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Abstract 

Often in survival regression modelling, not all predictors are relevant to the outcome variable. Discarding such irrelevant 

variables is very crucial in model selection. In this research, under Cox Proportional Hazards (PH) model we study different 

model selection criteria including Stepwise selection, Least Absolute Shrinkage and Selection Operator (LASSO), Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC) and the extended versions of AIC and BIC to the Cox 

model. The simulation study shows that varying censoring proportions and correlation coefficients among the covariates 

have great impact on the performances of the criteria to identify a true model. In the presence of high correlation among the 

covariates, the success rate for identifying the true model is higher for LASSO compared to other criteria. The extended 

version of BIC always shows better result than the traditional BIC. We have also applied these techniques to real world data. 
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I. Introduction 

Survival analysis is a special branch of statistics dealing 

with statistical methods for analyzing survival data 

available from clinical trials and biomedical studies. An 

important part of survival analysis is to fit a model based on 

the relationship between response variables and covariates. 

One way to achieve this is to search for a theoretical model 

that fits the observed data and identify the most important 

factors. Difficulties arise due to the presence of censored 

observations in survival analysis. So, it has been always a 

tricky task to select the most important covariates in 

survival regression. Many model selection techniques have 

been suggested in the literature. Among them the most 

widely used techniques are Stepwise selection 

(Efromyson),
5
 Akaike Information Criterion (AIC) 

(Akaike),
1
 Improved AIC (Hurvich and Tsai),

7
 Delta AIC, 

Bayesian Information Criterion (BIC) (Schwarz),
12

 Least 

Absolute Shrinkage and Selection Operator (LASSO) 

(Tibshirani).
9
 AIC has a tendency to pick the larger models. 

BIC tends to pick the smaller ones. On the other hand, 

LASSO maintains a balance between the larger and smaller 

models. In this research, with Cox model, we aim to 

explore several model selection criteria including Stepwise 

selection, LASSO, AIC, BIC and the extended versions of 

AIC and BIC. We also intend to evaluate their 

performances with simulated data as well as real world 

data. 

The rest of the paper is organized as follows. In Section II, 

we briefly discuss the methods used in this research. 

Section III, shows the results of simulation study along 

with real life example. Section IV contains a conclusion 

and includes further research of this study. 

II. Methods 

Model and Estimation 

The basic model for survival data is the proportional 

hazards model. Suppose that a number of patients are given 

randomly either a standard treatment or a new treatment, 

and let hS(t) and hN(t) be the hazards of death at time t for 

patients on the standard treatment and new treatment 

respectively. The simple proportional hazards model can be 

expressed in the form (Collett),
3
 hN(t) = ψ hS(t), for any 

non-negative value of t, where ψ is a constant and known as 

hazard ratio. Suppose that the hazard function for the i
th 

individual is hi(t), i = 1, 2, ..., n. Also let h0(t) be the hazard 

function for an individual on the standard treatment 

(baseline hazard). Then the hazard function for an 

individual on the new treatment is ψ h0(t). The hazard ratio, 

ψ cannot be negative and according to Cox,
4
 it is 

convenient to set ψ = exp(ηi), where ηi is a linear 

combination of the p covariates, i.e.     ∑      
 
   , 

where    is the corresponding regression coefficient. Then 

the general proportional hazards model becomes 

 hi(t) = h0(t) exp(β1x1i + β2x2i + ... + βpxpi),  i = 1, 2, ..., n   (1) 

For this semiparametric model in equation (1), the relevant 

likelihood function is given by 

 ( )  ∏
    (   ( ))
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                                         ( ) 

where x(j) is the vector of covariates for the individual who 

dies at the j
th 

ordered time, t(j). The denominator represents 

the sum of the values of exp(  x) over all individuals who 

are at risk at time t(j). Using equation (2), the regression 

parameter    can be estimated by Newton-Raphson 

iterative procedure. 

Model Selection Criteria 

With the Cox model, we study several model selection 

criteria. Firstly, we discuss Akaike Information Criterion 

(AIC) (Akaike)
1
 and it has the following form 

                      AIC = −2log(L(  )) + 2p, 

where the first term consists of negative of log likelihood 

and the second term is a penalty, which is twice the number 

of parameters in the model. Hurvich, Simonoff and Tsai
7
 

show that in non-parametric regression model the AIC 

selects model with excess number of covariates. They 

suggested a corrected version of AIC where the penalty 
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term is replaced by 
 (   )

  (   )
, where n is the total number of 

observations. Again for Cox model, Therneau and 

Grambsch
8
 suggested that in the penalty term, n should be 

replaced by the number of uncensored events, r. Hence, the 

corrected AIC can be written as    

           ( ( ̂))  
 (   )

  (   )
  

where r refers to the number of uncensored observations. 

Secondly, we have another criterion, which is similar to 

AIC with exception in the penalty term. It is known as 

Bayesian Information Criterion (BIC) (Schwarz)
12

 and 

gives higher penalty compared to AIC. It has the following 

form 

                BIC = −2log (L(  )) + p × log(n). 

The penalty of BIC gives greater penalty for large number 

of covariates. Moreover, Volinsky and Raftery
11

 extended 

BIC to the Cox model. They suggested using number of 

uncensored events instead of the number of observations. 

Then the corrected BIC can be written as 

                 BICc = −2log(L(  )) + p × log(r), 

where r refers to the number of uncensored observations. 

Another popular choice for model selection is the 

Stepwise selection that performs variable selection. It is a 

hybrid technique combining the forward and backward 

stepwise selection strategy. Every variable is added to the 

model sequentially and after adding each variable, the 

method may discard any variable that no longer provides 

an improvement in the model fit. Models can be evaluated 

by AIC, BIC, Mallows’ Cp  or Adjusted R
2
. Finally, there 

is another criterion, which also performs variable selection 

named Least Absolute Shrinkage and Selection Operator 

(LASSO). It is more sophisticated method than Stepwise 

selection in performing model selection. The original 

LASSO (Tibshirani)
9
 minimizes the residual sum of 

squares subject to a certain constraint. For a linear 

regression model, the LASSO estimate  ̂  minimizes the 

quantity         

    ̂      
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where λ is the tuning parameter and    is the regression 

coefficient in the model. LASSO was extended by 

Tibshirani
10

 to the Cox model by using the constraint of 

equation (2) to the likelihood function. Then the expression 

becomes  ̂      
 

   ( )   ∑ |  | 
 
    where l( ) is the 

logarithm of likelihood for Cox  model. The LASSO 

method requires a technique for choosing an appropriate 

value of λ. Cross validation provides simple solution for 

this problem. We consider a grid of λ values and choose the 

λ for which the CV error is the smallest.  

Simulation Study 

In this research, we execute a simulation study to 

understand how well different model selection methods 

perform to identify the true model. We generate the survival 

times, T, from the Cox model by 

     
  (    ( )    (    ))                                           ( ) 

To simulate survival times from equation (3), we need to 

specify the inverse cumulative hazard function,   
  ( ). We 

can assume the distribution of survival times as 

exponential, Weibull and Gompertz distribution for Cox 

model (Bender et al).
2
 We generate survival times from 

Weibull distribution in this study. The inverse of the 

cumulative hazard function is given by 

                               H0(t) = (λ
−1

t)
1/v

, (4) 

where λ is the known scale parameter and the v is the 

known shape parameter. By inserting equation (4) into 

equation (3), we can get the survival times of a Cox PH 

model with baseline hazard of a Weibull distribution, which 

can be expressed as          

           ( )      (    )      
In order to generate right censored observations, we 

generate a random variable c from binomial distribution, 

i.e. c ~ binom (1, a). By varying the parameter a in the 

binomial distribution, we can vary the censoring 

proportion. As for example, for 30% censoring proportion, 

we generate c ~ binom (1, 0.7). 

III. Results and Discussion 

General Settings 

We consider different sample sizes (n = 30, 50, 100) with no 

censoring, censoring proportions (40%, 60%, 70%) and 

correlation coefficients (ρ = 0.2, 0.6, 0.8) among the 

covariates. Each dataset consists of four covariates (x1, x2, x3, 

x4) and the corresponding regression coefficients β' = 

(0.3,0.5,0,0). Our candidate models consist of the sequential 

columns of X (Hurvich and Tsai)
7
; i.e., consist of columns 1, 

..., m. In addition, the true model (m0) consists of the first 2 

columns of X. The covariates are generated from multivariate 

normal distribution. The correlation between xi and     i ≠ j is 

ρ. Each of the dataset will be replicated 1000 times. We 

present the following tables containing the results for 

different criteria from the simulation study. 

From Table 1, we can say that at small sample size and low 

correlation, stepwise method identifies a true model more 

often than other criteria do. However, for highly correlated 

dataset, LASSO shows good result compared to stepwise 

method (Table 3). We observe from Table 1, Table 2 and 

Table 3 that as the sample size increases, the rate of selecting 

the true model increases for both stepwise and LASSO.  

AICc gives better performance than AIC in particularly 

small sample. However, the success rate really gets better 

for AIC than AICc for larger samples. Both of them are 

highly affected when there is censored observations in the 



Model Selection Strategy for Cox Proportional Hazards Model 113 

data. AIC and AICc both become unstable in a highly 

correlated data. There is no difference in the performance of 

BIC and BICc in absence of censoring. But classical BIC is 

greatly affected when censoring is considered in the dataset. 

BICc always shows better result than BIC in every 

situation. For complete and large data with weak 

correlation, BIC and BICc show highest success rate, 65% 

approximately. However, it seems BIC and BICc are 

greatly affected by both censoring and high correlation. The 

performances get worse when the covariates are highly 

correlated. The success rate for BIC is very low in some 

cases. We have not shown all the results here. If anyone 

feels interested to see detailed output of the simulation 

study may contact us. 
 

Table 1. Results for model selection for Cox model in 1000 replications using different model selection criteria (ρ = 0.2) 

Sample Size Method Success Rate 
Average Model 

Size 
Selected Model Order, m 

    0 1 2 3 4 m0=2 

         n=50 Stepwise 39% 1.90 0 257 502 220 21 390 

  censoring  proportion 0% LASSO 29.7% 2.42 26 135 370 332 137 297 

 AIC 39% 1.90 0 257 502 220 21   390 

 AICc 35.7% 2.27 0 116 461 353 70 357 

 BIC 34.3% 1.53 0 545 407 46 2 343 

 BICc 34.3% 1.53 0 545 407 46 2 343 

                  n=50 Stepwise 26.5% 1.72 0 401 433 151 15 265 

censoring proportion 40% LASSO 22.9% 2.006 104 216 338 254 88 229 

 AIC 26.5% 1.72 0 401 433 151 15 265 

 AICc 26.8% 1.97 0 209 447 288 56 268 

 BIC 15.6% 1.29 0 734 236 29 1 156 

 BICc 16.7% 1.27 0 746 237 16 1 167 

                   n=50 Stepwise 17.9% 1.56 0 523 357 106 14 179 

censoring proportion 60% LASSO 20.1% 1.58 237 246 277 183 57 201 

 AIC 17.9% 1.56 0 523 357 106 14 179 

 AICc 20.5% 1.83 0 313 415 229 43 205 

 BIC 0.82% 1.19 0 826 156 17 1 82 

 BICc 0.94% 1.17 0 835 155 9 1 94 

                  n=50 Stepwise 13.5% 1.51 0 600 304 82 14 135 

censoring proportion 70% LASSO 8.1% 1.37 307 258 242 141 52 81 

 AIC 13.5% 1.51 0 600 304 82 14 135 

 AICc 16.3% 1.91 0 368 389 208 35 163 

 BIC 0.54% 1.16 0 884 104 11 1 54 

 BICc 0.59% 1.16 0 857 125 14 0 59 
 

Table 2. Results for model selection with Cox model for 1000 replications using different model selection criteria (ρ = 0.2) 

Sample Size Method Success Rate 
Average Model 

Size 
Selected Model Order, m 

    0 1 2 3 4 m0=2 

                 n=100 Stepwise 61.4% 2.24 0 75 647 245 33 614 

 censoring proportion 0% LASSO 42.3% 2.69 0 36 412 376 176 405 

 AIC 61.4% 2.24 0 75 647 245 33  614 

 AICc 43.1% 2.62 0 19 450 427 104 431 

 BIC 64.8% 1.79 0 268 677 53 2 648 

 BICc 64.8% 1.79 0 268 677 53 2 648 

         n=100 Stepwise 52.3% 2.07 0 168 615 193 24 523 

censoring proportion 40% LASSO 34.7% 2.49 11 127 374 341 147 347 

 AIC 52.3% 2.07 0 168 615 193 24 523 

 AICc 41.1% 2.45 0 69 491 366 74 411 

 BIC 41.6% 1.54 0 496 465 39 0 416 

 BICc 43.5% 1.56 0 484 477 38 1 435 

                n=100 Stepwise 40% 1.90 0 304 505 177 14 400 

censoring proportion 60% LASSO 29.3% 2.25 49 191 344 289 127 293 

 AIC 40% 1.90 0 304 505 177 14 400 

 AICc 34.2% 2.32 0 146 456 329 69 342 

 BIC 24.3% 1.33 0 691 284 25 0 243 

 BICc 22.5% 1.30 0 714 275 11 0 225 

                n=100 Stepwise 28.9% 1.75 0 415 437 132 16 289 

censoring proportion 70% LASSO 22.5% 1.96 109 233 333 241 84 225 

 AIC 28.9% 1.75 0 415 437 132 16 289 

 AICc 27.3% 2.20 0 204 450 290 56 273 

 BIC 13% 1.20 0 813 171 16 0 130 

 BICc 14.2% 1.21 0 800 191 9 0 142 
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Table 3. Results for model selection with Cox model for 1000 replications using different model selection criteria (censoring 

proportion 40%) 

 

Sample Size Method Success Rate 
Average 

Model Size 
Selected Model Order, m 

    0 1 2 3 4 m0=2 

     n=100 Stepwise 50.3% 2.11 0 165 582 227 26 503 

ρ = 0.2 LASSO 31% 2.49 1 11 37 40 11 31 

 AIC 50.3% 2.11 0 165 582 227 26 503 

 AICc 37.4% 2.50 0 66 448 403 83 374 

 BIC 40.4% 1.51 0 522 451 26 1 404 

 BICc 45.1% 1.59 0 461 492 45 2 451 

     n=100 Stepwise 41.7% 1.84 0 305 561 119 15 417 

ρ = 0.6 LASSO 36.9% 2.54 3 92 397 375 133 369 

 AIC 41.7% 1.84 0 305 561 119 15 417 

 AICc 37.4% 2.26 0 138 525 273 64 374 

 BIC 16.6% 1.25 0 761 229 10 0 166 

 BICc 20.2% 1.33 0 696 281 23 0 202 

    n=100 

    ρ = 0.8 
Stepwise 17.9% 1.53 0 558 358 78 6 179 

 LASSO 33.9% 2.42 0 120 428 366 86 339 

 AIC 17.9% 1.53 0 558 358 78 6 179 

 AICc 22% 1.23 0 260 470 228 42 220 

 BIC 2.2% 1.07 0 939 51 10 0 22 

 BICc 3.1% 1.10 0 909 81 10 0 31 
 

Real world example: BDHS 2014 data 

We have used Bangladesh Demographic and Health 

Survey (BDHS) 2014 data to evaluate the performance 

of different criteria. We have considered 5099 

observations in this study. There are 383 events and the 

censoring proportion is almost 92%. As we intend to 

observe infant mortality, our response variable is the 

death of a child before its first birthday. Therefore, the 

event of interest occurs if the death is before 12 months. 

The censoring indicator is: 1 = death before 12 months, 0 

= otherwise. The potential covariates in this study 

include the following variables: Mother’s age  (x1), 

Region (x2): Barisal, Chittagong, Dhaka, Khulna, 

Rajshahi, Rangpur and Sylhet, Type of residence (x3): 

Urban and Rural, Mother’s education (x4): No education, 

Primary education, Secondary education and Higher 

education, Sex of the child (x5), Mother’s occupation 

(x6), Wealth Index (x7). 

Table 4 shows the results after fitting the Cox model 

including all the covariates considered in this study.  

The estimated coefficients, their standard errors and p − 

values are presented in the table. Table 5 represents the 

result for variable selection by using stepwise selection 

and LASSO. Table 6 shows the results for model 

selection by using AIC, AICc, BIC and BICc under Cox 

model. The selected models, estimated coefficients of the 

parameters are presented here. 

Table 4 shows, variable x1 (mother’s age) has the 

significant impact on the death of a child. Then the 

variable x2 (sex of child) has also influence on child’s 

death. 

Table 4. Results for full model for BDHS 2014 data under 

Cox model 

Covariates Value Std. Error z p-value 

x1 -0.071 0.007 -9.83 0.000 

x2 -0.049 0.032 -1.58 0.115 

x3 0.136 0.115 1.18 0.237 

x4 -0.057 0.061 -0.94 0.347 

x5 0.207 0.102 2.03 0.043 

x6 0.005 0.004 1.25 0.210 

x7 0.044 0.041 1.08 0.282 

Table 5. Results for variable selection using stepwise and 

LASSO for BDHS 2014 data under Cox model 

Covariates Stepwise LASSO 

x1 -0.069 0.022 

x2 0.000 0.000 

x3 0.000 0.000 

x4 0.000 0.000 

x5 0.207 0.000 

x6 0.000 0.000 

x7 0.000 0.000 

Table 5 shows, stepwise method selects x1 as well as x5 

as the most significant predictors. However, LASSO 

selects only x1 as the significant predictor. From Table 6, 

we observe that AIC selects the model with the 

covariates (x1, x5) as the best one. AICc selects the model 

with covariates (x1, x2, x3, x5, x6, x7) as the best one. BIC 

and BICc both select the model with covariate x1 as the 

best one. The model suggested by AIC shows that the 

estimated parameters are statistically significant. The p − 

value of the model selected by BIC and BICc is also 

statistically significant. If we see the model selected by 

AICc, then it can be noticed that all other covariates 

except x1 and x5 are insignificant here. 
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Table 6. Results for model selection using AIC, AICc, 

BIC and BICc for BDHS 2014 data 

Criterion Covariates Value Std. 

Error 

z p-value 

AIC x1 -0.069 0.0069 -10.01 0.00 

 x5 0.207 0.102 2.03 0.043 

BIC, 

BICc 

x1 -0.069 0.0069 -10 0.00 

 x1 -0.069 0.0069 -9.99 0.00 

 x2 -0.0356 0.029 -1.21 0.225 

AICc x3 0.129 0.114 1.13 0.259 

 x5 0.209 0.102 2.04 0.041 

 x6 0.004 0.004 1.08 0.282 

 x7 0.045 0.041 1.09 0.274 

IV. Conclusion 

In this research, we have evaluated the performance of 

different model selection criteria with Cox model. AIC 

gives more stable result than AICc when the sample size 

is large. BICc is better than BIC to identify the true 

model in every setting. However, it is difficult to choose 

one best method since all the methods have their 

advantages and disadvantages. We observe how their 

performances become volatile under different extreme 

situations (e.g. small sample size, heavy censoring and 

high correlation among the covariates. Therefore, the 

decision to choose the appropriate method in selecting a 

true model has to be made with great caution. This 

research can further be extended by considering 

interactions among the covariates along with other 

survival regression models. 

References 

1. Akaike, H., 1974. A new look at the statistical model 

identification. IEEE Transactions on Automatic Control, 

AC-19, 716-723. 

2. Bender, R., T. Augustin and M. Bletter, 2005. Generating 

Survival Times to Simulate Cox Proportional Hazards 

Models. Statistics in Medicine, 24, 1713-1723.  

3. Collett, D., 2003. Modelling Survival Data in Medical 

Research. Chapman and Hall; New York. 

4. Cox, D.R., 1972. Regression models and life tables (with 

discussion). Journal of the Royal Statistical Society, series 

B; 34, 187-220. 

5. Efroymson, M.A., 1960. Multiple regression analysis. 

Mathematical methods for digital computers, 1, 191203. 

6. Hurvich, C.M., J.S. Simonoff and C.L. Tsai, 1998. 

Smoothing Parameter Selection in Nonparametric 

Regression Using an Improved Akaike Information 

Criterion. Journal of the Royal Statistical Society, Series 

B, 60, 271-293. 

7. Hurvich, C.M. and C.L. Tsai, 1989. Regression and time 

series model selection in small samples. Biometrika, 76, 

297-307. 

8. Therneau, T.M. and P.M. Grambsch, 1998. Penalized Cox 

models and frailty. Technical report, Division of 

Biostatistics. Mayo Clinic; Rochester, 12, 156-175 

9. Tibshirani, R., 1996. Regression shrinkage and selection 

via the LASSO. Journal of the Royal Statistical Society, 

Series B, 58, 267-88. 

10. Tibshirani, R., 1997. The lasso method for variable 

selection in the Cox model. Statistics in Medicine, 16, 

385-95. 

11. Volinsky, C.T. and  A.E. Raftery, 2000. Bayesian 

information criterion for censored survival models. 

Biometrics, 56, 256-62. 

12. Schwarz, G. 1978. Estimating the dimension of a model. 

The annals of statistics, 66, 461-464. 

  



116  Fabiha Binte Farooq and Md. Jamil Hasan Karami 

 


