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I. Introduction subject to:

Quasi concave quadratic programming (QP) boundeBx, + X, + X, =20
variable problems in which the objective functiarvalve _
the product of two factorized linear functions awnhstraints A% — X3+ X, =14
functions are in the form of linear inequalitiesdathe 2 < X £5,,4<x,<12 0<%, <25 0<x,<18
variables are bounded. The purpose of this reseiar¢h Solution Usina Pronosed Algorithmt

. . ; g Propo gorithm
series of study on nonlinear programming (NLP) peots, ) s )
QP Problems, linear fractional programming (LFp)Slnce X, and X, has positive lower bound so we substituted
problems. In this series study, firstly H. K. Dasid Hasan 4¢ its lower bound. Le, =2+Yy,,then0<y, <3 and
developed aechnique for solving LFP bounded variable ) _
problem& in 2012 by following LP bounded variable X2 =4+Y,, then 0=y, <8. Substitute these into the
Problems and in the same tinvk B. Hasan developed a above problem we get following
technique for solving special type QP Problénstter in  Max z = (5y1 +y, + 24)(4y1 +2y, + 28)
2013, H.K. Das and Hasandeveloped a generalized )
technique for solving unconstrained NLP problemgaiA in  Subject to:
2013 H. K. Das and Hasanmproved decomposition 5y, +y, + X, =6
approach and its computer technique for solvingnatidual Y. +X =6
LP and LFP problems. In 2014, H.K Das , T. Saha anéyl X3 X, =
Hasan studied on 1-D Simplex Search and its numericaD < Yy, < 3.,0< Y, < 8 0< X; < 25 0< Xy <18
experiments through computer algebra. In 2015 HDHKs
and Hasahstudied on the algorithmic technique for solvingTable 1. Initial Table
NLP and QP problems. Finally, in 2016 H. K. bas

developed a decomposition procedure for solving N Cg dB C, - > 1 0 0
QP problems based on Lagrange and Sander’s Method.

However an algorithm for solving quasi-concave QP dj — |4 2 0 0
bounded variable problems proposed by M. Asadujjama —>

and Hasah in 2015. But unfortunately, this proposed Xsi i Yo X3 X
method arises a big question to solve the quasi-concave| 1 2 y, =6 @ 1 1 0
QPBYV problems. So, it becomes very important tmlgton 2

the quasi-concave QPBV problems. 0 0 X, = 4 0 -1 1
Therefore, this paper is concerned with the anslgsithe _ > _ | z=

proposed algoritht of paper’'s concerning of the quasi- 4= z =

concave QP bounded variables problems, failed liee sa 30 40 120(

this type of problems. A counter example is giververify 1 | o 0 -1 0
the proposed algorithmand compare the result obtained ¢~

from the counter example for the proposed algoritiwth 2|6 0 =2 0
the build in command in Mathematica and developmtedn dj ~Z

Mathematica. Finally, it is suggested that the ¢eun A— 18@ 0 30 0
example might be adequate to justify the proposed j

algorithnt. 6 6 _ j

1. Experimental b= m.in{5,4} =65, Shce(@ > 0.6, =
Numerical Experiment U, =upper bound ofy, =3.

This Section is designed for the justification abposed & = min{é’l,é’z,U j} =6/5=6, . So the entering
algorithn . :

variable i in replace ofy,.
Counter Example 1 Syp inrep B2

This example is taken from Asadujjaman and Hasan In the following table, allA; < Oso this table is given the
Max z = (5x, + X, +10)(4x, +2x, +12)

" Author for correspondence. e-maikdas.rohit@gmail.com,
hkdas_math@du.ac.bd



168

optimal solution. Here, the optimal solution isfalbows:

x1:2+6/5:1—56,x2 =4+0=4,x,=0,x, ZE

6

and the optimal value i984.
Table 2. Optimal table

G| |dg||c, - |5 1 0 o0
dj — 4 2 0 0
XBi yl y2 X3 X4
5 4 y, = 6/5 1 1/5 1/5 0
0 0 X4=6/5 0O -4/5-95 1
Z:L = zZ = =
30 164 | 984
c, - ZJ1 0 0 -1 0
d -272 0 65 -45 0
j j
A J—P 0 -36 -44/5 0

I11. Results and Discussion

H. K. Das

Table 4. All basic solution for numerical example-2 ref *

All Possible basic solution Obj. function valug
{24,6120308196} 672
16 16 6 9 84 984
e 74!01_ PR 7018 -
{ 5 555 23 5}
{21006036,22512} 1200

Therefore the optimal solution is {2100,6,0,36,22512}

and the optimal value i4200. However, in referenégeon
page 116, “Output for numerical example 2" , theiropl
value the quasi-concave QP $84and optimal solution is
16 166 9 8
e 1410171 [ - 1018 I
{5 555 23 54}
V. Conclusion

The aim of the research was to study a seriesunfysbn
NLP problems, QP Problems, LFP problems and quasi-
concave QPBV problems. We then found that proposed
quasi-concave QPB¥Igorithm* was failed to solve in this
type of problem. A counter example was given to
demonstrate this argument. A computer technique als
introduced by using programming language Matheradtic
guasi-concave QPBYV problems. We therefore, hopethiag

the counter example might be adequate to justifg th
proposed algorithfn
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