
Dhaka Univ. J. Sci. 64(2): 121-125, 2016 (July) 
 

* Author for correspondence. e-mail: mbabulhasan@yahoo.com 
 

A Computer Technique for Solving Linear Fractional Programming Problems by Using 
Dinkelbach’s Algorithm 

Sajal Chakroborty1 and Md. Babul Hasan2* 

1Department of Electronics and Communications Engineering, East West University, Dhaka-1212, Bangladesh 
2Department of Mathematics, Dhaka University, Dhaka-1000, Bangladesh 

(Received: 18 October 2015; Accepted: 13 June 2016) 

Abstract 
In this paper, we introduce a computer oriented technique for solving linear fractional programming (LFP) problems by converting it into a single 
linear programming (LP) problem. We have used the idea of Dinkelbach’s algorithm. We use a mathematical programming language (AMPL) to 
develop computer code. A number of numerical examples are used to demonstrate the technique.  

Keywords: LFP, LP, AMPL, Objective function. 
 
I. Introduction  

Linear fractional programming (LFP) is a mathematical 
programming that consists of linear constraints with an 
objective function which is also a ratio of two linear 
functions1. Actually it is a linear programming (LP) 
problem. When denominator of LFP becomes a constant 
then it can be converted into a LP problem. Hungarian 
mathematician B. Martors and his associates developed the 
field of LFP2 in 1960’s.  There are many techniques for 
solving LFP by transforming into LP. Among them Charnes 
and Cooper’ (1962, 1973) method, Bitran and Novae’s 
(1972) method, Swarup’s method3 are noteworthy. In this 
paper, we have presented a computer oriented technique for 
solving LFP by using the idea of Dinkelbach’s algorithm4. It 
transforms the objective function as a subtraction of two 
linear functions by multiplying denominator with a 
parameter. It stops when value of the transformed objective 
function becomes zero.  

LFP has lots of applications in business and economics such 
as to determine maximum return on investment, minimum 
risk asset to capital, minimum debt to equity ratio etc. In the 
next section, we have outlined the paper.  

Paper Outline  

We have started our work by discussing some basic 
definitions and preliminaries in Section II. In Section III, we 
discuss some existing techniques. In Section IV, we present 
Dinkelbach’s algorithm. In Section V and in Section VI, we 
have presented our developed computer code in AMPL and 
have demonstrated our technique by analyzing numerical 
examples respectively. Finally, we have drawn conclusion 
about our work in Section VII.  

II. Preliminaries         

Problems of LFP arise when it becomes important to 
optimize the efficiency of some activities. In this section, we 
have discussed some basic ideas and definitions about LFP. 

Linear Fractional Programming (LFP)  

Mathematically LFP problems are defined as follows1. 

ݖ    ݁ݖ݅݉݅ݔܽܯ      = ௖೅௫ାఈ
ௗ೅௫ାఉ

                    (2.1) 

 ݋ݐ ݐ݆ܾܿ݁ݑݏ    

ݔܣ                   ≤ ܾ                                (2.2) 

ݔ                       ≥ 0                               (2.3) 

Where ݔ, ܿ, ݀ ∈ ℝ௡, ܣ ∈ ℝ௡ × ℝ௠ is an ݊ × ݉ matrix, ܾ ∈
ℝ௠  and ߙ, ߚ ∈ ℝ. It is assumed that ்݀ݔ + ߚ ≠ 0.  

Relation of LFP with LP 

There is a close relation of LFP with LP. We have discussed 
this in details as follows5.  

Case 1: If ݀ = 0 and ߚ = 1 then (2.1) transforms into an 
LP. Then (2.1) can be written as follows. 

ݖ    ݁ݖ݅݉݅ݔܽܯ                            = ݔ்ܿ +  ߙ

 ݋ݐ ݐ݆ܾܿ݁ݑݏ                           

ݔܣ                                         ≤ ܾ                                               

ݔ                                           ≥ 0                                                 

Case 2: If ݀ = 0 and ߚ ≠ 1 then (2.1) transforms into the 
following LP.  

ݖ    ݁ݖ݅݉݅ݔܽܯ =
்ܿ

ߚ
ݔ +

ߙ
ߚ

 

 ݋ݐ ݐ݆ܾܿ݁ݑݏ                           
ݔܣ                                         ≤ ܾ                                               
ݔ                                           ≥ 0     

Case 3: If ܿ = 0 then (2.1) becomes a linear function as 
follows. 
 

ݖ    =
ߙ

ݔ்݀ +  ߚ
 

If ܿ ≠ 0 and ݀ ≠ 0 then these methods will not be 
applicable. For solving such a case we have used idea of 
Dinkelbach’s algorithm and have developed an AMPL code.  

III. Existing Techniques 

In this section, we have discussed some existing techniques 
for solving LFP. These techniques have been discussed 
below.  



122 Sajal Chakroborty and Md. Babul Hasan 

 
Hasan and Acharjee’s method (2011)  

Hasan and Acharjee considered the LFP problem (2.1), 
(2.2), (2.3) on the basis of the following assumptions5.  

(i) The feasible region X is non empty and 

bounded and ்݀ݔ + ߚ > 0. 

(ii) ݌ = (்ܿ − ்݀ ఈ
ఉ

ݕ ,( = ௫
ௗ೅௫ାఉ

 and ݃ = ఈ
ఉ

.  

Then the objective function of the LFP becomes ݖ = ݕ݌ + ݃. 

They calculated variable values of LFP by ݔ = ఉ௬
ଵିௗ೅௬

. 
Although this technique is very interesting but it’s laborious 
and time consuming because one has to do a lots of 
calculations to convert LFP into LP.  

Charnes and Copper’s method (1962) 

Charnes and Cooper considered LFP problem (2.1), (2.2), 
(2.3) on the basis of the following assumptions6.  

(i) ்ܿݔ + ݔ்݀  and ߙ +  cannot vanish ߚ
simultaneously. 

(ii) The feasible region X is non empty and 
bounded.  

The authors used the transformation ݕ = ݐ ,ݔݐ ≥ 0 and 
transformed LFP as follows.  

ݖ ݁ݖ݅݉݅ݔܽܯ = ݕ்ܿ +  ݐߙ

 ݋ݐ ݐ݆ܾܿ݁ݑݏ                            

ݕܣ − ݐܾ ≤ 0 

ݕ்݀ + ݖߚ = 1 

ݕ ≥ 0, ݖ ≥ 0 

The above problem arises for ்݀ݔ + < ߚ 0. But if ்݀ݔ +
> ߚ 0 then LFP have to transform as follows.  
ݖ ݁ݖ݅݉݅݊݅ܯ          = ݕ்ܿ− −  ݐߙ
 ݋ݐ ݐ݆ܾܿ݁ݑݏ        

ݕܣ − ݐܾ ≤ 0 
ݕ்݀− − ݖߚ = 1 

ݕ ≥ 0, ݖ ≥ 0 

Bitran and Novae’s Method (1972) 

In this section, we have summarized Bitran and Novae’s 
method. Assuming that the constraints set is nonempty and 
bounded and the denominator  ்݀ݔ + ߚ > 0 for all feasible 
solutions, the authors proceeds as follows7.  

(i) Convert the LFP into a sequence of LP. 
(ii) Then solve these LPs until two of them give 

identical solution. 

In the next section, we have discussed the steps of 
Dinkelbach’s algorithm.  

IV. Dinkelbach’s Algorithm 

In the current section, we have discussed Dinkelbach’s 
algorithm4. We have discussed the algorithm by considering 

the LFP presented in Section III. It consists of the following 
steps.  

Step 1 : Choose ݔ௜
(଴) = 0, ݅ = 1, … , ݊, and consider itera-

tion ݇ = 1. Then compute the following.  

(௞)ߣ =
௜ݔ்ܿ

(௞ିଵ) + ߙ
௜ݔ்݀

(௞ିଵ) + ߚ
 

Step 2: Solve the following LP. 

 ൯(௞)ߣ൫ܨ ݁ݖ݅݉݅ݔܽܯ           

                                                                                ݋ݐ ݐ݆ܾܿ݁ݑݏ           

௜ݔܣ                     ≤ ܾ               

௜ݔ                      ≥ 0                

Where ܨ൫ߣ(௞)൯ = ௜ݔ்ܿ) + (ߙ − ௜ݔ்݀)(௞)ߣ +  .(ߚ

Step 3:  If  ܨ൫ߣ(௞)൯ = 0 then ݔ௜
௞ , ݅ = 1, . . , ݊ is the required 

optimal solution.  

Step 4: If ܨ൫ߣ(௞)൯ ≠ 0 then repeat the Steps 1 to 2.  

V. Computer Code  

In the current section, we have presented our developed 
computer code. We have developed this code by using a 
mathematical programming language8 (AMPL). It has three 
different parts these are AMPL model file, AMPL data file 
and AMPL run file. In this paper, we have presented model 
file and run file only. These are presented below. 
 

#----------------------------------------------------------------------- 
#AMPL Model File 
#----------------------------------------------------------------------- 
param n;                   # no of variables 

param m;                 # no of rows 

param alpha;           # numerator consatant 

param beta;             # denominator consatant  

param lembda;        # a parameter 

param c{i in 1..n};   #numerator's coefficients        

param d{i in 1..n};   #denominator's coefficients  

param a{i in 1..m, j in 1..n};    # constraint's coefficients  

param b{i in 1..m};     # r.h.s constants  

var x{i in 1..n}>=0;    # no of variables  

maximize obv: sum{i in 1..n} (c[i]*x[i])+alpha-

lembda*(sum{i in 1..n}(d[i]*x[i])+beta); 

subject to cost{j in 1..m}: sum{i in 1..n} a[j,i]*x[i]<=b[j]; 

subject to limit{i in 1..n}:x[i]>=0; 

#----------------------------------------------------------------------- 
# AMPL Run File 
#----------------------------------------------------------------------- 
reset; 
param iteration default 0; 



A Computer Technique for Solving Linear Fractional Programming Problems by Using Dinkelbach’s Algorithm 123 
 
param stop; 
param p; 
param q; 
param u; 
problem prob: x, obv, cost, limit; 
let stop:=0; 
for{i in 1..n} 
{let x[i]:=0; 
} 
repeat { 
let p:= sum{i in 1..n}(c[i]*x[i])+alpha; 
let q:= sum{i in 1..n}(d[i]*x[i])+beta; 
let lembda:= p/q; 
solve prob; 
let u:=abs(obv-lembda); 
if stop=u  then break; 
let stop:=u; 
let iteration:=iteration+1; 
display  iteration, lembda, x ;} 

VI. Numerical Examples  

In this section, we have demonstrated our developed 
computer technique by using numerous examples. 

Numerical Example 1 

This example has taken from Erik B. Bajalinov4. 

(ݔ)ܳ   ݁ݖ݅݉݅ݔܽܯ                  = ଼௫భାଽ௫మାସ௫యାସ
ଶ௫భାଷ௫మାଶ௫యା଻

     

 ݋ݐ ݐ݆ܾܿ݁ݑݏ                 

ଵݔ + ଶݔ + ଷݔ2 ≤ 3 

ଵݔ2 + ଶݔ + ଷݔ4 ≤ 4 

ଵݔ5 + ଶݔ3 + ଷݔ ≤ 15 

,ଵݔ ,ଶݔ ଷݔ ≥ 0 

Then we have to determine the followings. 

(௞)ߣ =
ଵݔ8

(௞ିଵ) + ଶݔ9
(௞ିଵ) + ଷݔ4

(௞ିଵ) + 4
ଵݔ2

(௞ିଵ) + ଶݔ3
(௞ିଵ) + ଷݔ2

(௞ିଵ) + 7
 

We start our calculations by considering ݇ = 1 and ݔଵ
(଴) =

ଶݔ
(଴) = ଷݔ

(଴) = 0. Now we transform the problem into a 
single LP by converting ܳ(ݔ) as follows.  

൯(௞)ߣ൫ܨ  = ଵݔ8) + ଶݔ9 + ଷݔ4 + 4) − ଵݔ2)(௞)ߣ + ଶݔ3 +
ଷݔ2 + 7)                     

All the constraints remain same. Now we have presented 
details calculations into the following steps.  

Iteration 1: ߣ(ଵ) = ସ
଻
. Corresponding LP has given below. 

൯(ଵ)ߣ൫ܨ ݁ݖ݅݉݅ݔܽܯ  = ଵݔ8) + ଶݔ9 + ଷݔ4 + 4) −
ସ
଻

ଵݔ2) + ଶݔ3 + ଷݔ2 + 7) 

 = ସ଼
଻

ଵݔ + ଺ଵ
଻

ଶݔ + ଶ଴
଻

 ଷݔ

 

 

 ݋ݐ ݐ݆ܾܿ݁ݑݏ            

ଵݔ                      + ଶݔ + ଷݔ2 ≤ 3 

ଵݔ2                      + ଶݔ + ଷݔ4 ≤ 4 

ଵݔ5                      + ଶݔ3 + ଷݔ ≤ 15 

,ଵݔ                       ,ଶݔ ଷݔ ≥ 0  
Solving this problem by using LINDO we get  ݔଵ = 0, ଶݔ =
3, ଷݔ = 0, and ܨ௠௔௫ = ଵହଷ

଻
=  .(ݔ݋ݎ݌݌ܽ)21.8571

Since ܨ௠௔௫ ≠ 0 so we have to go to the next step.  
Iteration 2:  ߣ(ଶ) = ଷଵ

ଵ଺
. Corresponding LP has given below. 

൯(ଶ)ߣ൫ܨ ݁ݖ݅݉݅ݔܽܯ  = ଵݔ8) + ଶݔ9 + ଷݔ4 + 4) −
ଷଵ
ଵ଺

ଵݔ2) + ଶݔ3 + ଷݔ2 + 7) 

  = ଷଷ
଼

ଵݔ + ହଵ
ଵ଺

ଶݔ + ଵ
଼

ଷݔ − ଵହଷ
ଵ଺

 
 ݋ݐ ݐ݆ܾܿ݁ݑݏ            

ଵݔ  + ଶݔ + ଷݔ2 ≤ 3 
ଵݔ2 + ଶݔ + ଷݔ4 ≤ 4 
ଵݔ5 + ଶݔ3 + ଷݔ ≤ 15 
,ଵݔ  ,ଶݔ ଷݔ ≥ 0  

Solving this problem by using LINDO we get ݔଵ = 1, ଶݔ =
2, ଷݔ = 0, and ܨ௠௔௫ = ଵହ 

ଵ଺
=  Since .(ݔ݋ݎ݌݌ܽ)0.9375

௠௔௫ܨ ≠ 0 so we have to go to the next step.  

Iteration 3:  ߣ(ଷ) = 2. Corresponding LP has given below. 

= ൯(ଷ)ߣ൫ܨ ݁ݖ݅݉݅ݔܽܯ  ଵݔ8) + ଶݔ9 + ଷݔ4 + 4) −
ଵݔ2)2 + ଶݔ3 + ଷݔ2 + 7) 

 = ଵݔ4 + ଶݔ3 − 10 

 ݋ݐ ݐ݆ܾܿ݁ݑݏ           

ଵݔ  + ଶݔ + ଷݔ2 ≤ 3 

ଵݔ2 + ଶݔ + ଷݔ4 ≤ 4 

ଵݔ5 + ଶݔ3 + ଷݔ ≤ 15 

,ଵݔ ,ଶݔ ଷݔ ≥ 0  

Solving by using LINDO we get ݔଵ = 1, ଶݔ = 2, ଷݔ = 0, 
and ܨ௠௔௫ = 0. Since ܨ௠௔௫ = 0 then ݔଵ = 1, ଶݔ = 2, ଷݔ = 0 
are the required optimal solutions of ܳ(ݔ). Then the 
objective function value of ܳ(ݔ) is ܳ௠௔௫ = 2. 

Now we have presented iteration by iteration AMPL output 
of numerical example 1 as follows. 

#----------------------------------------------------------------------- 
# AMPL Output of Example 1 
#----------------------------------------------------------------------- 
iteration = 1 
obv = 21.8571 
lembda = 0.571429 
x [*] := 
1  0 
2  3 
3  0; 
iteration = 2 
obv = 0.9375 



124 Sajal Chakroborty and Md. Babul Hasan 

 
lembda = 1.9375 
x [*] := 
1  1 
2  2 
3  0; 
iteration = 3 
obv = -7.99361e-15 
lembda = 2 
x [*] := 
1  1 
2  2 
3  0; 

Here -7.99361e-15 means −7.99361 × 10ିଵହ  which is 
very close to zero.  

Numerical Example 2 

This example has also taken from Erik B. Bajalinov4. 

(ݔ)ܳ   ݁ݖ݅݉݅ݔܽܯ         = ଺௫భାଷ௫మା଺
ହ௫భାଶ௫మାହ

  

 ݋ݐ ݐ݆ܾܿ݁ݑݏ        

ଵݔ4                       − ଶݔ2  ≤ 20 

ଵݔ3                        + ଶݔ5 ≤ 25  

,ଵݔ                               ଶݔ  ≥ 0 

Now consider ߣ(௞) = ଺௫భ
(ೖషభ)ାଷ௫మ

(ೖషభ)ା଺

ହ௫భ
(ೖషభ)ାଶ௫మ

(ೖషభ)ାହ
. We have to start the 

iterations by considering ݇ = 1and ݔଵ
(଴) = ଶݔ

(଴) =  0.Then 
the objective function ܳ(ݔ) will be transformed into the 
following form.  

((௞)ߣ)ܨ = ଵݔ6) + ଶݔ3 + 6) − ଵݔ5)(௞)ߣ + ଶݔ2 + 5) 

Manual output and AMPL output of the Numerical example 
2 has been presented in the following table.  

Table 1. Output of numerical example 2 

Iterations Manual Output AMPL output 

1 Parameter,  ߣ(ଵ) =
଺
ହ

= 1.2 
Maximum value of 
LP, 
௠௔௫ܨ = 3 
Variable values, 
ଵݔ = 0 
ଶݔ = 5 

obv = 3 
lembda = 1.2 
x [*] := 

1  0 
 2  5; 

2 Parameter,  ߣ(ଶ) =
ଶଵ
ଵହ

= 1.4 
Maximum value of 
LP, 
௠௔௫ܨ = 0 
Variable values, 
ଵݔ = 0 
ଶݔ = 5 

obv= 8.88178e-16 
lembda = 1.4 
x [*] := 

1  0 
 2  5; 

 

 

Here 8.88178e-16 means 8.88178 × 10ିଵ଺ which is very 
close to zero. From Table 1, we observe that at Iteration 2 
value of the transformed LP becomes zero. Therefore  
ଵݔ = 0, ଶݔ = 5 are the optimal solutions and ܳ௠௔௫ = ଻

ହ
. 

Numerical Example 3 
This example has taken from Hasan9 (2008). 

(ݔ)ܳ ݁ݖ݅݉݅ݔܽܯ =
ଵݔ2 +  ଶݔ3

ଵݔ  ଶݔ + + 1 

 ݋ݐ ݐ݆ܾܿ݁ݑݏ              
ଵݔ                             + ଶݔ  ≤ 3 
ଵݔ                             + ଶݔ2 ≤ 3 
,ଵݔ                                  ଶݔ  ≥ 0 

Consider ߣ(௞) = ଶ௫భ
(ೖషభ)ାଷ௫మ

(ೖషభ) 

 ௫భ
(ೖషభ)ା௫మ

(ೖషభ)ାଵ
. To start iteration let ݇ = 1, 

and ݔଵ
(଴) = ଶݔ

(଴) =  0. Then the objective function ܳ(ݔ) will 
be transformed into the following form. 

((௞)ߣ)ܨ = ଵݔ2) + (ଶݔ3 − ଵݔ)(௞)ߣ + ଶݔ + 1)   

Manual output and AMPL output of the Numerical example 
3 has presented in the following table.  

Table 2. Output of numerical example 3 

Iterations Manual Output AMPL output 

1 Parameter, 
(ଵ)ߣ   = 0 
Maximum value of 
LP, ܨ௠௔௫ = 6. 
Variable values, 
ଵݔ  = 3, ଶݔ = 0. 

obv = 6 
lembda = 0 
x [*] := 

1 3 
2 0;  

2 Parameter, 
(ଶ)ߣ   = ଷ

ଶ
= 1.5 

Maximum value of 
LP, 
௠௔௫ܨ  = ଷ

ସ
= 0.75 

Variable values, 
ଵݔ  = 0, ଶݔ = ଷ

ଶ
. 

obv = 0.75 
lembda = 1.5 
x [*] := 

1 0 
2 1.5; 

 

3 Parameter, 
(ଷ)ߣ   = ଽ

ହ
= 1.8 

Maximum value of 
LP, ܨ௠௔௫ = 0  
Variable values, 
ଵݔ = ଶݔ,0 = 1.5. 

obv =  
  -2.22045e-16 
lembda = 1.8 
x [*] := 

1 0 
2 1.5; 

Here -2.22045e-16 means −2.22045 × 10ିଵ଺ which is very 

close to zero. Therefore ݔଵ = 0, ଶݔ = ଷ
ଶ
 is the required 

optimal solutions and objective function value is ܳ௠௔௫ = ଽ
ହ
. 

Numerical Example 4  

This example has taken from I.M. Stancu-Minasian10. 



A Computer Technique for Solving Linear Fractional Programming Problems by Using Dinkelbach’s Algorithm 125 
 

(ݔ)ܳ   ݁ݖ݅݉݅ݔܽܯ =
ଵݔ − ଶݔ3 + ଷݔ3

ଵݔ + ଶݔ2 + ଷݔ + 1 

 ݋ݐ ݐ݆ܾܿ݁ݑݏ                

ଵݔ                                + ଶݔ − ଷݔ ≤ 6 

ଵݔ2−                               − ଶݔ + ଷݔ2 ≤ 2 

ଵݔ2                                − ଶݔ3 + ଷݔ ≤ 3 

,ଵݔ                                     ,ଶݔ ଷݔ ≥ 0 

Consider ߣ(௞) = ௫భ
(ೖషభ)ିଷ௫మ

(ೖషభ)ାଷ௫య
(ೖషభ) 

 ௫భ
(ೖషభ)ାଶ௫మ

(ೖషభ)ା௫య
(ೖషభ)ାଵ

. To start iteration let 

݇ = 1, and ݔଵ
(଴) = ଶݔ

(଴) = ଷݔ
(଴) = 0. Then the objective 

function ܳ(ݔ) will be transformed into the following form. 

((௞)ߣ)ܨ  = ଵݔ) − ଶݔ3 + (ଷݔ3 − ଵݔ)(௞)ߣ + ଶݔ2 + ଷݔ + 1)   

Manual output and AMPL output of the Numerical example 
4 has been presented in the following table.  

Table 3. Output of numerical example 4 

Iterations Manual Output AMPL output 

1 Parameter, 
(ଵ)ߣ  = 0. 
Maximum value of LP, 
௠௔௫ܨ = ଽସ

ଷ
 

=  (ݔ݋ݎ݌݌ܽ)31.33
Variable values, 

ଵݔ =
37
3  

ଶݔ = 14 

ଷݔ =
61
3  

obv = 31.3333     
lembda = 0 
x [*] := 
1  12.3333  
2   14 
3  20.3333; 

2 Parameter, 

(ଶ)ߣ  =
94

185
=  (ݔ݋ݎ݌݌ܽ) 0.5081

Maximum value of LP, 
௠௔௫ܨ = ଵସ଻

ଷ଻
=

 (ݔ݋ݎ݌݌ܽ) 3.9729
Variable values, 

ଵݔ =
2
3 

ଶݔ = 0 

ଷݔ =
5
3 

 obv = 3.97297 
lembda = 
0.508108 
 x [*] := 
1  0.666667 
2  0 
3  1.66667; 

3 Parameter, 
(ଷ)ߣ   = ଵ଻

ଵ଴
= 1.7 

Maximum value of LP, 
௠௔௫ܨ = 0  
Variable values,    
ଵݔ = ଶ

ଷ
 

ଶݔ = 0 

ଷݔ =
5
3

 

obv =  
4.44089e-16    
lembda = 1.7 
x [*] := 
1  0.666667 2  
0 
3  1.66667; 

Here 4.44089e-16 means 4.44089 × 10ିଵ଺ which is very 
close to zero. Therefore, ݔଵ = ଶ

ଷ
, ଶݔ = 0, ଷݔ = ହ

ଷ
 are the 

required optimal solutions of the given problem and 
ܳ௠௔௫ = ଵ଻

ଵ଴
.  

In the next section, we have drawn a conclusion about our 
work.  

VII. Conclusion  

In this paper, we presented a computer oriented technique 
for solving a mathematical programming called LFP. We 
developed this technique by using idea of Dinkelbach’s 
algorithm. We used AMPL to develop computer code and 
illustrated several problems to demonstrate the technique. 
We hope that this technique can be extended to solve other 
linear and non-linear programming problems.  

References  
1. Hillier, F. S., G. J., Lieberman, 2001. Introduction to 

Operations Research, MacGraw-Hill series in Industrial 
Engineering and Management Science.  

2. Martos, B., 1964. Hyperbolic Programming, Naval Research 
Logistics Quarterly, 37, 135-155. 

3. Swarup, K., 1964. Linear Fractional Functional Programming, 
Operations Research, 13(6), 1029-1036.   

4. Bajalinov, E. B., 2003. Linear Fractional Programming: 
Theory, Methods, Applications, and Software, Boston: 
Kluwer Academic Publishers.  

5. Hasan, M. B., S., Acharjee, 2011. Solving LFP by converting 
it into a Single LP, International Journal of Operations 
Research, 8(3), 1-14. 

6. Charnes, A., W.W., Cooper, 1973. An Explicit General 
Solution in Linear Fractional Programming, Naval Research 
Logistics Quarterly, 20(3), 449-467.  

7. Bitran, G. R., and A. G., Novaes, 1972. Linear Programming 
with Fractional Objective Function, University of Sao Paulo, 
Brazil, 9,181-186. 

8. www.ampls.com 
9. Hasan, M. B., 2008. Solution of Linear Fractional 

Programming Problems through Computer Algebra, The 
Dhaka University Journal of Science, 57(1), 23-28.  

10. Stanchu-Minasian, I. M., Fractional Programming: Theory, 
Method, and Applications, Kluwer Academic Publishers. 

  

 
 

 
 

 

 

 
 



126 Sajal Chakroborty and Md. Babul Hasan 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 


