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Abstract

In this paper, we study the interior point algaritor solving linear programming (LP) problem deydd by Narendra Karmarkar. As
interior point algorithm for LP problem involvesmendous calculations, it is quite impossible tosddy hand calculation. To fulfill the
requirement we develop computer code in MATLAB fd? which is based on this algorithm procedure. Mgstrate the purpose, we
formulate a real life sizeable large-scale lineagpam for diet problem and solve it using our catep code for interior point algorithm in

MATLAB.
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I. Introduction

An interior point algorithm is one that improvedeasible
interior solution point of the linear program bgss$ through
the interior, rather than one that improves by steund
the boundary of the feasible region, as the classicplex
algorithm does. For large scale problems the nundfer
vertices is quite large, hence the simplex methodla be
prohibitively expensive in computer time if any stdntial
fraction of the vertices had to be evaluated. Bushooting
through the interior of the feasible region, theeiior point
method tends to require a substantially smaller bemof
iterationg 2

The earliest interior point method is due to thendas
mathematician John Von Neumdnhlis method for finding
a feasible solution to a linear program with a @ofity
constraint is notable for its simplicity and remele
convergence properties. Since a general linear rpnog
combined with its dual can be reformulated intosfieiity
problem of this restricted form, Von Neumann’s aitjon®
may be viewed as a method for solving the genénaht
program.

Now a day’s interior point methods for linear pragmming
eventually transformed the entire field of optintiaa.
Despite its momentous impact on the field, Karmerka
proposed an interior point algorithm.

In this paper, we first briefly discuss the Karnmafknterior
point algorithm and process of transforming LP eab
into Karmarkatcanonical form with an example in Section
Il and Ill respectively. Hence we formulate a siealarge-
scale linear program for diet problem in Section dvd
solve this problem by our computer oriented intepoint
algorithm in MATLAB in Section V. Finally a conclie is
drawn in favor of our work in Section VI.

I1. Karmarkar Interior Point Algorithm

In this section, we present the Karmarkaalgorithm. This
algorithm reduces the general LP problem

Minimize f(x) = cTx

subject toAx = 0

x=0

into the following form:

Minimize f(x) = cTx

subject to,
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Ax =0
le- =1
x=0
Herex = (xq,x; ... x,) T € R%,c € Z",A € Z™*",
The LP problem (1) above in canonical form can be
obtained from a standard form LP problem:
Minimize cTx
subject to,
Ax=b
x=0

@)

&)
Seps of the algorithm

The algorithm starts on the canonical form (2) &oth the
center of the simpley = (%) e, where e=(1,1.. )T

generates a sequence of iterate®),x W .. x ® in the
following steps:

Sep 1.Setx D =center of the simplex
1
ap = (E) e
Sep 2. To compute the next point, define the functiona ¢
(@), whereb = x ®*D anda = x ® and performing the
following sequence of operations:

Qbstep 1. Let D =diag {a,,a, ... a,} be the diagonal
matrix whose ith diagonal entry ds.

Substep 2. LetB = [’:—?], that is augment the matrdD with
arow of alll’s.

Substep 3. Compute the orthogonal projectfof of D¢ into
the null space dB.

¢, = [I — B"(BBT)™'B]Dc.

Substep 4. Normalizec,:¢ = =, that iséis the unit vector

‘p
|ep]

in the direction ot,.

Qbstep 5. b’ = a, — aré, that is take a step of lengthn in

the directiod, wherer is the radius of the largest inscribed

1

spherer = X andae (0,1).

Substep 6. To return b, applying the inverse projective
Db’

eTpp'"

Sep 3. The current iterate ®will be the optimal solution if

cTx(®)

T <E.

transformationb =
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I1l. Transformation of an LP Problem to the Canonical
Form

In this section, we explain the steps of the trams&tion of
LP problem into a canonical form with a simple eyéeh
The basic steps:

Consider a linear programming problem
Minimize Z=cTx
subject toAx=>b
x=>0.
Sep 1. Combining primal and dual problems
Ax=b
ATu < ¢
cTx=bTu=0
x=20,u=>0.
By duality theory, this combined problem is feasilil and
only if the original problem has finite optimum stibn.
Sep 2. Introducing slack variables
Ax—y=b
Alu+v=c
c"x—bTu=0
x=20u=0v=0,y=>0.
Sep 3. Introducing an artificial variable to create anemor
starting point. Letx,, y,, ug, vy be strictly interior points in
the positive orthant.

Minimize A
subject to,
Ax —y+ (b —Axg+y)A =b
ATu+v+ (c—ATuyg—vy)d =c

cTx —bTu+ (=cTxy + bTvy)A =0
x=20u=>0v=0y=>041=0.
Herex = x5, y =y, u= uy, v=1vy,A=11Iis a strictly
interior feasible solution which is a starting poifThe
minimum value of: is zero if and only if the problem in
Step 2 is feasible.

Sep 4.Rewrite the problem in Step 3 as
Minimize c¢Tx
Subjecttadx = b
x=0
x=ais a known strictly interior starting point, andcettarget
value of the objective function is zero.

Sep 5. Consider the transformatiort = T (x) where
x € R™,x’ € R**! are defined by

x.
x;' =#,i =12..n
Zf( ]/aj) +1
Xnp1 =1 =2 %/ (3

The inverse transformation is given by

agx;'

X; = ,i=1,2..n

!
Xn+1

Sep 6. 4; denote T column ofA. If

n
Z Aixl' =b
i=1
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Then
Y Aa;x; —b

r
Xn+1

Or,
n
ZAiaixi’ — bxn+1’ =0
i=1

Karmarkaf defines the columns of a matrié’ by these
equations:
A =aq;A,i=12,..,n
Apyi = —b.
Then ¥M1A x/ = 0.
Let Q'denote this affine subspace, i.e.
Q' ={x'e R Ax' =0.
This is a system of homogeneous equations in the
transformed space.
Sep 7. Transforming the original space
Z={x € R™|cTx = 0} into
Z' = {x' € R™*1|c'Tx’ = 0} by substituting

apx;’
X; = ;
Xn+1
r
e VN1 Ci%iX
That |S,ZL~:1 Tl 0.
n+1
Here
¢' = a;c, i=12..n
r —
Cn+1 = 0

The transformed problem is
Minimize ¢'"x’
Subject to,
A'x'=0
x' =1
x'=0
This is the required canonical form.
Example
Consider the LP problem
Minimizef (x) = x; + x,
subject tay + 2x, = 2
X1,% 20
Sep 1. We write the dual of the given problem
Maximizeg(u)=2u,
subject to,

n+1
i=1

u; <1
2u; <1
u,u; =0
Combining the primal and dual problem
X, +2x, =2
Uy <1
2uy <1
Xy +x;—2u; =0
X1, X, Up, Uy =0
Sep 2. Introducing slack and surplus variable
Xy +2x;—y; =2
u; + v, =1
2uq + v, =1
X, +x,—2u; =0
X1,%X2,Y1, U1, V1,V =0
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Sep 3. Introducing an artificial variablé. to create an

interior starting point.

Minimize A

subject to,
X1+ 2% -y + 2-1-2+1)A=2
y+r+ (1-1-12 =1
2u v, + (1—2-1)A =1

X1+ %, —2u;+ (-1-14+2)4 =0
X1,X2, Y1, Uy, V1, Vg, A =0

Or, Minimize\
subject to,
X1+ 2%, =y, =2
y+v—4 =1

2u +v, —21=1

Xy +x,—2u; =0

X1, X2, Y1, U1, V1, Vg, A =0
Sep 4. We rewrite the problem in Step 3 as
Minimize x,

subject to:
X1+ 2X, —X3 =2
X4 +x5—%x;, =1
2%+ x5 —2x;, =1
X1 +x,—2x, =0
X1, X3, X3, X4, X5, Xg, X7 = 0
Where,

Vi = X3, Uy = Xy, Uy = Xg, Uy = X, A = X7.

Letx = a = (a,a,,as,a4,as,ag, a;) = (1,1,1,1,1,1,1)7 is
an interior starting point, and the target value tbé
objective function we are interested in is zero.

Sep 5. Consider the transformation’ = T'(x), where
x € R7,x' € R%are defined byx;, = —+— i=1.2..7

7
T X+l

Table 1. Nutritional requirement of foods

! ! 1
xg' = 1-Xx' =m——0 [From (3)]

DX
Thus we haveY?_, x;" = 1.
And the inverse transformation is

agx;'
X; =

L i=1,2..7
Xg

Using this transformation into the above problera,get,
Minimize x,'

subject to,
X +2x, —x3' —2xg' =0
X +x5' —x;"—xg" =0
2%, +xg' —2x," —x5' =0
X +x = 2x, =0
x>0, i=12..8
The transformed problem is now
Minimize x,'
subject to,
X +2x, —x3' —2x5' =0
X +x5' —x;"—xg" =0
2%, +xg' —2x," —x5' =0
X+ x" —2x, =0

X X Fxs A x, +xs’ +
X' +x; +xg' =1
xi' =0, i=12..8
which is the canonical form of the given LP.

V. Diet Problem

One of the classic applications of linear programgris diet
problem. The main goal is to select a set of fabds meets
certain daily nutritional requirements and prefees at
minimum cost. Consider the following list of fooddth
their nutritional profile:

Food

Portion Energy Proteins Calcium Price Limit
size Kcal gram mg (Tk/ portion) (portion/ day)
Oats 28¢g 110 4 2 40 4
Chicken 100g 200 32 12 100 3
Eggs 2 big ones 160 13 54 20 2
Milk 237 cc 160 8 280 50 8
Fish 170g 450 4 22 200 2
Beans 260g 260 14 80 20 2
Donut 60g 239 4 27.6 90 2
Oat Bran 579 145 6 0.8 40 2
Yogurt 1259 119 6 190 40 3
Chili 2169 190 14 80 80 2
Broccoli 140g 49 3 56 75 3
Apple 1829 95 0 10.9 65 4
Orange 1409 69 1 60.2 70 4
Lentils 100g 116 9 19 115 2
Carrots 289 10 0 9 35 6
Brussels 789 28 2 16.8 90 6
Blueberries 28g 16 0 1.7 85 3
Spinach 180g 41 5 245 65 4
Banana 1189 105 1 5.9 30 3
Rice 100g 130 24 2 35 3
White bread 3 pieces 65 5 0 40 3
Corn 1009 72 3 2 45 2
Brownies 60g 400 35 28 150 2
Cheese cake 50g 500 40 35 150 2
Ice Cream 200 cc 200 20 15 100 1
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We wish to propose a diet containing at least 2,0Gfal),  4.Diet variety:

at least 55 grams of protein and 800 (mg) of caiciin x, <4
addition, to provide some variety in the diet, sdiméts are X, <3
set for the daily portions of food. The problentadiind the X3 < 2
lowest cost associated with meeting the above X, <8
requirements. x5 < 2
Formulation Xe < 2

x; <2
The three basic steps in constructing a LP modéslksvs: xg < 2
Sep 1.(Identify the decision variables) Xg <3
For this problem the unknown variables are theoSébods X190 <2
to include in the daily diet. Let X171 =3
x, = Portions of Oats to eat during the day. X1 4
x, = Portions of Chicken to eat during the day. X13 < 4
x3 = Portions of Eggs to eat during the day. X14 < 2
x, = Portions of Milk to eat during the day. X15 < 6
x5 = Portions of Fish to eat during the day. X16 < 6
x, = Portions of Beans to eat during the day. X7 <3
x, = Portions of Donut to eat during the day. X3 <4
xg = Portions of Oat Bran to eat during the day. X9 3
x4 = Portions of Yogurt to eat during the day. X20 <3
%1, = Portions of Chili to eat during the day. X2 <3
x,,= Portions of Broccoli to eat during the day. Xop 2
x,, = Portions of Apple to eat during the day. Xp3 < 2
x,3 = Portions of Orange to eat during the day. Xog S 2
x,4 = Portions of Lentils to eat during the day. X5 <1

x;5 = Portions of Carrots to eat during the day. 5. Non negativity:

x,¢ = Portions of Brussels to eat during the day.
x,, = Portions of Blueberries to eat during the day.
x,g = Portions of Spinach to eat during the day.
x19 = Portions of Banana to eat during the day. The objective is to minimize the cost of daily diSb we
X, = Portions of Rice to eat during the day. have

x,;, = Portions of White Bread to eat during the day.
x,, = Portions of Corn to eat during the day.

x,3 = Portions of Brownies to eat during the day.

x,4 = Portions of Cheese Cake to eat during the day.
x,s = Portions of Ice Cream to eat during the day.

x;,=20,i=12..25
Sep 3. (Identify the objective function)

Minimize f(x) = 40x, + 1005x, + 20x5 + 50x, +
200x5 + 20x6 + 90x, + 405x5 + 40x9 + 80x,( +

75x11 + 65x1, + 70x15 + 115x;4 + 35x;5 + 90x,4 +
85x17 + 65x1g + 30x19 + 35x,( + 40x,; + 45x,, +

150x,3 + 150x,4 + 100x,5
Sep 2.(Identify the constraints)

In this problem constraints are the daily nutriibn
requirements and preferences for foods.

Hence we have the following LP model:

Minimize f(x) = 40x; + 1005x, + 20x5 + 50x, +
200x5 + 20x¢ + 90x; + 405x5 + 40x9 + 80x4o +

75x11 + 65x1, + 70x15 + 115x;4 + 35x;5 + 90x,4 +
85x1; + 65x15 + 30x,9 + 35x,¢ + 40x,; + 45x,, +
150x,35 + 150x,, + 100x,5

subject to,

100x; + 200x, + 160x3 + 160x, + 450x5 + 260x, +
239x; + 145xg + 119x9 + 190x,¢ + 49x,1 + 95x4, +
69x,3 + 116x4, + 10x,5 + 28x,4 + 16x,, + 41x,5 +
105x,9 + 130x,¢ + 65x,1 + 72x5, + 400x,3 + 500x,, +
200x,5 = 2000

1. Minimum Calories (Kcal):

100x, + 200x, + 160x3 + 160x, + 450x5 + 260x4 +
239x; + 145xg + 119x9 + 190x1¢ + 49x,, + 95x4, +
69x,3 + 116x,4 + 10x,5 + 28x,4 + 16x,7 + 41x,5 +
105x49 + 130x,¢ + 65x51 + 72x;,, + 400x,5 + 500x,, +
200x,5 = 2000

2. Minimum Proteins (gram):

4x1 + 32x, + 13x3 + 8x4 + 4x5 + 14x4 + 4x, + 6xg +
6x9 + 14x, + 3x11 + 0xq5 + x93 + 9x14 + Oxq5 + 2x16 +
0x17 + 5x1g + X19 + 2.4x5¢ + 5x,1 + 3x55 + 35x,3 +

40x24 + 20x25 2 55 4‘x1 + 32x2 + 13x3 + SX4 + 4x5 + 14x6 + 4‘x7 + 6x8 +

6x9 + 14x1y + 3x11 + 0xq5 + x93 + 9x14 + 0x45 + 2x46 +

3. Minimum Calcium (mg): 0x17 + 5x1g + X19 + 2.4%50 + 5% + 355 + 35%,3 +

2xq + 12x, + 54x3 + 280x, + 22x5 + 80x¢ + 27.6x, +
0.8xg + 190x9 + 80x,y + 56x,1 + 10.9x,, + 60.2x,5 +
19x14 + 9x45 + 16.8x14 + 1.7x17 + 245x,5 + 5.9x19 +
2Xx50 + 0x9q + 2x55 + 28x53 + 35x,4 + 15x,5 = 800

40x,, + 20x,5 = 55

2xq + 12x, + 54x5 + 280x, + 22x5 + 80x, + 27.6x, +
0.8xg + 190x9 + 80x1 + 56x1; + 10.9x;, + 60.2x,5 +
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19%14 + %15 + 16.8x,4 + 1.7x1; + 245x,5 + 5.9%19 + % b: constraint vector
2Xxz0 + 0xa1 + 2X5 + 28x53 + 35x24 + 15255 = 800 % mexit: maximum number of iterations (defaultG0)
X1 <4 % op: optimal point
X, <3 % ns: number of iterations
X3 < 2 tic
X, <8 [m, n] = size(A);
% dual of A
X5 < 2
t=A
Xg < 2 - .
% combining primal and dual problem
X7 <2 I1=eye(m);
Xg < 2 fori=1:size(A)
X9 <3 k@,:)=[A(i,:) -11(i,)) O*ones(1,m) O*ones(1,n) hf)-
sum(A(i,:))+sum(11(i,:)) -b(i,:)];
X9 < 2
end
<
11 <3 12=eye(n);
X2 < 4 fori=1:size(t)
X3 < 4 I(i,:)=[0*ones(1,n) O*ones(1,m) t(i,:) 12(i,:) cQ;sum(t(i,:))-
X14 S 2 sum(12(i,2)) -c(,D)];
X15 <6 end
X16 < 6
X, <3 g=[c 0*ones(1,m) -b' 0*ones(1,n) -sum(c)+sum(b]y' O
X3 <4 % canonical form of given LPP
X19 =3 ca=[k;l;g];
X20 <3 i
Xy, <3 [s,q]=size(ca);
Xpp < 2 nc=[0*ones(1,9-2) 1 Of;
Xp3 =2 % Algorithm
Xo4 <2
X5 < 1 erro=norm(nc);

x,=20,i=12..25 I=eye(q);

The problem consists of 25 decision variables agd 2r=1/sqrt(q*(g-1));
constraints. So if we want to solve this problem byg|fa=1:
Karmarkar'é algorithm by hand calculation, it will be quite

difficult for us to solve it. Since we have to fitsansform ns=0;
the problem into canonical form, it involves 10&ideon  tol=1e-6;
variables and 54 constraints which cannot be sdbyeldand  mexit=100:
calculation. To overcome these difficulties, we elep '
computer oriented interior point algorithm in MATBAWe
solve this problem by our computer code in MATLAB x0=e'/q;
stated as follows: D=diag(x0);

e=ones(1,q);

V. Computer Codefor Interior Point Algorithm whileerro>tol& ns <mexit,

function f=interior(A, b, c) ns=ns+1;

B=[ca*D;e];
P=pinv(B*B")*B;
cp=(I-B*P)*D*nc";
dp=norm(cp);
uc=cp/dp;

% Solve the linear programming problem
% min F(X)=c*x

% subjectto: Ax (<=,=>=)b,x>=0
% using the interior point algorithm.

% [op, ns]= interior(A, b, c)

% c: coefficients of the objective function y=x0-(alfa*r*uc);

x=D*y./(e*D*y);
D=diag(x);

% x: initial point (must be feasible)
% A: constraint matrix
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op=x/x(Q,’); opl =
erro=norm(D*nc’); 0.0013
end 0.0004
1.9994
fprintf('Optimal solution is :") 1.8357
opl=op(1l:n) 0.0002
fprintf('Objective value is ') 1.9997
oo
toc 0.0050
Input data for LP: 88882
A=[100 200 160 160 450 260 239 145 119 190 49 95 69 ¢ 0004
116 10 28 16 41 105 130 65 72 400 500 200; 0.0003
432138414466143019020512.45 3B20; 0.0002
2 12 54 280 22 80 27.6 0.8 190 80 56 10.9 60.2 18.8 0.0005
1.7 2455.92 0 2 28 35 15; 0.0002
-1000000000000000000000000: 0.0002
0-100000000000000000000000; 2:382?
00-10000000000000000000000; 20917
000-1000000000000000000000: 0.0007
0000-100000000000000000000:; 0.0006
00000-10000000000000000000; 8:8823
000000-1000000000000000000: 0.0004
0000000-100000000000000000; Objective value is:
00000000-10000000000000000: obj =
000000000-1000000000000000; 410.8599

0000000000-100000000000000;
00000000000-10000000000000;
000000000000-1000000000000;
0000000000000-100000000000;
00000000000000-10000000000;
000000000000000-1000000000;
0000000000000000-100000000;
00000000000000000-10000000;
000000000000000000-1000000;

Elapsed time is 0.072742 seconds.

That is, we have obtained following result:
Oats=0 portions,

Chicken=0 portions,

Egg=2 portions,

Milk=1.84 portions,

Fish=0 portions,

Bean=2 portions,

Donut =0 portions,

0000000000000000000-100000;
00000000000000000000-10000;
000000000000000000000-1000;
0000000000000000000000-100;
00000000000O0O0O0O00O0O00O0O0000-10;
000000000000000000000000-1]

b=[2000;55;800;-4;-3;-2;-8;-2;-2;-2;-2;-3;-2;-3;-4;-2;-6;-

6;-3;-4;-3;-3;-3;-2;-2;-2;-1];

c=[40 100 20 50 200 20 90 40 40 80 75 65 70 119185

65 30 35 40 45 150 150 100];

Output for LP:
Optimal solution is:

Oat Bran=1.99 portions,
Yogurt=0 portions,
Chili= 0 portions,
Broccoli=0 portions,
Apple=0 portions,
Orange=0 portions,
Lentils=0 portions,
Carrots=0 portions,
Brussels=0 portions,
Blueberries=0 portions,
Spinach=0 portions,
Banana=1.79 portions,
Rice=3 portions,

White Bread=0 portions,
Corn=0 portions,
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Brownies=0 portions,

Cheese Cake=0 portions,

Ice Cream=0 portions.

And the minimum cost of the daily diet is
TK 410.8599.

V1. Conclusions

In this paper, we present Karmarkainterior point
algorithm and developed its computer oriented cade
MATLAB for solving LP problem. We also formulatereal
life sizable large scale diet problem, which inesdva
numerous amount of data, constraints and variadles.
Karmarkaf interior point algorithm, first we have to
transform a LP problem into canonical form. So whesn
convert the LP problem into canonical form the nemobf
variables and constraints increases. Then
difficult to solve this problem by hand calculatioBut by

using our computer code we can easily get our esir

solution in a short time. In this paper, we solibd large
scale diet problem by our computer code which megua
very few seconds. So we conclude that the integpmint
algorithm and required computer code
developed by us is a powerful method for solvirgyges
of LP problems. Also in future, we can extend #igorithm
for linear fractional programming problems.

in MATLAB
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