,, the identity matrix,
one has Str Ly, = m—n.

In order to extend the notion of determinant, we must
consider the subgroup GLgiz[m|n] of the matrices in
Mgp[m|n] corresponding to an even invertible
endomorphisms. GLg[m|n]is the natural extension of the
notion of general linear group, so that it will be called the
general graded linear group.

Proposition 4.1. A matrix x € Mg[m|n], is in GLgz[m|n]if
and only if X; € GLgx[m|0] and X, € GLg[O|n], i.e. X is
invertible if and only if X; and X, are invertible as ordinary
matrices with entries in R,.

Definition 4.2. [1], [3], [4] Let X € GLz[m|n]. the
Berezinian of X is the element in GL[1]0] given by

X, X
BerX = ( ! 2)
X3 X,
= det(X; — X,X;1X;) (detX~1). (4.5)
Proposition 4.3. The mapping Ber : GLg[m|0] -
GLg[0|n] is a group morphism, that coincides with the
determinant whenever n = 0:

Ber(XY) = BerX BerY V X,Y € GLgz[m|n] (4.6)

Theorem 4.4. A matrix in X € Mg[m|n], is invertible if
and only if 6(X) € GL[m + n].

Proof. The ‘only if° part is trivial, since o is ring
morphism. To show the converse, it suffices to prove that a
matrix Z € Mg, [p|0], is invertible as a matrix with entries

in (B,), if o(Z) is invertible. In the case p =1 this is a
consequence of the fact that in B, the morphism ¢ is the
natural projection (B.), = (B.)o/(n.)o. The result is
easily extended to p > 1 by inclusion. [

V. Conclusion

We start with given an arbitrary group G and introducing G-
graded algebraic objects and for a given graded-
commutative ring R and R-module morphism can be
regarded, relative to the canonical bases of relative to the
canonical bases of R™™ and RP!9, as a (p + q) x (m + n)
X, X,
Xs X,
column vectors in R™I™ from the left. Finally, this article
induces a Theorem 4.4.0on a matrix of graded R-algebra.
This paper will be helpful for other researchers.

matrix with entries in R, X =( ) which acts on
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