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Abstract 

In time series analysis, over-differencing is a common phenomenon to make the data to be stationary. However, it is not 

always a good idea to take over-differencing in order to ensure the stationarity of time series data. In this paper, the effect of 

over-differencing has been investigated via a simulation study to observe how far or how close the fitted model from the 

true one. Simulation results show that the fitted model is found to be different and very far from the true model because of 

over-differencing in most of the scenarios considered in this study. In practice, it may be worthy to consider differencing as 

well as suitable transformation of the time series data to make it stationary. Both transformation and differencing are used 

for a non-stationary time series data on average monthly house prices to ensure it to be stationary. We then analyse the data 

and make prediction for the future values. 
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I. Introduction  

Time series analysis is usually performed with the 

stationary series. However, in practice most of the time 

series is non-stationary. In order to obtain the stationary 

series, one may consider differencing which is commonly 

used in modelling time series data
1
. For example, 

differencing is used in modelling and forecasting with stock 

price index data
2
. The order of differencing is usually fixed 

based on the visualization of time series data, 

autocorrelation function or a statistical test
3
. One may 

usually consider differencing for the time series data to 

observe and isolate patterns of the series, such as trend and 

seasonality that depend on time, and also to stabilize the 

mean of the process
4
. 

It is very common to consider differencing once, twice, and 

even three times or more in case of the non-stationary series 

to eliminate the variation as well as to ensure the series to 

be stationary
5
. Differencing is used for the non-stationary 

integrated series in the study of estimation of the memory 

parameter of long-memory time series analysis
6
. It is not 

always guaranteed that the stationary time series can be 

obtained by taking only differencing of the non-stationary 

series. The problem of over-differencing is investigated and 

found to be accountable for the loss of valuable information 

of the time series and this often affects in the construction 

of a model 
7
. 

Some previous works are found on the study of the effect of 

over-differencing. The effect of over-differencing has been 

investigated with different models e.g., deterministic linear 

trend and stochastic regression models. Note that in those 

studies, Monte Carlo techniques are applied. The amount of 

loss in efficiency incurred is not of much concern in case of 

estimation and prediction 
8,9

. This finding is also supported 

by another study of the effect of over-differencing 
10

.  

The first order differencing is considered on the log-scaled 

data of average daily share price index of square 

pharmaceutical company in Bangladesh to obtain the 

stationary series
11

.  In the study of forecasting crude palm 

oil prices, the fractionally integrated method is used and 

also the first-order differencing is adopted to gain the 

stationary time series
12

. In this paper, we investigate the 

effect of over-differencing via a simulation study.   One 

may consider both suitable transformation (e.g., natural 

logarithm) and differencing for the non-stationary time 

series to be stationary. We show an application of both 

transformation and differencing techniques to a real world 

non-stationary time series data.  

II. Simulation Study 

We investigate the effect of over-differencing via a 

simulation study. In order to do this, we consider the 

stationary autoregressive model (AR) of order one, i.e. 

ttt ZXXAR  1 :)1( 
, 

where Zt is a white-noise process with variance   
 =0.5. 

Data (x1,…,xn) are simulated from the above process and 

then these data are differenced once, giving rise to a series 

(y1,…,yn) where  

1 ttt xxy
. 

We then fit an autoregressive model to the simulated data 

(y1,…,yn) and find the order of the autoregressive model 

which fits the data best according to the minimum Akaike 

information criterion (AIC)
13 

value. Several data sets of 

different sizes are generated considering different 

coefficient values of ϕ. We first specify different coefficient 

values of ϕ as: -0.9, -0.7, -0.5, -0.3, 0.3, 0.5, 0.7 and 0.9. 

For each of the coefficient values, we consider different 

sizes of data sets as: n=100, 500, 1000, 5000 and 10000. 

Simulation results of the best fitted AR models are 

summarized in Table 1. 
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Table 1. The best AR models of different order (p) and 

corresponding AIC values 
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For fixed n=100 and different values of ϕ = -0.9, -0.7, -0.5, 

-0.3, 0.3, 0.5, 0.7, 0.9 the models AR(6), AR(8), AR(5), 

AR(4), AR(6), AR(2), AR(2) and AR(4) are found to be the 

best choices, respectively because of their minimum AIC 

values, those are all different from the true model AR(1). 

Among these models, AR(2) is found to be the best choice 

for n=100 because of its minimum AIC value (AIC=202.79) 

with ϕ =0.7, which is not exactly the same but close to the 

true model AR(1). Simulation results also show that for the 

different coefficient values and increasing the sample size, 

for example n= 500, 1000, 5000 and 10000; models AR(2) 

[AIC=1095.27], AR(10) [AIC=2138.97], AR(11) [AIC= 

10876.09] and AR(12) [AIC=21678.85] are found to be the 

best choices each with coefficient value ϕ =0.9,  

respectively as their corresponding minimum AIC values.  

For fixed coefficient value ϕ =0.9, the model AR(12) is 

found to be the best choice in all cases of sample size n 

except  the model AR(6) for n=100, because of the smallest 

AIC values, those are very far from the true model AR(1). 

Among these models, AR(6) is found to be the best choice 

which is also very far from the true model AR(1). Again, 

considering different values of n in each cases (fixed ϕ), 

various models are found to be the best, those are all 

different from the true model. In summary, keeping the 

sample size n fixed, and varying the coefficient ϕ values; as 

well as keeping the ϕ values fixed and increasing the 

sample size n, in all cases various models are to be the best 

choices that are all different from the true AR(1) which may 

arise because of differencing. Thus simulation results 

suggest that it is not always suitable to consider over-

differencing in case of the time series analysis to make the 

data to be stationary. In the next section, we consider a non-

stationary time series data set as a real life example, where 

both differencing and transformation are used in order to 

make the data to be stationary. 

III. Modelling and Forecasting 

In this section, modelling and forecasting with the non-

stationary time series data are described incorporating with 

model diagnosis. We now start with source and description 

of the data that are used in the study.   

Source of data 

We use a secondary data set of average monthly house 

prices in the London region from March 1995 to February 

2010, taken from the Land Registry. The data are available 

in the website: https://www.gov.uk/government/statistical-

data-sets/uk-house-price-index-data-downloads-january-

2017?utm_medium=GOV.UK&utm_source=summary&ut

m_campaign=section9&utm_term=9.30_21_03_17&utm_c

ontent=download_data.  

Data description and screening 

We first observe the time series plot of the given data. A 

positive approximate linear trend of average monthly house 

prices is evident in Figure 1. This indicates that the process 

is not stationary. We now take differencing once and twice 

of the given data. The corresponding time series plots of the 

first and second differenced data are presented in Figure 2.  

 

Fig. 1. Time series plot of average monthly house prices from 

March 1995 to February 2010 
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Fig. 2. Time series plots of the first and second differenced data 

From Figure 2, it is clear that the process is still non-

stationary. Therefore, the natural logarithm transformation 

of the given data is considered. We then take the first and 

second differencing of the log-trnasformed data.  

Time series plots of first and second differenced log-

transformed data are shown in Figure 3. It reveals that the 

second-differenced log-transformed data seems to be 

stationary. 

 

 

Fig. 3. Time series plots of the first and second differenced log-

data 

Autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots of the second-differenced log-

transformed data are given in Figure 4. 
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Fig. 4. ACF and PACF plots of the first and second differenced 

log-data 

From Figure 4, it is observed that there is no usual spikes in 

the ACF plot which indicates no seasonal variation in the 

data. It is also observed that there are tails off in the ACF 

plot which determines that the process is autoregressive.  

From the PACF plot, it is clear that the partial 

autocorrelation value is higher at lag 1 than others. 

Moreover, other values are found to be within the 

approximate 95% confidence interval. Thus it follows that 

the AR(1) model may be  the best choice for the process. 

Model fitting and diagnosis 

The autoregressive process is fitted to the second-

differenced log-transformed data where the autoregressive 

model of order one is found to be the best choice because of 

its minimum AIC value. The estimates of parameters ϕ and
2

z  
of the model are found to be as 6489.0ˆ  , where the 

standard error of the estimate is 0.0571, and the estimated 

variance  10466.4ˆ 52 z  
with minimum 25.1273AIC . 

The diagnostic checking of the fitted model along with 

various residual plots are given in Figure 5.  

 

Fig. 5. Model diagnostic plots of the data 

 

Fig. 6. Normal Q-Q plot of residuals 

The time series plot of standardized residuals (1
st
 panel) 

shows that the residuals are normal with mean zero and 

constant variance. From the ACF of residuals plot (2
nd 

panel), it is observed that the residuals are not correlated. 

The p-values for testing the null hypothesis of 

independence of residuals obtained from Ljung-Box test are 

shown in the third panel. It is found that all p-values are 

well above the dotted line except at lag 10. This indicates 

that the residuals are independent. Moreover, the residuals 

are found to be normally distributed as evident from the Q-

Q plot in Figure 6.  

Forecasting 

The prediction is done on average monthly house prices for 

the next future months of 2010. In Figure 7, the solid line of 

the top-right corner indicates the future predicted values 
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and the dotted lines represent the corresponding limits of 

95% confidence interval. It is clear that the average 

monthly house prices are expected to be increasing over 

time.  

 

Fig. 7. Time series plot of average monthly house prices with 

future prediction 

IV. Discussion and Conclusion 

In this study, an attempt has been made to investigate the 

effect of over-differencing via a simulation study. 

Moreover, we consider the model fitting and forecasting 

with a non-stationary time series data.  Simulation study has 

been conducted using autoregressive model of order one for 

various choices of the data size and the coefficient value.  It 

is evident from the simulation results that over-differencing 

is not always suitable for time series data to gain 

stationarity of the series.  On the other hand, it may be a 

good choice to consider suitable transformation and 

differencing in case of non-stationary time series data to 

make it stationary. 

We consider an example of non-stationary time series data 

set of average monthly house prices in London region from 

March 1995 to February 2010. A positive trend over time is 

observed in the original data. Therefore, the natural 

logarithm and differencing have been considered to make 

the process to be stationary. The autoregressive model of 

order one has been fitted and investigated by means of 

some model selection and diagnostics criteria such as AIC, 

Q-Q plot and ACF plot of standardized residuals. To this 

end, the autoregressive model of order one is found to be 

the best choice for analyzing the data considered in this 

study. Moreover, the increasing trend over time for the 

predicted values prevails similar to that of the original data. 
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