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Abstract 

Normal distribution is one of the most commonly used non-uniform distributions in applications involving simulations. 

Advanced computing facilities make the simulation tasks simple but the challenge is to meet the increasingly stringent 

requirements on the statistical quality of the generated samples. In this paper, we examine performances of different existing 

methods available to generate random samples from normal distribution based on statistical quality of the generated samples 

(randomness and normality) and computational complexities. From the simulation study, it is observed that CDF 

approximation based method and acceptance-rejection method devised by Rao et al.12 and Sigman14 are the fastest and the 

slowest respectively among all algorithms considered in this paper while generated samples produced by all methods satisfy 

randomness and normality properties. An application involving simulation from normal distribution is shown by considering 

a Monte Carlo integration problem. 

Keywords: Normal distribution, Monte Carlo integration, Ljung-Box test, Bootstrapping. 

I. Introduction 

Normal random variables are widely used in Statistics, 

Computer Science, and other disciplines for several purposes. 

One of the main common purposes across the different 

disciplines is to carry out statistical inference of certain 

population parameter, which includes evaluating 

performances of estimation and test procedures by 

conducting a simulation study. In particular, normal random 

variables are required in certain application in Bayesian 

statistics, such as Monte Carlo method
12

. For example, 

suppose we wish to evaluate the integral 

  ∫
 

   
          

 
  

 

  
 whose analytical solution is 

impossible.This type of computational problem is very 

common in both the frequentist and the Bayesian approaches. 

The Monte Carlo is one of the possible methods to 

approximate   by  ̂             ∑
  

    

 
     where      

        , are generated sample produced by any MCMC 

scheme is more correlated compare to that of sample 

produced by any acceptance-rejection based sampling 

technique. 

There are several algorithms available in the literatures 

which can be used to generate normal random numbers but 

all are scattered in the literatures. To the best of our 

knowledge, there are two comparative studies to date 

regarding finding an efficient method for generating normal 

random numbers conducted by Kundu, Gupta and 

Manglick
8
 and Rao, Boiroju and Reddy

12
, respectively. In 

both of the studies, the efficiency comparison over different 

methods for generating normal random numbers was 

measured based on the properties of randomness and 

normality. However, the computing time to generate 

samples for each method was ignored in both of their 

comparison studies, but computing time is one of the core 

components to decide how good analgorithm is in modern 

computational statistics. Therefore, in addition to check 

randomness and normality properties of the generated 

samples during the comparison of different methods, there 

is a need to incorporate computing time as well. 

Motivated by the computational aspects of an algorithm, 

our aims are to conduct a study by covering all the existing 

methods for generating normal random numbers, and 

compare their performances based on the criteria of 

randomness, normality and computational time. 

The rest of the paper is organized as follows: Section 2 

presents the description of normal distribution and some 

relevant terminologies used in this paper such as Monte 

Carlo method, Ljung-Box test and Bootstrapping while 

each of the methods is discussed in section 3. Section 4 

presents the results and the discussion which will be 

followed by an application and future work presented in 

sections 5 and 6, respectively. 

II. Normal Distribution and Related Terminologies 

Normal distribution, also known as Gaussian distribution, is 

one of the most widely used distributions in Statistics. The 

probability density function of a normal distribution is 

defined as  

                       
 
 
(
   
 

)
 

         

where           and     are the location (mean) 

and scale (variance) parameters of this distribution 

respectively. When     and      this distribution is 

called the standard normal distribution which has some 

characteristics: (i) Symmetric about     and mean = 

median =mode =0 (ii) Skewness and Kurtosis are      

and      respectively (iii) First and third quartiles are -

0.6745 and 0.6745 respectively while second quartile is the 

median. A normal random variable (rv)   with mean   and 

variance    can be obtained from standard normal variable 

  using the transformation       . 

Monte Carlo Method 

To explain the Monte Carlo method, we don’t cover its 

detailed theory. Instead we discuss here only how this 
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method works for a particular problem by considering a 

suitable example, which is the main aim in the context of 

this paper. Monte Carlo method is a technique that can be 

used to solve a mathematical or statistical problem, whose 

analytical solution is impossible or quite challenging to 

compute, by using the stochastic simulation
13

. In the 

introduction section, we have seen that analytical solution 

of   is impossible and Monte Carlo method can be used to 

approximate    Monte Carlo method approximates the 

integral   in a three steps procedures: (i) Express   in the 

form of an expectation of some function      of a random 

variable θ with a probability density function (pdf)      as 

  ∫           
 

  
  ∫ *√  
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√  
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where the function       *√  
 

   
+ and      
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√  
          

 
+ (ii) Simulate a sample             

from the pdf      which is        in this problem (iii) 

Finally the Monte Carlo estimator  ̂ of   is    ∑      
 
    

which is unbiased and converges to the true integral almost 

surely
11

 (proofs are omitted here). 

Ljung-Box Test 

Ljung-Box test is widely used in Econometrics and other 

applications of time series analysis to test the randomness 

of a time series. Ljung and Box
9

.jointly developed this test 

which works by following the three steps: (i)     the data 

are independently distributed against     the data possess 

some serial correlation up to a certain lag   (ii) The 

quantity         ∑           
   

     , which is a 

function of sample autocorrelation   at lag   and sample 

size  , denotes the test statistic (iii)       
  under    and 

reject the null hypothesis if           
  where         

  is 

the         quintile of the    distribution with   degrees 

of freedom. 

Bootstrapping 

In Statistics, inference about certain population 

characteristics can be drawn based on observed data 

(sample). For example, inference of the parameters (    ) 

of normal distribution can be made using the sample mean 

( ) and sample variance       respectively. After making 

inference regarding unknown population characteristics 

through estimators, which are a function of sample data, 

there is a need to evaluate the accuracy of the estimators. 

The accuracy of the estimators can be evaluated in terms of 

bias and variance of the estimators along with their 

confidence interval (C.I.). Sometimes, such measures of 

accuracy can be derived analytically but often require to 

estimate them numerically.  

Bootstrap is such a technique that can be used to estimate 

their accuracy numerically from a single data set which is 

originally proposed by Efron and Tibishirani
5
. Usually, the 

true error in a sample statistic against its population value is 

not measurable as population is unknown. The bootstrap 

method alleviates this problem by resampling the sample 

data and performing inference about a sample from 

resampled data. In this case, the sample data plays the role 

as population which is known and hence the quality of 

inference of the true sample from resampled data is 

measurable. There are two types of bootstrapping: 

parametric and non-parametric bootstrapping. In the light of 

this paper, we will only require parametric bootstrapping 

which works by assuming observed sample comes from a 

known probability distribution        (the parameter   

value is unknown). Using the observed sample parameter   

is estimated by  ̂ using any suitable method (preferably 

MLE) and then plugging in      ̂). Finally,   samples are 

drawn from      ̂) and estimate   from each of the 

samples. Suppose  ̂ 
             are the estimates of   

for each sample respectively then the empirical distribution 

of  ̂    ̂ 
   ̂ 

     ̂ 
    gives the approximate distribution 

of  ̂   

Bootstrap Estimates of Bias, Variance and C.I.  

The theoretical bias and variance of an estimator  ̂ against 

the parameter   are Bias ( ̂) =  ( ̂   )   ( ̂)    and 

Var ( ̂) =     ̂      , respectively. The bootstrap 

estimates of bias and variance can be obtained by replacing 

both   and  ̂ by  ̂ and  ̂  in their respective expressions 

i.e. Bias ( ̂)   ( ̂   ̂)  
 

 
∑  ̂ 

   ̂ 
    and Var 

( ̂)         ∑ ,( ̂ 
   ̂ )

 
- 

   . From the bootstrap 

distribution (approximate distribution) of true  ̂, confidence 

interval can be constructed using several methods. The 

most commonly used methods are “basic”, “percentile” and 

“normal” methods. As the percentile method works well in 

symmetrical case and we believe that the shape of the 

bootstrap distribution is symmetrical in the context of our 

problem, we will use “percentile” method to construct 

confidence interval in this paper
4,5

. According to them, the 

percentile confidence interval is   ̂    ⁄
   ̂      ⁄

    where 

 ̂      ⁄
  denotes the         percentile of the bootstrap 

distribution. 

In this paper, the bootstrap confidence interval is used to 

test the hypothesis that the sample data comes from a 

standard normal distribution against the alternative that the 

data comes from a different distribution. When the 

bootstrap confidence interval for certain estimator contains 

its true parameter, we accept the null hypothesis that sample 

data comes from a standard normal distribution
1
. For 

example, if the bootstrap confidence interval for sample 

mean contains the true parameter     then we accept the 

null hypothesis. 

Acceptance-Rejection Method  

Suppose      and      be the pdf and cdf of a random 

variable  , respectively. Generating   from      using 

inversion method requires   
     , where 

         (0,1). The inversion method can’t be applied 

to generate   from      if      is not invertible. Under 

this circumstances, other available methods such as 

acceptance-rejection method can be applied to generate   
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from     . In some situations, there may be other available 

methods which are more efficient than inversion method 

and in such cases it is recommended to use these alternative 

methods. Acceptance-rejection algorithm is a well-known 

data generation technique from an arbitrary probability 

density function. Under this framework, a suitable proposal 

density needs to be designed from which a candidate 

samples can be drawn. Suppose      be the proposal 

density which is chosen in such a way that      is very 

close to     , and efficient data generation method is 

available for       A candidate value  from      is 

accepted (considered to follow     ) under acceptance-

rejection method if   
    

     
 , where     ,

    

    
-    and 

         (0, 1). The detailed procedure of acceptance-

rejection method to simulate a sample of size   is 

discussedin Algorithm 2. 

Algorithm 1: Algorithm of parametric bootstrapping 

Input: Observed data            from        
Output:Approximate pdf of  ̂ 

Begin 

• Estimate Θ by its MLE  ̂ 

• Fix bootstrap re-sample number, say   

For           do 

• Generate       
    

     
   from      ̂) 

• Estimate Θ from    and denote it by  ̂ 
  

End For loop 

• Empirical pdf of  ̂ 
  mimics the true pdf of  ̂ 

End Begin  

  

Algorithm 2: Acceptance-Rejection algorithm 

Input: Proposed value   from      
Output: Produce   from the target density      
Begin 

For            do 

1. Generate   from      

2. Calculate     ,
    

    
-    

3. Generate                

4. If   
    

     
 then 

•     

Else  

• Go back to step 1 

End If 

End For loop 

• Return all           as a desired sample 

End Begin  

III. Methods for Generating Standard Normal Random 

Numbers 

In this section, we discuss the most commonly used 

methods to generate standard normal random numbers. 

Extensive list of different available methods for generating 

standard normal random numbers is available in the text 

book written by Johnson, Kotz and Balakrishnan
7
. 

 

Central Limit Theorem (CLT) Based Approach 

Generating standard normal random numbers using the idea 

of central limit theorem is simple. The idea behind this 

approach is to generate   independent identically 

distributed (i.i.d.)                         and define 

their sum by    ∑   
 
   , which approximately 

follows  (
 

 
 
 

  
). The more              variables are 

used to define  , the better the approximation. Finally, 

standardize   by   
    ⁄

√   ⁄

 which approximately follows 

        Considering      in the right hand of   

simplifies the expression to       although there is a 

question regarding the approximation which only takes only 

12              variables. The detailed procedure of 

CLT based approach to simulate   standard normal random 

numbers is discussed in Algorithm 3. 

Algorithm 3: Algorithm of CLT method to generate   

Input:                         
Output: Produce          
Begin 

For            do 

•                         
•    ∑   

 
      

End For loop 

• Return all           as a desired sample 

End Begin  

Box-Muller Method 

Box and Muller
3
proposed a method which generates two 

independent standard normal random numbers using two 

             variables. The detailed procedure of Box-

Muller method to simulate   (even) standard normal 

random numbers is discussed in Algorithm 4.  

Algorithm 4: Box-Muller
3
 algorithm to generate   

Input:                    
Output: Produce              
Begin 

For            ⁄  do 

 • Generate                    

 • Calculate    √                  

 and    √                  

 End For loop 

 • Return all           as a desired sample 

End Begin  

To generate    (odd) standard normal random numbers, run 

the above algorithm and discard one standard normal 

random number. 

Polar Method 

George Marsaglia
10

 modified the Box-Muller method which 

is known as Polar method. Because of Marsaglia’s 

modification, there is no need to use Sin and Cos function 

in Box-Muller method. The modified version of Box-

Muller method to produce a sample of size   is summarized 

in Algorithm 5. 
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Algorithm 5: Polar
10

 algorithm to generate   

Input:                    
Output: Produce              
Begin 

For            ⁄  do 

• Generate                    
  Set         ,          and      

    
  

  While     then 

• Repeat first two steps to calculate   again 

  End While  

  Calculate    √
      

 
  ,       

End For loop 

• Return all           as a desired sample 

End Begin  

Hastings CDF Approximation Based Method 

Hastings
6
developed an algorithm to generate a standard 

normal random numbers using the inversion method, where 

an approximation function of standard normal CDF is 

considered. 

Algorithm 6: Hastings
6
 algorithm to generate   

Input:               , and the seven constants 
                                              
                 

Output: Produce          
Begin 

For            do 

• Generate                

•   √         

If       then 

•       
∑    

  
   

∑    
  

   

         

Else  

•             
End If  

End For Loop  

• Return all           as a desired sample 

End Begin  

The detailed procedure of Hastings’s method for generating 

a sample of size   is described in Algorithm 6. 

Rao et al. CDF Approximation Based Method 

Rao et al.
12

 used the same idea like Hastings’s CDF 

approximation method but they used logistic distribution to 

approximate the CDF of standard normal distribution. 

Equating                        yields   
                      The detailed procedure of Rao 

et. al
12

 method is described in Algorithm 7. 

Acceptance–Rejection Method 

Exponential density with rate    ,                
   is chosen as a proposal density to generate standard 

normal variables by Sigman
14

. Considering exponential 

proposal density (rate      actually produces samples 

from the distribution of | | instead of  , which has density 

                 
  ⁄        Under this setting, the 

value of              ⁄   is   √   ⁄       , and a 

proposed value is set to | |if              ⁄  

  
 

 
        where                 Finally, using the 

symmetry property of normal distribution | | is 

transformed to  , and this can be done by setting   | | if 
      and    | | if        where 

                As        , so using         
         proposal density requires on average 1.315 

draws to generate one standard normal variate. Generating a 

sample of size   according to Sigman
14

 method is 

summarized in Algorithm 8a. 

Algorithm 7: Rao et al.
12

 algorithm to generate   

Input:                
Output: Produce          
Begin 

For            do 

 • Generate                
 • Calculate                        

End For loop 

 • Return all           as a desired sample 

End Begin 

 

Algorithm 8a: Sigman
14

 algorithm to generate   

Input: Proposed value   from      
Output: Produce   from the target density      
Begin 

For            do 

1. Generate           

2. Find     {
            

  ⁄

   
}   √

  

 
   

3. Generate                

4. If   
    

     
           

 
 then 

• | |    

• Generate                
• If       then 

•   | | 
• Else  

•    | | 
 End If 

 Else  

 • Go back to step 1 

 End If 

End For loop 

 • Return all           as a desired sample 

End Begin  

Using the relation                where 

              , step 4 of Algorithm 8a can be 

simplified as follows: (i) generate two independent 

variables               (ii) if             
  then set 

| |    . The simplified version of Algorithm 8a is 

presented in Algorithm 8b. 
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Algorithm 8b: Sigman
14

 algorithm to generate   

Input: Proposed value   from      
Output: Produce   from the target density      
Begin 

For            do 

1. Generate           

2. Find     {
            

  ⁄

   
}   √

  

 
   

3. Generate                

4. If   
    

     
           

 
 then 

• | |    

• Generate                
• If       then 

•   | | 
• Else  

•    | | 
End If 

Else  

• Go back to step 1 

End If 

End For loop 

• Return all           as a desired sample 

End Begin  

Using Generalized Exponential Distribution 

Kundu et al
8
. proposed an algorithm to generate standard 

normal random numbers using two parameters generalized 

exponential (GE) distribution. The distribution function of 

GE density is            (      )
 
  where   and   

are the shape and scale parameters, respectively. Simulating 

a random variable   from GE density can be made using 

the inversion method as its distribution function is 

analytically invertible. They also observed that for a certain 

ranges of shape parameter of GE density the log-normal 

and GE are very close to each other i.e. one can be 

approximated by other. Furthermore, if   follows log-

normal then      is distributed as normal. Using these 

ideas, Kundu et al.
8
 generated standard normal variables as 

follows: (i) Generate   from GE density using inversion 

method for        and     (ii) Transform X which is 

approximately distributed as log-normal to standard normal 

distribution. Algorithm 9 describes the Kundu et al.
8
method 

to generate a sample of size    

Algorithm 9: Kundu et al.
8
 algorithm to generate   

Input:                
Output: Produce          
Begin 

For           do 

 • Generate                

 • Calculate       (        ⁄ ) 

 • Calculate   
           

      
 

 End For loop 

 • Return all           as a desired sample 

End Begin  

Bol’shev Method 

Bol’shev
2
 proposed a method to generate standard normal 

random numbers. The detailed procedures of Bol’shev 

method to generate a sample of size   is summarized in 

Algorithm 10 

Boiruju et al. Method 

Boiroju et al.
12

 proposed an algorithm to generate standard 

normal random numbers. The detail procedures of Boiroju 

et al.
12

 method to generate   standard normal variates is 

summarized in Algorithm 11. 

Algorithm 10: Bol’shev
2
 algorithm to generate   

Input:                
Output: Produce          
Begin 

For            do 

 • Generate                             

 • Calculate   
 

 
∑ [√        ]
 
    

 • Calculate                 
End For loop 

 • Return all           as a desired sample 

End Begin  

 

Algorithm 11: Boiruju et al.
12

 method to generate   

Input:                
Output: Produce          
Begin 

For            do 

 • Generate                
 • Calculate :  

                         
                        
                      
                      
                          

                          

 End For loop 

 • Return all           as a desired sample 

 End Begin  

IV. Simulation Study and Discussions  

In this section, we have presented the simulation results 

obtained under different methods considered in section 3. 

Here all numerical computations are computed in- R on a 

Samsung XI machine with an Intel (R) Core (TM) i7-4900 

(single) processor running at 3.60 GHz. By using the CLT 

method, Box-Muller (BM) method, George Marsaglia 

(GM) method, Hastings CDF (H_CDF) based method, 

Rao et al. CDF (R_CDF) based method, Sigman accept-

reject (S_AR) method, Kundu generalized exponential 

(K_GED) method, Bol’shev method (B_SHEV) and 

Boiroju methods (B_ROJU), a sample of size 1 million is 

generated from standard normal distribution. All the 

results presented here are produced using random seed 

number, and we have found that using different seed 

number produces similar kind of results. The efficiency of 
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each methods is determined based on statistical quality of 

thegenerated samples (randomness and normality 

properties) and computing time required to generate these 

samples. Table 1 shows the average computing (CPU) 

time required to generate a sample of size 1 million for 

each method. 

Table 1. Average computing time required to generate a 

sample of size 1 million from standard normal 

distribution using different methods. 

Method Average Computing Time  

(in second) 

CLT 0.840 

BM 0.104 

GM 0.557 

H_CDF 0.119 

R_CDF 0.063 

S_AR 0.965 

K_GED 0.167 

B_SHEV 0.855 

B_ROJU 0.335 

We have computed the CPU time consumed to execute the 

whole program using the system.time command and 

noticed that consumed CPU time varies one run to another 

run by 1 to 2 percent. Although varied amount is not too 

high but we take into account it by reporting the average 

CPU time (50 replications). As computing time is one of 

the core components to measure the efficiency of each 

methods, an emphasized has been placed on coding as 

efficiently as possible. From Table 1, we see that Rao et 

al. CDF (R_CDF) based method is the fastest, which 

requires only 0.063 second, while Sigman accept-reject 

(S_AR) based method is the slowest (requires 0.965 

second) among all methods considered here. In other 

word, R_CDF method is 15.31 times faster than S_AR 

method. It is also observed that average computing time 

for sample sizes            and 50000 reduced 

linearly relative to the time shown in Table 1 but not 

shown here. To test the randomness of the generated 

samples obtained under different methods, we have used 

both graphical technique (ACF plot) and Ljung-Box test. 

Figure 1 shows the ACF plots of generated samples 

obtained under CLT and BM methods respectively. From 

Figure 1, it is observed that some of the ACF at lag around 

12, 32 and 63 for CLT method and at lag around 17, 41 

and 80 for BM method are beyond the significance 

confidence bands (95%). However, it does not guarantee 

the presence of autocorrelation, and may happen because 

of sampling error. We haven’t considered the ACF of 

generated samples obtained under other methods to plot 

here as they have similar patterns. Ljung-Box test is 

carried out to confirm the presence of autocorrelation and 

results are shown in Table 2. 

Table 2. Ljung-Box test statistic and their corresponding 

  values in parenthesis at different lags. 

Method Lag 

10 

Lag 

20 

Lag 

30 

Lag 

60 

Lag 

80 

CLT 6.886 

(0.736) 

14.504 

(0.804) 

31.779 

(0.378) 

53.947 

(0.695) 

72.358 

(0.716) 

BM 3.673 

(0.961) 

13.383 

(0.860) 

21.002 

(0.888) 

60.914 

(0.443) 

87.619 

(0.262) 

GM 4.573 

(0.918) 

13.987 

(0.831) 

24.468 

(0.750) 

43.669 

(0.944) 

76.687 

(0.584) 

H_CDF 11.935 

(0.289) 

15.659 

(0.738) 

32.770 

(0.333) 

65.338 

(0.297) 

99.489 

(0.069) 

R_CDF 11.933 

(0.289) 

23.809 

(0.251) 

36.048 

(0.207) 

74.259 

(0.102) 

85.307 

(0.322) 

S_AR 10.587 

(0.391) 

15.477 

(0.748) 

22.597 

(0.831) 

48.590 

(0.854) 

78.791 

(0.517) 

K_GED 10.534 

(0.395) 

25.362 

(0.188) 

37.274 

(0.169) 

62.315 

(0.394) 

84.239 

(0.351) 

B_shev 4.871 

(0.899) 

13.617 

(0.849) 

17.826 

(0.961) 

36.911 

(0.992) 

57.264 

(0.974) 

B_roju 6.834 

(0.741) 

14.953 

(0.779) 

27.217 

(0.612) 

44.622 

(0.931) 

54.353 

(0.988) 

From Table 2, we observe that the   Values of Ljung-Box 

statistic at different lags under all methods considered here 

are greater than         which support the null 

hypothesis of randomness of generated samples obtained 

under all methods. Bootstrap confidence intervals for   and 

σ for all methods are presented in Table 3, whereby we can 

conclude whether the generated samples satisfy the 

normality assumption. As true       and σ (1) are contained 

in their respective bootstrap intervals for all methods, 

generated samples produced by all methods satisfy the 

normality assumption. However, bootstrap confidence 

interval for σ under R_CDF and B_roju methods don’t 

contain exactly 1 but both the limits are very close to 1. 

Fig. 1. ACF plots of generated samples 
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Table 3. Bootstrap confidence interval for   and σ. 

Method Para 

meter 

Statistics Std. 

Error 

95% CI 

Lower Upper 

CLT Mean 

SD 

0.0009 

1.0004 

0.00099 

0.00074 

-0.0009 

0.999 

0.0029 

1.0020 

BM Mean 

SD 

-0.0003 

1.0003 

0.00106 

0.00072 

-0.0023 

0.999 

0.0018 

1.0020 

GM Mean 

SD 

-0.0017 

1.0001 

0.00103 

0.00071 

-0.0038 

0.999 

0.0003 

1.0020 

H_CDF Mean 

SD 

0.0000 

1.0001 

0.00104 

0.00069 

-0.0021 

0.999 

0.0020 

1.0020 

S_AR Mean 

SD 

0.0000 

1.0011 

0.00100 

0.00069 

-0.0021 

1.000 

0.0020 

1.0030 

K_GED Mean 

SD 

-0.0004 

1.0020 

0.00099 

0.00073 

-0.0024 

1.001 

0.0016 

1.0040 

R_CDF Mean 

SD 

0.0010 

1.0656 

0.00103 

0.00074 

-0.0010 

1.064 

0.0031 

1.0670 

B_shv Mean 

SD 

0.0012 

0.9995 

0.00092 

0.00070 

-0.0006 

0.9981 

0.0029 

1.0009 

B_roju Mean 

SD 

0.0009 

0.9972 

0.00097 

0.00069 

-0.0009 

0.9958 

0.0029 

0.9985 

Finally, from the above results, it can be concluded that all 

the methods can be used to generate normal random 

numbers as they satisfy normality and randomness 

properties. When generating normal random numbers is 

required subject to the constraints of statistical quality and 

required computing time then R_CDF is the best method 

(this is the fastest among all the methods considered in this 

paper). 

V. A Bayesian Application  

Suppose we have the observed data                
from some population with unknown   dimensional 

parameter              , and our aim is to know 

about the unknown parameter Ɵ based on this observed 

sample  . In the frequentist approach, the unknown 

parameter   is considered as fixed quantity and can be 

directly estimated using the likelihood function. On the 

other hand, in the Bayesian approach,   is considered as a 

random variable which has a probability distribution       
known as prior distribution in Bayesian literatures. Using 

Bayes’ theorem both the information from observed data 

and prior distribution are combined, resulting in the 

following posterior distribution    |    which is the basis 

for any inference regarding Ɵ: 

   |   
   |      

∫    |         
 

  

  

Suppose  |         and Ɵ Cauchy (0, 1). To keep the 

problem simpler, we consider only one observation in our 

sample       and   is one dimensional. Then the 

posterior distribution is 

   |   
 

    
          

 

∫
 

    
           

 
  

 
  

. 

Suppose we want to find the posterior mean    |  , 
known as Bayes’ estimator of Ɵ, which can be defined as  

   |   
∫

 

    
          

  
  

∫
 

    
           

 
  

 
  

. 

To the best of our knowledge, an analytical solution of the 

Bayes’ estimator is impossible to find as there is no close-

form expression of this Bayes’ estimator. Using Monte 

Carlo integration, discussed in section 2, we can estimate 

   |   by  ̂  ∑         
      

    ∑      
      

   , 

where           are the random sample generated from 

       using any method considered in this paper 

(preferably R_CDF). Considering     and   
       we have  ̂          Computing time for 

calculating  ̂ under each method will be the time shown in 

the second column of Table 1 plus a constant   

respectively, where   is the computing time required to 

execute average of the generated sample.  

VI. Conclusion and Future Works 

This paper compares performances of different existing 

methods available to generate normal random numbers, 

where performances are measured based on statistical 

quality of the generated samples and required computing 

time. From our simulation study, we have seen that R_CDF 

is the best method when both the conditions, statistical 

quality and computing time, are required to meet but reader 

can use any method considered in this paper when 

computing time is not any issue. As a future study one can 

compare performances of different available methods for 

generating multivariate normal random numbers along with 

a comparison study for generating other important 

univariate random variable (say, exponential variable). 
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