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Abstract

We study the boundary layer characteristics of ahtonvection flow of an electrically conductindenopolar fluid along a vertical wavy
surface. The dimensionless governing equations baea solved numerically. Results are presentegrins of the local skin-friction
coefficient, the local Nusselt number and the lamalple stress with the variation of amplitude-wemgth ratio, magnetic parameter,
vortex viscosity parameter and spin-gradient vigggsarameter. Due to increase of the amplitudeealangth ratio, the skin-friction and
the couple stress are found to decrease whereaubeelt number increases. The skin friction ared dbuple stress increase but the
Nusselt number decreases for increasing valuesrtéwviscosity parameter. In addition, when thimgpadient viscosity is increased, the
maximum values of the Nusselt number and the castpdss significantly increase but the skin-friotdecreases. The magnetic parameter
considerably reduces the skin-friction, Nusselt hamand couple stress.

[. Introduction numerically by using finite difference method. Nuroal
results of local skin-friction coefficient, local usselt
number and local couple stress under the effect of
amplitude-wavelength ratio, magnetic parameter,tevor
viscosity parameter and spin-gradient viscosityapwater
are presented.

The fluids with microstructures are called micragpdluids.
These belong to a class of fluids with non-symmedtress
tensor. Physically, this fluid consists of rigidandomly
oriented particles with their own spins and micogations,
suspended in a viscous medium. Micropolar fluidyveha
attracted much attention of many researches duthdw |l. Mathematical Formulation
industrial and engineering applications. Examples
micropolar fluids are ferrofluids, polymeric fluiddiquid
crystals, animal blood, dirty oils, exotic lubri¢cancolloidal
suspensions and so on.

e consider a vertical wavy surface immersed in a
micropolar fluid at the ambient temperature,. The
schematic diagram of the flow configuration is shaw Fig.
1. It is assumed that the surface temperature efuthvy
The Navier-stokes equations of Newtonian and nomlate, T,, is greater than the ambient temperatdig, We
Newtonian theory cannot explain the characteristicseveral also consider that the surface is described by
physiological fluids which exhibit microscopic effs arising y = FT(X) = asin( 2nX/L) where a is the dimensional
from the local structures and micromotions of theidf
elements. For this reason, many constitutive mdule been
suggested by several researchers. Among these sntiue
theory of micropolar fluids and thermomicropolauids
developed by Eringéf has attracted considerable attentions.

amplitude of wavy surfacd, the characteristic length scale
| associated with the waves and the origin of therdioate
system is placed at the leading edge of the védigdace.

Ariman et ai®* provided an excellent review about micropolar X

fluid mechanics. However, Yaoused the transformation 4 & (x) = asin(27x/L)
method to study the natural convection flow along a - -
sinusoidal wavy surface. Chiu and Chawestigated the free

convection in the boundary layer flow of a micrapofluid // g

along a vertical wavy surface. A simple transpositihheorem u.,]

and cubic spline collocation numerical method Hasen used z

to solve the governing equations. They observed tha _ = T=T
increasing the micropolar fluid parameter resuitdecreasing \ Il =
heat transfer rates and increasing local skinidricas well as =

hydrodynamic and thermal boundary layer thicknes&t®, L =

transient analysis of natural convection along ricsd wavy =,

surface in micropolar fluids has been studied byuGind o

Chou. Moreover, Ishak et &lstudied MHD stagnation-point | g

flow of a micropolar fluid with prescribed wall heflux. A =

steady two-dimensional MHD mixed convection flow of \%;““‘

micropolar fluid toward a stretching/shrinking veal surface —

with prescribed surface heat flux has been examiomgd -

et

Adhikart. O

The objective of the present work is to analyze rib&ural
convection flow along a vertical wavy surface ineth
presence of magnetic field. The governing equatiesirst Let us consider a two-dimensional, steady, laminar,
transformed into a non-dimensional form by usingncompressible micropolar fluid flow along a vediavavy
appropriate non-dimensional variables. These egumtare Surface. Following the dimensionless governing equations
then transformed into a system of non linear partidor such a flow in the presence of magnetic fietth de
differential equations and finally the equationg @olved expressed as:

Fig. 1. Schematic diagram of the flow
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where the dimensionless variables are defined as
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and Pr via is the Prandtl number,
Gr =gf; (TW —Tm),ost/,u2 is the Grashof number,

g

M =0,B,’LGr¥?/p? is the dimensionless magnetic

parameter, K =K//j is the vortex viscosity parameter,

. 2
B:Lz/(JGr]/Z) is the material parameter and ‘1+U )

A= y/(,uj) is the spin-gradient viscosity parameter.

In the above variables and parametarsand vare the
velocity components in theandy directions respectivelyl

is the temperature of the fluigh is the pressure]_is the
electrical conductivityD is the diffusivity,p is the density
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of the fluid, N is the component of the micro-rotation vector
normal to thexy-plane, J is the spin gradient viscosity

is the thermal conductivity angl is the acceleration due to
gravity.

It should be mentioned that equation (11) indicattest
6p']/6yIj is of ordeiGr**, which implies that the lower

order pressure gradient along tKeaxis is determined from
the inviscid solution. However, for the presentipgeon this

gives GpD/GXIj =0. Further, we multiply equation (11) by
0" and the resulting equation is added to equation {10
order to eliminate the termGr“(GpD/ayD) from
equations (10) and (11). After some manipulatioa,get

uDaUD N DauD+ J’U"UDZ
v
&E (74)/D 1+ 0'2
2 0 O
o7u g
=(ro?) (k) ST (M
oy 1+0
o M
@E 1+ 0'2
The boundary conditions become
O
1 ou
aty =0, u’=0p"=0andh"= ——(1+J’2)— (8)
2 oy
aty=o,u =0,8=0and h' =0 9)
We use the following transformation to remove the
singularity
* -4

X:x,Y:(4xD) yD,

(10)

F(x,v.2), :(4xD)14H

Y= (4XD)3/4

where v is the stream function which is defined by

(u,u):(aw/ay,—az///ax). The above mentioned
equation then become
4><f""f'-(3f + ax "fj 2
oX oX
1 Mf,+(2+4X0"U"jf,2
1+0°2 (11)

= (1+ 0'2)(1+ K) "+
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oH o
axt' = | 3+ ax | we
ox ox
2
+{ '+ 2kB(4x )" }H =)l(1+0’2)H” (12)
2
—KB(1+U’2)(4X)]/ £
26 o) 1+o?
axt' %7 | 3t +ax T |g = g (13)
oX [6)4 Pr

subject to the boundary conditions

f

1
f'=0,8=1andH :——(1+a'2) f" atY=0 (14)
2

f'=0,6=0andH =0asY— » (15)

Here primes denote differentiation with respectYtoThe
equations (11)-(15) have been solved employingtefini
difference methot.

The local skin-friction, the local Nusselt humbeardathe
local couple stress are of great physical impogeatd these
are defined respectively as

c, 2@[06(6% |
pde oy 0x oy y=0
L k oT
Nu=-————| — : (16)
L ON
MmN :.gz(j
jpd =\ on Jy=o

where U :,uGrj/Z/(pL) is a characteristic velocity and
the shearing stress on the wavy surface is

Substituting the relations (6) and (10) into equafi16), we
have

Cp = (2+ K)(l— 0'2)(

U
oY =0

\V2( a0
Nuy =—(1+ ag ) — , a7)
oY Jy=0
oH
m A[j
9Y Jy=0
where

— Nu
4X
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I11. Results and Discussion

The present problem that accounts for the effechafnetic
field on the local skin-friction, local Nusselt nber and
local couple stress of an incompressible micropdilaid
over a vertical wavy surface has been solved nwalbyi
Numerical calculations are accomplished for thetivalr

wavy surface prescribed b&(x) = aE‘kin(Zﬂx/L) or in

dimensionless forr’rU( X) =q E‘kin( 27TX) whereq = a/L

is the amplitude-wavelength ratio. The values o
parameters are taken as Pr = 0.£,13.5,&4 = 0.05,M = 0.5,
K = 5.0 except the variation of one of them.

th

The effects of the amplitude-wavelength ratippn the local
skin-friction coefficient, the local Nusselt numband the
local Sherwood number are shown in Fig. 2(a), (i &)
respectively. From Figs. 2(a) and (c), it is sdwt,twith the
increase ofa, the skin-friction coefficient and the couple
stress fluctuate with higher amplitudes. Howevee th
maximum values of skin-friction coefficient and theuple
stress decrease with increasing valuesx.ofon the other
hand, we observe from Fig. 2(b) that the amplitoflehe
local Nusselt humber becomes higher for higherlt is
because higher value of amplitude-wavelength raitiolers
the flow field that results in decrease to the dragfficient
and the couple stress.
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Fig. 2. Effects of the amplitude-wavelength ratig,on the (a) local
skin-friction coefficient, (b) local Nusselt numband (c) local
couple stress.

The influences of varying the magnetic parameieron the
local skin-friction coefficient, the local Nusseltimber and
the local couple stress are illustrated in Fig),3() and (c)
respectively. Results suggest that the local shatidn,
Nusselt number and couple stress decrease withcaeaise
the magnetic parameteiM. From the definition of the
magnetic parameter, it is found that magnetic patam
increases owing to the increase of the strengtmadnetic
field. Hence the decrease of the amplitude of tlvall skin-
friction coefficient is the result of increasingetlstrength of
the magnetic field.
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Fig. 3. Effects of the magnetic parametbt, on the (a) local skin-

friction coefficient, (b) local Nusselt number atg) local couple
stress.

Figs. 4(a), (b) and (c) depict the effects of tharge of the
vortex viscosity parameter, on the local skin-friction
coefficient, the local Nusselt number and the looaliple
stress. We observe from Fig. 4(a) that the locad-Biction
coefficient of micropolar fluid K # 0) increases with the
increase of the vortex viscosity paramet#, than the
Newtonian fluid K = 0). However it is evident from Fig.
4(b) that the local Nusselt number of micropolaidl(K #
0) decreases owing to increase of the vortex vigcos

parameter K, compared to the Newtonian fll(id}( :0).

Fig. 4(c) shows that the couple stress of micrapfiled (K

# 0) is greater than the Newtonian fluid € 0). It can be
understood from the definition of the vortex vistps
parameterK = x/u which indicates that the value &

becomes higher either the coefficient of viscogitig lower
or the coefficient of gyro-viscosity is higher. On the
contrary, it is evident that the skin friction cheient and
the couple stress become stronger with lowand highet,

respectively.

4(a)
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Fig. 4. Effects of the vortex viscosity parametkr,on the (a) local
skin-friction coefficient, (b) local Nusselt numband (c) local
couple stress.

The effects of the spin-gradient viscosity paraméteon the
local skin-friction coefficient, the local Nusselumber and
the local couple stress are demonstrated in Fa), §¢) and
(c) respectively. Results indicate that the lodah4riction
coefficient decreases with the increasel.oBut the Nusselt
number and the couple stress are found to increasey to
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Fig. 5. Effects of the spin-gradient viscosity parametenn the (a)
local skin-friction coefficient, (b) local Nusseftumber and (c)
local couple stress.

IV. Conclusions

The free convection boundary layer flow of an eieatly
conducting micropolar fluid over a vertical wavyfsice has
been studied numerically. Results are presentadrins of
the local skin-friction coefficient, the local Nedsnumber
and the local couple stress with the variation bé t

an increase of. It is also clear from the figures that theamplitude wave-length ratio, the magnetic parameiee

amplitudes of oscillation of the local skin-frictio
coefficient, the local Nusselt number and the localiple

vortex viscosity parameter and the spin-gradiestagity
paramter. With the increase of the amplitude waveHh

stress increase with the values/lofThis is due to the fact ratio, the local skin-friction coefficient and tleeuple stress

that the couple stress is proportional itavhile the drag
coefficient decreases for stronger spin-gradiestosity.

26
2.4
2204

o ;
2.0

decrease and the Nusselt number increases. Moretheer
Nusselt number and the couple stress increasehenibdal
skin-friction coefficient decreases owing to anre@ase of
the spin-gradient viscosity. The important resalthat the
magnetic parameter significantly reduces the skatidn,
Nusselt number and couple stress.
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