
Dhaka Univ. J. Sci. 64(1): 65-70, 2016 (January) 
 

* Author for correspondence. e-mail: nepal@du.ac.bd 
 

MHD Mixed Convection Flow of a Micropolar Fluid Past a Wedge Fixed in a Fluctuating 
Free Stream and Surface Temperature 

N. C. Roy*, P. Akther and A. K. Halder 

Department of Mathematics, Dhaka University, Dhaka-1000, Bangladesh 

(Received: 9 July 2015; Accepted: 29 November 2015) 

Abstract 
The flow and heat transfer on the unsteady laminar mixed convection boundary layer in a micropolar fluid past a vertical wedge have been 
studied taking into account the effect of magnetic field. We assume that the free stream velocity and surface temperature oscillate in magnitude 
but not in the direction of the oncoming flow velocity. The governing equations have been solved numerically by using the straight forward 
finite difference method. The amplitudes of skin friction and couple stress are found to be significantly dependent on the Richardson’s number, 
Ri, the magnetic parameter, M, and the vortex viscosity parameter, K. We observe that the amplitudes of skin friction and couple stress 
increases owing to an increase of the Richardson’s number, Ri, while these become lower for the higher value of the magnetic parameter, M, 
and the vortex viscosity parameter, K. Also the results demonstrate that the effects of the parameters on the amplitudes of heat transfer are 
rather weak.   
 

I. Introduction  

Over decades, micropolar fluids have been the focus of 
research of many researchers working in the field of fluid 
mechanics owing to its practical applications in many 
industrial and engineering applications. Micropolar fluids 
are fluids with microstructure and asymmetrical stress 
tensor. These fluids consist of rigid, randomly oriented or 
spherical particles with their own spins and micro-rotations, 
suspended in a viscous medium. Eringen1, 2 formulated the 
theory of micropolar fluids that elucidates the effect arising 
from the local structure and micro-motions of the fluid 
elements. A comprehensive review of this subject and 
application of micropolar fluid mechanics has been 
accomplished by Ariman et al.3. The characteristics of the 
boundary layer flow and heat transfer of micropolar fluids 
are of technological importance and so it has been studied 
under a variety of physical conditions.  

The concept of boundary layer in micropolar fluids was first 
introduced by Willson4. He studied the steady, incompre-
ssible laminar flow over two-dimensional bodies. Later, 
Peddieson and McNitt5 extended this to investigate the 
steady boundary layer flow of micropolar fluids at the 
stagnation point of a two-dimensional body. In addition to, 
Ahmadi6 considered the steady boundary layer flow of 
micropolar fluids over a semi-infinite flat plate and obtained 
a self-similar solution. Ramachandran et al.7 and Gorla8 
studied the thermal boundary layer in micropolar fluids at 
the stagnation point of a two-dimensional body. Gorla9,10 
also investigated the boundary layer characteristics of an 
axisymmetric, laminar, micropolar fluid flow along a 
horizontal cylinder using the theory of micropolar fluids 
formulated by Eringen1, 2. On the other hand, Rees and 
Bassom11 examined the Blasius boundary-layer flow of a 
micropolar fluid over a flat plate. They derived nonsimilar 
boundary layer equations that were solved by the Keller-box 
method. They also performed an asymptotic analysis for 
large distances from the leading edge because the numerical 
results indicate that the boundary layer develops a two-layer 
structure. 

Due to the growing demand of technological appliances, 
there are many cases in which magnetic fields are strongly 
encountered in an electrically conducting fluid, for example, 
electric power generation, astrophysical flows, solar power 
technology, space vehicle re-entry, nuclear engineering 
applications, etc. Magnetohydrodynamic (MHD) mixed 
convection heat transfer flow is of practical importance 
owing to its frequent occurrence in industrial technology 
and geothermal applications, high temperature plasmas 
applicable to nuclear fusion energy conversion, liquid metal 
fluids, and (MHD) power generation systems. Ishak12 
examined the MHD boundary layer flow of a micropolar 
fluid past a wedge with constant wall heat flux. An exact 
solution for unsteady magnetohydrodynamic free-convec-
tion flow over an impulsively moving vertical plate with 
constant heat flux was given by Sacheti et al.13 and the 
results show that the magnetic field has a retarding effect on 
the velocity profiles while the surface skin friction increases 
with it. Ibrahim et al.14 obtained the analytical solution for 
unsteady MHD free convection flow past a semi-infinite 
vertical permeable moving plate with heat source and 
chemical reaction.  

The objective of this study is to investigate the flow and 
heat transfer characteristics on the unsteady laminar mixed 
convection boundary layer in a micropolar fluid past a 
vertical wedge. Results have been demonstrated in terms of 
the amplitudes of the skin friction, couple stress and heat 
transfer with the variations of the Richardson’s number, Ri, 
vortex viscosity parameter, K and magnetic parameter, M. 

II. Mathematical Formalisms 

A two-dimensional, unsteady, laminar mixed convection 
flow of an incompressible micropolar fluid flow past a 
wedge is considered. The flow configuration and coordinate 
system are shown in Figure 1. Under the usual boundary 
layer approximation, the governing equations of 
conservation of momentum, angular momentum and energy 
in the presence of magnetic field can be expressed as: 
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Here x and y are the coordinates parallel with and 
perpendicular to the wedge surface, u and v are the velocity 
components, T is the fluid temperature, T∞ is the 
temperature of the ambient fluid, ρ  is the density, α is the 
thermal diffusivity, j  is the micro inertia density, µ  is the 
coefficient of viscosity, κ  is the coefficient of gyro-
viscosity (or vortex viscosity), σ  is the electrical 
conductivity, g  is the acceleration due to gravity, β is the 
coefficient of volumetric expansion, N is the component of 
the micro-rotation vector normal to the xy-plane, B0 is the 
strength of magnetic field which is assumed to be applied in 
the positive y direction, normal to the surface. We have 
considered that B0 is proportional to 

( )1 2mx− −
, that is, the 

magnetic field is strong near the leading edge and weak in 
the downstream direction. 

Furthermore, the spin-gradient viscosity ,γ  which gives 
some relationship between the coefficients of viscosity and 
micro-inertia, is defined as 
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The above governing equations need to be solved subject to 
the following boundary conditions on velocity, micro-
rotation and temperature fields: 
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where Tw is the surface temperature of the wedge. The 
boundary condition (6) means that the micro-rotation is 
equal to half of the fluid vorticity at the boundary. 

 
Fig. 1. Flow configuration and coordinate system 

 

Here, the free-stream velocity U(x, t) is assumed to be of the 
form  

( ) ( )0, 1 ,m i tU x t U x e ωε= +  (8) 

where U0, ε  are constants and ω  is the frequency.  

The equation of continuity (1) is satisfied if we choose the 
stream function ψ such that 
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Since, the amplitudes of the free-stream velocity and 

temperature variation ( )1ε <<  is very small, we now 

assume the solutions of the following forms  
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where only the real part is to be taken as it has physical 
meaning. 

In order to obtain the steady state solutions, we substitute 

(9)–(10) into (2)–(4), and equate the coefficients of 0ε  to 
obtain 
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The set of equations for ψs, Ns and Ts represents the steady-
state solutions that can be determined by the following 
functions: 
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Using (14) in (11)–(13), we obtain the dimensionless 
equations 
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The modified boundary conditions are 
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Invoking the expressions (8)–(10) into (2)–(4), and equating 
the coefficients of ε we obtain time-dependent components 

1ψ , N1 and T1 as 
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The transformed boundary conditions become 
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To non-dimensionalize the equations (20), (21), and (22), 
we introduce the following expressions 
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Using (14) and (25) into (20)–(24), we obtain 
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The dimensionless boundary conditions for (26)–(28) are 
1
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In the foregoing equation, ξ = ωx1−m/U0, Grx = 
gβ(Tw−T∞)x

3/ν2 is the Grashof number, Rex = U0x
m+1/ν is the 

Reynolds number, Ri = Grx/Rex
2 is the Richardson’s 

number, Pr = ν/α is Prandtl number, K = κ/µ is the vortex 
viscosity parameter and ( )2 1

0 0
mM B x Uσ ρ−=  is the 

magnetic parameter. 

The sets of equations (15)–(19) and (26)–(30) are solved by 
employing the straight forward finite difference method. 
Then we investigate the effects of the physical parameters 
on the skin friction, couple stress and the rate of heat 
transfer at the surface of the wedge. These are important not 
only from physical point of view but also from experimental 
point of view. In this study, the results will be presented in 
terms of the amplitudes of the skin friction, couple stress 
and the heat transfer rate having the following relations 
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respectively, where ( ), ,r iF F′′ ′′  ( ),r iH H′ ′  and ( ),r i′ ′Θ Θ  are 

the corresponding real and imaginary parts of the axial 
velocity, angular velocity and temperature gradients at the 
surface.  

III. Results and Discussion 

In this study, we have analyzed the mixed convection flow 
of micropolar fluid in presence of magnetic field. The 
governing equations have been solved by using the straight 
forward finite difference method for the entire frequency 
range. In order to get a clear insight on the physics of the 
problem, a parametric study is performed and the obtained 
numerical results are presented with the help of graphical 
illustrations. 

  

  

 
 
Fig. 2. Amplitudes of (a) skin friction, (b) couple stress and (c) 
heat transfer for different values of Ri while M = 0.2, Pr = 0.72 and 
K = 2.0. 

The effects of the Richardson’s number, Ri, on the 
amplitudes of the skin friction, couple stress and heat 
transfer are shown in Figures 2(a), 2(b) and 2(c), 
respectively. From the figures, we observe that for higher 
Richardson’s number, Ri, the amplitudes of skin friction and 
couple stress are higher. On the other hand, for Richardson’s 
number, Ri, the amplitudes of heat transfer are higher near 
the leading edge while the reverse case is observed in the 
downstream region. 

   

 

 
Fig. 3. Amplitudes of (a) skin friction, (b) couple stress and (c) 
heat transfer for different values of M while Ri = 2.0, Pr = 0.72 and 
K = 2.0. 
 
Figures 3(a)-(c) illustrate the variations of the amplitudes of 
skin friction, couple stress and heat transfer, respectively, 
owing to the change of the magnetic parameter, M. With an 
increase of the magnetic parameter, the amplitudes of skin 
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friction and couple stress decrease. From the definition of 
the magnetic parameter, it is evident that the magnetic 
parameter, M, increases owing to the increase of the strength 
of the magnetic field. As a result, the fluid velocity 
decreases with the increase in magnetic intensity. In other 
words, the imposition of the transverse magnetic field tends 
to retard the fluid flow. Thus the amplitudes of the skin 
friction and couple stress are lower for higher values of M. 
Besides, the amplitudes of heat transfer decrease near the 
leading edge owing to an increase of the magnetic 
parameter, M, while the reverse case is observed in the 
downstream region.  

   

 

 

Fig. 4. Amplitudes of (a) skin friction, (b) couple stress and (c) 
heat transfer for different values of K while Ri = 2.0, Pr = 0.72 and 
M = 0.2. 

The effects of the vortex viscosity parameter, K, on the 
amplitudes of skin friction, couple stress and heat transfer 
are shown in Figures 4(a)-(c), respectively. It is seen from 
the figures that when the vortex viscosity parameter, K, is 
increased, the amplitudes of skin friction and couple stress 
decrease. The definition of the vortex viscosity parameter K 
(= κ/µ) indicates that the value of K becomes higher either 
the coefficient of viscosity µ is lower or the coefficient of 
gyro-viscosity κ is higher. This change of the fluid property 
reduces its velocity. Consequently, the amplitudes of skin 
friction and couple stress become lower for higher value of 
the vortex viscosity parameter, K. On the contrary, the 
amplitudes of heat transfer are found to be lower near the 
leading edge with an increase of K and then the 
corresponding values of heat transfer become higher in the 
downstream region.  

IV. Conclusions 

We examine the flow and heat transfer of a micropolar fluid 
over a vertical wedge due to oscillation in the free-stream 
and surface temperature. We found that the amplitudes of 
skin friction and couple stress strongly depend on the 
Richardson’s number, Ri, the magnetic parameter, M, and 
the vortex viscosity parameter, K. The amplitudes of skin 
friction and couple stress are higher for the Richardson’s 
number, Ri, while these become lower owing to the increase 
of the magnetic parameter, M, and the vortex viscosity 
parameter, K. Moreover, the effects of the parameters on the 
amplitudes of heat transfer are rather weak.  
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