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Abstract

In this paper, we study on the well-known procedofejuadratic programming (QP) and its correspogdinear programming (LP)
problem. We then introduce a LP problem correspanth the QP problem. Unfortunately, an unboundsslg@iestion arises into the new
converting LP problem. We then modify the convert&problem that overcomes the unboundedness. Wlirce a general computer
technique that can be solved the QP problem. Amplais given to clarify the procedure and the cotaptechnique.
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I. Introduction o 1.7
Minimize f(X) =CX +=X"QX (1a)

In the literature of operation research LP, a djweclass of 2

mathematical problems, in which a linear functios i s/t: AX <B

maximized (or minimized) subject to given lineanstraints X >0

has widely recognized in this field. This LP prahlés also =

broad enough to encompass many interesting andriaio

applications, yet specific enough to be tractabieneif the

number of variables is very large. In this senss #lways T

interesting to convert any optimization problemoirg LP B=(b,b,....b,) #0.

problem. However, there are a number of methods for
solving the linear fractional programming (LFP) pplems whereC is an Ndimensional row vector being described the

by converting it into LP problems. coefficients of the linear terms in the objectiuadtion, and

Among them the transformation technique developgd bQ IS .a.n n nsymm.eFrlc and  positive deflnlte matrix
Charnes and Cooper, the simplex type algorithnoihiced describing the coefficients of the quadratic ternThe

by Swarup and Bitranand Novae's method are widelJ€cision variables are denoted by theimensional column
accepted. Tantawy developed a technique with thel dwector X , and the constraints are defined by AhX N

solution. However, there are a very few methodsstdving  matrix, A and an m -dimensional column vectoB of
the QP problems to convert it into LP problems. right-hand-side coefficients. Since constraintslaear then

But when considering the real-world applications of€ solution space is convex.

operation research, like LP, QP is a mathematemirtique K arush-Kuhn-Tucker Method 57°

for determining the optimal solutions to many bess

problems. So, we study here how to convert the Qpetzbe a real valued function ofivariables defined by
problems into the LP problems. The suggested pweeth z= f (X, X,,...,X,) and{b,,b,,...,b,} a set of right
this paper depends mainly on solving QP problentsres . .
the constraints functions are in the form of IineaF1and side constants @) . If either T (x;,X;,...,X,) or

inequalities. We illustrate the procedure and tbenguter somegi(xl,xz, .. X_), i = 12,...., mor both are non-
technique by an example. .

C=(C,CpreennCr) s X = (Xy Xg oo X))

linear, then the problem of determining thA—type
Rest of the paper is organized as follows. The iQedt, i ; ini
briefly discuss on the mathematical backgroundsfuring (4, % , ., ) which makesz & maximum or minimum
QP problems. The section Ill, describes a well-know
procedure for solving QP by converting it into a.lUR
Section IV, we introduce a procedure for solving @y 1
converting it into a new LP. Section V is based tbe 9 (X1, X2, .... Xp) {<,20r =}y
computational experiments. Here we also introduce ao

computer technique for this method by using progrimg 97 (X, X2, .... Xp) {<,20r =}by

and satisfies the following conditions, is calledganeral
non-linear programming (NLP) problem such that

languageMATHEMATICA. Finally, we draw a conclusion in m (1b)
Section VI. 9 (X, X2, ... Xp) {s,20r =}by
II. Mathematical Background i .

o . o B whereg' (X, X, , ... X,), 1= 12....,mare real valued
We begin this section by examining the KKT conditdor . )
the QP and then they turn out to be a set of lieemmlities functions — of ~ n  variables X, X;, ... X,and
and complementary constraints. X; 20, j=12..,m. This method can be used to
Quadratic Programming Problem solve NLP’s in when all the constraints are notatqu
Let a QP problem be represented by the following:wa In the following, a theorem is given to visualite tstandard

form of KKT that we have used in our algorithm. Elewe
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assume that feasible solution exists and that tmestcaint
region is bounded.
Theorem’

Assume that,f (X;, X, , ...,
gi(xl,xz, e Xy ) 1= 12,...., mare differentiable
functions satisfying certain regularity conditidrhen

X = (gl ) g; ) ...,g;) can be an optimal solution for the

NLP only if there exitm equations such that all the KKT
conditions are satisfied.

I11. Converting QP intoa L P’

X,)and

The Lagrangian function for the quadratic progi@a) is:
L(x 4) = 6X + X" QX + u(AX - B)

wherel/ is an Mm-dimensional row vector. Now, the

Karush-Kuhn-Tucker (KKT) conditions for a local rivimum
are given as follows,

aa—"zo, j=12...,nC+XTQ+uA>0 )
"

j

isO,i=],2,...,m : AX-B<0 (3)
0H;

xja—L=0, j=12,...,n; and

an

xTecT+ox+AT ") =0 ()
Migi(X)=0,i=212..,m and

U(AX -B) =0 (5)

szo,jzlz,...,n X220

#,201=212..,m ; u=0.
To construct a more manageable form into the alforra
we introduce non negative surplus variab¥e§] 0" to the

inequalities in(2) and nonnegative slack variablgd] (1™

to the inequalities in(3) then we have the following
equations.

CT+Q"x+ATuT -y=0, AX-B+v=0

The KKT conditions can now be written into the éolling
linearly constants form:

QTXx + ATyuT -y =-cT (©)
AX +v=2B (7)
X=z20,4=20Y=20,v=0 (8)
YTX =0, uv=0 ©)
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The equation (8) restricts all the variables to be
nonnegative, and the equati@) prescribes  the
complementary slackness conditions. To create the

appropriate linear program, we add artificial vaks to
each constraint and minimize their sum.

n+m
Minimize: z:Za|

=1
QTX+AT,uT -Y+a =T ,1=12....,n
AX+v+a =B, | =n+ln+2 .., n+m
X=20,420Y20v=0
YTx=0 w=0

We now apply the modified simplex method in the\abbP
to find the optimal solution and optimal value bétoriginal
QP problem.

IV. Converting QP into a New LP

We use the usual KKT conditions to build a new LR in
this case a linear objective function is also foiated from
the set of linear equations and complementary sksk
conditions. Unfortunately, an unboundedness chgden
arises in this formulation and this challenge Is\aated by
construction of an additional constraint. In thisrfiulation,
we will apply the simplex technique to find the ioml
solution.

Multiply (6) by X", we have:

XTQX +XTA 4" - XY =-X"C".
By following matrix operationsY™ X = XY and the
complementary condition§9) implies X 'Y = Oand using
this into the above equations we also have:

XTQX + XTAT/JT - _XTCT-
By rearranging this we get

xTox +xTAT 4T +xTcT =0 .. (10)
Similarly, we multiply (7) by i , we have:

HUAX + (v = B . By using the complementary
conditions (7) implies gAX = 4B and it is trivial to
show thatg/AX = X T AT 7. We want to eliminate
XTAT 14" in equation (L0) then we will have
XTQX + B+ X'C" =0 or this can be written as
XTQX +B+CX =0.

Now, 1
2

XTQX +%/,{B+CX :%cx implies
1 1

f(X)+=uB==CX .

(X) 2/18 5

So the linear objective function for the QP probleatomes
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a linear quantity likef (X) :%Cx —%yB. This can be
achieved as the following LP problem:

1

Minimize f(X) :%CX _E'UB 10)

QX +AT T -y =-cT
AX +v=B
X20,u20Y20v=0

YTX =0 =0

s/t:

Unfortunately, in the above minimization problem wél
have an unbounded solution due to the negativeicigetts
of U in the new objective function. This is the only smi

of unboundedness in the above LP problem. If welifpo
the objective functiorfL1) into the following

Minimize f(X) = %cx —%,uBH [h by assuming

1
h= E,UB , wherel is very big number for exampl&000

or any other big number. Then the new LP problesmfthe
original QP problem becomes:

Minimize f(X) :%CX —%,uBH Oh (11)
sit: QX +ATuT -y=-cT 12)
AX +v=B (13)
_1 (14)
ZﬂB
X20,u>0Y20h>0B#0,v=0
YTXx =0, w=0. (15)

After solving the above LP we will get the perfextimal
solution but the optimal value is not exact becaof¢he

additional assumption in the objective functi@) .
Fortunately, this optimal solution satisfies thenptementary

11
Algorithm
Sep 1 Input number of constraint{n), number of
variables (m) and the unknowns a§X;,X,, .... X,},
objective function( f) and the constraintg),,i = 1,..., n

in terms of unknowns.

Sep 2 Input mm, for maximization inputOand for
minimization inputl.

Sep 3: Define “Lagrange”. Ifmm= O set

n n
| =f _Zuigi else sed = f +Zuigi .

i=1 i=1
Sep 4: Make set eqgs of

: o .
ug (i=2%.n,—(@(=1.n)
0X;

Sep 5. Sol = Solve[eqs].
Sep 6: Discard the solutions from sol for whicty, > O or
u, <0.

Sep 7: Print feasible solution sol.

Sep 8 Calculate objective function value for each elatae
of sol.

Sep 90 For mm=0find maximum value of objective

functions and their corresponding index BAM =1 find
minimization value of objective functions and their
corresponding index.

Sep 10: Print solution corresponding to index and the
objective functional value.

Computer technique

We introduce here a computer technique for solupig
problem in this Section.

Needs["Miscellaneous RealOnly™]

n=Input["Number of constraints"];

slackness condition@5). To get the correct optimal value m=Input["Number of variables"];

we have to use the optimal solution in the origiolajective
function. Noted that the above procedure is sintdavlunapo
except the subject to the constraints of this cdimge LP
system which is the big part of this paper.

V. Computational Experiments

This section is incorporated with two parts. Fystthe

xs=Input["unknowns"];
f=Evaluate[Input["objctibe"] ];
For[i=1,i<n,i++,

g=Evaluate[Input["const"] ];

algorithm of KKT is used in this section for solgin I

inequality type NLP problems. We will also introdu@ mm=Input['for max=0,min=1";
codé for solving such type of problems using the
programming languageMATHEMATICA. Secondly, we fimm=0,

illustrate the solution procedure of QP problems by|=f-Sum[y*g;.{i,1,n}],I=f+Sum[u*g;.{i,1,n}1];

converting it into LP and the computer techniqueubing a

numerical example. eqs=Table[fg;=0,{i,1,n}];
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For[i=1,ism,i++,eqs=Insert[eqgs,D[l,xs[[i]]]=0,-1]];
sol=Solve[eqs]
lengthsolution=Length[sol];ff={};ii={};
Print["feasible solutions are "];

I=1;

For[i=1,i<lengthsolution,i++,

flag=0;For[j=1,in, j++,If{(gy/.sol[[i[)) >0]|((u/.sol[[i]])<0).fla
g=1;Break[];Print[i,flag]]

I
If[flag==0,feasiblesolution=sol[[i]];Print[feasibkmlution];ff

f=f/.feasiblesolution;Print["obj func.
val=",fff];ff=Insert[ff,ff,-1];ii=Insert[ii,i,-1]] ;

]

Print["optimal';

Iffmm==0,maxmin=Max[ff],maxmin=Min[ff]];

ig=ii[[Position[ff, maxmin][[1,1]]]];

sol[[ia]]

Print["objfunc. val=",maxmin]

Numerical illustrations

Example 1

Solve the following problem.

Minimize —8x, —16x, + X +4x,”
s/t:x +X,<5x,<3 x,20,%,20

17

This example is taken from Jensen and Bard.
Exact result

The optimal solution ifX,, X,) = (32) and the optimal
value—31.
Illustrations using Section 111

Following the Section Ill, the data are given below

C=(-8-16)", X =(x,X,), B= (53" and theQ

20
matrix, [O 8} is symmetric and positive definite so the

KKT conditions are necessary and sufficient fotabgl

11
optimum with the matrixA = (1 Oj . Also,

Y =(YY,), M=, l4y), andV =(v,,V,).The

linear constraint{6) and (7) take into the following form.
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2x  t T2y =8
8Xo + - =16
2t i Y2 (18)
X1 + X2 +Vi =5
X1 +Vo =3

To create the appropriate LP, we add artificialialzles to
each constraint and minimize their sum.

Minimize a; +ap +ag+ay (19)
SIt:2x+ i+ -y, tap =8

8x2 + 1y -Y2 +tapy =16

X1+ Xo +Vvq az =5

X1 +vy +ay =3

all variables=0 and complementary conditions

Applying the modified simplex technique to this Lie
optimal solution is(X;,X,) = (32)and the optimal value
-31

[lustrations using Section 1V

Following Section 1V, the data are same like Sectib.
Similarly, the first two constrained of the equati€l3) and
@4) are same like equatidi8). The only additional
constraint in the new LP is(@5), which gives us
254, +154, =h . Hence, the linear constraintd.3)
to (L5)take into the following form.

2xg  tpptUz Y1 =8
8%y + - =16
X2+t Y2 (20)
X1+ X2 +Vq =5
X1 +Vo =3
2541 +15uy =h

Taking a large numbdr = 5000we have the new linear
objective function

—4x, —8x, — 251, =154, + 5000
from the original QP problem by following the eqoat(1?) .

Finally, to create the appropriate LP from the @Béction
IV, we have the following minimization function wmitinear
constraints.

Minimize —4xq —8xy — 2544 — 155 +500t

s/t:

2xy  tpptUz—Y1 =8
88Xy + - =16
Xp + Y2 1)
X1 + X2 +Vv1 =5
X1 +Vo =3
25/ +15 Uy =h

X1 X2, M1, M2, Y1, Y2,V1,V2,h 2 0.
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The optimal solution of the above L(21) by the simplex
method is given by:

X =3X,=2,14 =0,14, =2,h=3and

Y. =Y, =V, =V, =0 but the current objective value is
14969 The solution is optimal because it satisfies the
complementary slackness conditidhs) . Now, using the
current optimal solution in the original QP problera have
the objective function value 31

Coding output

feasible solutions are

X1 -3,X2-2,U-50,U, - 2}

objfunc. val=-31.

V1. Conclusion

This paper studied on the well-known procedure Bf &hd
its corresponding LP problems. We then introducatew
LP problem corresponding to the original QP problén
unboundedness question was created into the nevedony
LP problem but after some modification, we overcaime

unboundedness question. We also introduced a genefa

computer technique that can be solved the QP problge

2.

9.

illustrated the solution procedure of QP problemg b

converting it into LP and the computer techniqueubing a
numerical example.
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