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Abstract 
The analytical solution is made on the unsteady flow of an electrically conducting viscous incompressible fluid bounded by an infinite vertical 
porous plate. The plate executes harmonic oscillation at a frequency n in its own plane. The governing equations of the problem contain 
coupled partial differential equations. The dimensionless equations are solved analytically using perturbation technique. The effect of various 
parameters of the problem on the velocity, temperature and concentration field within the boundary layer are discussed and shown graphically.  
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I. Introduction  

The study of MHD flow with Hall currents is important for 
many engineering applications.  On the other hand, present 
interest in the study of magneto hydrodynamic fluid flow in 
a rotating system has been motivated by several important 
problems, such as maintenance and secular variations of 
earth’s magnetic field, the internal rotation rate of sun, the 
structure of rotating stars, the planetary and solar dynamo 
problem, centrifugal machines etc. Hence it is now proposed 
to study the MHD free convection flow of a partially-
ionized gas past an infinite vertical porous plate in a rotating 
system when a strong magnetic field of a uniform strength is 
applied perpendicularly to the flow. The generalized Ohm’s 
law with Hall and ion-slip currents has been used. The study 
of oscillatory flow, which has many practical applications, 
was first initiated by Lighthill1. The oscillatory flow of a 
viscous incompressible fluid past an infinite vertical plate 
was studied by Soundalgekar2.  Soundalgekar3 also studied 
the problem of two dimensional unsteady flow of an 
electrically conducting fluid past an infinite vertical porous 
plate with uniform suction at the plate. Mittal and Bhat4 
have discussed the heat transfer by developing MHD flow 
with Hall and ion-slip currents. Soundalgekar et al.5 have 
presented the Hall and ion-slip effects in MHD coutte flow 
with heat transfer. The effects of hall currents on the 
oscillatory MHD flow past a flat plate are investigated by 
Venkatasiva Murthy6. Singh7 studied the effects of Hall 
currents on an oscillatory MHD flow in Stokes problem past 
an infinite vertical porous plate. Ram8 studied wall 
temperature oscillation on convection flow in a rotating 
system with hall and ion-slip currents. Combined effects of 
hall and ion-slip currents on free convective heat generating 
flow past a semi-infinite vertical flat plate have been 
investigated by Abo-Eldahab et al.9. Attia10 has discussed 
the combined effects of hall and ion-slip current of a 
conducting fluid flow due to a rotating disk. Maji et al.11 
studies Hall effects on hydromagnetic flow on an oscillating 
porous plate.  

Hence our aim is to study the effects of hall and ion-slip 
currents on the unsteady MHD flow due to oscillations of an 
infinite non-conducting vertical porous plate in a viscous 

incompressible electrically conducting fluid. Also the 
effects of Hall currents, the free convection and the 
oscillatory free stream on the flow field are studied. 

II. Governing Equations 

The unsteady flow of an electrically conducting 
incompressible viscous fluid past an infinite vertical porous 
plate 0y  , with the x  axis chosen along the plate, when 
the plate velocity )(tU oscillates in time t with a frequency 

n and is given as  cosnt1)( 0 UtU  is considered. 
The flow is assumed to be in the x -direction, is taken along 
the plate in the upward direction normal to the y  axis. 
Initially the fluids as well as the plate are at rest but for time 

0t  the whole system is allowed to rotate with a constant 
angular velocity   about the y  axis.  The plate temperature 

and concentration are instantly rise to   TTw  and 

  CCw , which are thereafter maintained constant, where 


T and C  are the temperature and concentration of the 
uniform flow. The physical configuration of the problem is 
shown in Fig.1.   

A transverse strong magnetic 
field 0B with constant inten-
sity is imposed along the y -
axis. For electrically conduc-
ting fluid, Hall and ion-slip 
currents will significantly 
affect the flow in presence of 
large magnetic field. The 
effect of Hall current gives 
rise to force in the z -
direction which induces a 
cross flow in that direction 
and hence the flow becomes three dimensions. If 

 zyx JJJ ,,J  is the current density, from the relation 

0.J , yJ constant has been obtained. Since the 
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plate is electrically non-conducting, 0yJ at the plate and 
hence zero everywhere. Since the plate is infinite in extent, 
all physical quantities, except pressure, are functions of y
and t only. The governing boundary layer equations may be 
written as follows:   

Continuity equation: 0


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Momentum equations:  
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Energy equation:      
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Mass equation:           
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The initial and boundary conditions for the model are as 
follows: 
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where 1 , 0U is uniform velocity, ie 1 , 

e is Hall current parameter, i  is ion-slip current 
parameter, y  is Cartesian co-ordinate, uand w are the 
components of flow velocity, g is the local acceleration due 

to gravity,  is the thermal expansion coefficient, *  is 
the concentration expansion coefficient,   is the kinematic 
viscosity, k  is the magnetic permeability,  is the density 

of the fluid, e  is the electrical conductivity,  is the 

thermal conductivity, pc is the specific heat at the constant 

pressure, mD  is the coefficient of mass diffusivity, *Q  is 
the heat absorption quantity, Tk  is the thermal diffusion 

ratio, mT  is the mean fluid temperature and 0B  is the 
magnetic component in y  direction.  Now a convenient 
solution of equation (1) is 

0vv   (constant)                                             (8) 

where the constant velocity 0v  acting normal to the  plate 
which is positive for suction and negative for blowing. 
Using equation (8),

 
the equations (2)-(5) become:  
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The initial and boundary conditions for the model are as 
follows: 
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III. Mathematical Formulations 

For the purpose of solving the system of equation 
analytically, transformation of the governing equations are 
needed to obtain the non-dimension form, the usual non-
dimensional variables are introduced as follows: 
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The non-dimensional system of coupled equations have 
been obtained by using the above mentioned non-
dimensional variables in equations (9)-(12),  
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The corresponding boundary conditions are as follows: 

0, 0, 0, 0 for 0f g                        (19) 
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The equations (15)-(16) have been further simplified by 
putting the fluid velocity in the complex form 

( , ) ( )Q Y f ig    and the following equations have been 
obtained as follows: 
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The corresponding boundary conditions (19 and (20) are 
now transformed in the following form:
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The corresponding boundary conditions (19) and (20) are 
now transformed in the following from: 
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IV. Solution Technique 

In order to solve the equation (21)-(23) with the boundary 
condition (25) in the neighborhood of the plate under the 
above boundary conditions (24) and (25), the perturbation 
technique has been considered as follows:  
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Using equations (26)-(28) into equations (21)-(23), equating 
the harmonic and non-harmonic terms and neglecting higher 
order terms, the obtained equations are as follows:  
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The appropriate boundary conditions for the equations (24)-
(25) are as follows:  
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Solving equations (29)-(37) by using boundary conditions 
(38)and (39), the following equations have been obtained:   
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V. Results and Discussion 

The non-dimensional velocity components f  and g  are 
commonly known as the primary and secondary   velocities. 
Numerical results are presented in Figs.2-19. These results 

show the effect of the material   parameters on the quantities 
mentioned in section III. The most important fluids are 
atmospheric air, salt water and fresh water and the results 
are limited to 0.71rP  (Prandtl number for air at 020 C ), to 

1.00rP   (Prandtl number for salt water at 020 C ), 

7.00rP   (Prandtl number for water at 020 C ).  For the 

purpose of computation, , 0.01
2


    have been 

chosen arbitrarily. Minor effects on velocity, temperature 
and concentration distributions are not shown for brevity.  

It is observed that in Fig.2, primary velocity increases with 
the increase of Hall parameter e . This is because the 

effective conductivity decreases with increasing e  which 
reduces the magnetic damping force on primary velocity.  In 
Fig.3, the secondary velocity profiles are shown and it is 
seen from this figure there is an opposite effect to increase 
the Hall parameter. From Fig.4, it is seen that secondary 
velocity decreases with the increase of ion-slip parameter 

i .  

Figs.5-7, represent the effect of Prandtl number rP on 
primary velocity, secondary velocity, temperature.  

In Fig.5, primary velocity profiles decrease with an increase 
of rP . This is because of the free convection the surface 
velocity is higher than the adjacent fluid velocity and the 
momentum boundary thickness decreases. But opposite 
behavior is seen for secondary velocity in Fig.6. From Fig.7, 
it has been seen that temperature profiles decrease with the 
increases of rP . If rP  increases, the thermal diffusivity 
decreases and these phenomena lead to the decreasing of 
energy ability that reduces the thermal boundary layer. 

From Fig.8, it is seen that the primary velocity decreases 
with an increase of permeability parameter  . This is due to 
the fact that increasing the value of   has tendency to resist 
the flow causing to reduce the thickness of the boundary 
layer. But the secondary velocity has reverse effects due to 
increase of   which is found in Fig. 9.  

It is clearly seen that from in Fig.10, the primary velocity 
decreases due to increase of magnetic parameter M . The 
presence of magnetic field in an electrically conducting fluid 
introduces a force called Lorentz force. This force has 
tendency to slow down the motion of the fluid. Whereas the 
secondary velocity increases with an increase of M which 
is shown in Fig.11. 

From Fig.12, the primary velocity is decreased with an 
increase of rotational parameter R. Rotation parameter 
defines the relative magnitude of the Coriolis  force and the 
viscous force, thus rotation retards primary flow. Similar 
behavior is found for secondary velocity in Fig.13.  

From Fig.14, it is seen that the primary velocity decreases 
with increase in the heat source parameter  because when 
heat is absorbed the buoyancy force decreases which retards 
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the flow. But the secondary velocity has opposite behavior 
is seen in Fig.15.  It is clearly seen that in Fig.16, the 
temperature distribution decreases due to increase of  . 
Because when   heat   is   absorbed,   the   buoyancy   force   
decreases   the temperature profiles. 

Fig.17 and Fig.19 depict the primary velocity and 
concentration distributions for different values of the Soret 

number 0S . The Soret number 0S defines the effect of the 
temperature gradients inducing significant mass diffusion 
effects. It is noticed that an increase in the 0S  results in an 
increase in the primary velocity and concentration within the 
boundary layer. Whereas secondary velocity decreases with 
an increase of 0S which is seen in Fig.18. 

 

  
Fig. 2. Primary velocity profile for different values of Hall 
parameter e  

 

 
Fig. 5. Primary velocity profile for different values of  
Prandtl number rP  

 
Fig. 3. Secondary velocity profile for different values of Hall 
parameter e  

 
Fig. 6. Secondary velocity profile for different values of  
Prandtl number rP  
 

 
Fig. 4. Secondary velocity profile for different values of ion-slip 
parameter i  

 
Fig. 7. Temperature profile for different values of Prandtl  
number  rP  
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Fig. 8. Primary velocity profile for different values of  
permeability parameter   
 
 
 

 
Fig. 11. Secondary velocity profile for different values of  
magnetic parameter M  

 
Fig. 9. Secondary velocity profile for different values of  
permeability   
 
 

 
Fig. 12. Primary velocity profile for different values of  
rotation parameter R  

 
Fig. 10. Primary velocity profile for different values of  
magnetic parameter M  
 

 
Fig. 13. Secondary velocity profile for different values of  
rotation parameter R  
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Fig. 14. Primary velocity profile for different values of heat source 
parameter   
 
 

 
Fig. 17.  Primary velocity profile for different values  of Soret 
number 0S   

 
Fig. 15. Secondary velocity profile for different values of  
heat source parameter   
 
 

 
Fig. 18. Secondary velocity profile for different values of  
Soret number 0S  

 
Fig. 16. Temperature profile for different values  of heat source 
parameter   

 
Fig. 19. Concentration profile for different values of Soret 
number 0S  
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Fig. 20. Primary velocity profile of Maji et al.11 for different values 
of Hall parameter m  
The present results have been compared with the results of 
Maji et al.11. From these two figures (Fig.20 and Fig.2) it is 
observed that the qualitative behavior is identically same 
and quantitatively different. 

VI. Conclusions  

Unsteady MHD free convection and mass transfer flow 
through a vertical oscillatory porous plate in a rotating porous 
medium with Hall, ion-slip currents and heat source is 
studied. The governing equations are transformed to 
dimensionless form by using usual transformation. The 
dimensionless governing equations are solved by perturbation 
technique. Conclusions are drawn from the obtained results: 
(i) The primary velocity profiles increase with the increase 

of Hall parameter and Soret number while it decrease 
with the increase of heat source, Prandtl number, 
permeability parameter, parameter, magnetic parameter 
and  rotation parameter.  

(ii) The secondary velocity profiles increase with the 
increase of heat source parameter, magnetic parameter, 
permeability parameter and Prandtl number while the 
reverse effects are seen with the increase of Hall 
parameter, Soret number, rotation parameter and ion-
slip parameter. 

(iii) The temperature profiles decrease with the increase of 
Prandtl number and heat source parameter.  

(iv) The concentration profiles increase with the increase of 
Soret number.  
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