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Abstract

The flow and heat transfer on the unsteady lamimaed convection boundary layer in a micropolaidipast a vertical wedge have been
studied taking into account the effect of magnfitii. We assume that the free stream velocityanthce temperature oscillate in magnitude
but not in the direction of the oncoming flow vetgc The governing equations have been solved nigaiBr by using the straight forward
finite difference method. The amplitudes of skietfon and couple stress are found to be signiflgatependent on the Richardson’s number,
Ri, the magnetic parametdy], and the vortex viscosity paramet&r, We observe that the amplitudes of skin frictiord a&ouple stress
increases owing to an increase of the Richardsmumisber,Ri, while these become lower for the higher valuéhef magnetic parametev,
and the vortex viscosity paramet#r, Also the results demonstrate that the effectdhefparameters on the amplitudes of heat transéer a
rather weak.

I Introduction Due to the growing demand of technological appksnc

there are many cases in which magnetic fields momgly
encountered in an electrically conducting fluid;, éxample,
electric power generation, astrophysical flowsasgower
technology, space vehicle re-entry, nuclear enginge
applications, etc. Magnetohydrodynamic (MHD) mixed
convection heat transfer flow is of practical imjaoce
owing to its frequent occurrence in industrial teclogy
and geothermal applications, high temperature pasm
applicable to nuclear fusion energy conversioryitigmetal

Over decades, micropolar fluids have been the famus
research of many researchers working in the fiélduid
mechanics owing to its practical applications innga
industrial and engineering applications. Micropofauids
are fluids with microstructure and asymmetricalessr
tensor. These fluids consist of rigid, randomlyeated or
spherical particles with their own spins and mimtations,
suspended in a viscous medium. Eriffigéfiormulated the
theory of micropolar fluids that elucidates theeetfarising fluids, and (MHD) power generation systems. IShak
from the local structure and micro-motions of tHeid  oyamined the MHD boundary layer flow of a micropola
elements. A comprehensive review of this subjeal anfjyig past a wedge with constant wall heat flux. Axact
application of micropolar fluid mechanics has beensolution for unsteady magnetohydrodynamic free-esav
accomplished by Ariman et &l.The characteristics of the tion flow over an impulsively moving vertical plateith

boundary layer flow and heat transfer of micropdlards
are of technological importance and so it has bstaedied
under a variety of physical conditions.

The concept of boundary layer in micropolar fluwdss first

introduced by Willsoh He studied the steady, incompre-

ssible laminar flow over two-dimensional bodies.tdra

Peddieson and McNittextended this to investigate the

steady boundary layer flow of micropolar fluids tte
stagnation point of a two-dimensional body. In #ddito,

Ahmadf considered the steady boundary layer flow of

micropolar fluids over a semi-infinite flat platachobtained
a self-similar solution. Ramachandran et @nd Gorl§
studied the thermal boundary layer in micropolaid$ at
the stagnation point of a two-dimensional body. |6df
also investigated the boundary layer charactesistit an
axisymmetric, laminar, micropolar fluid flow along
horizontal cylinder using the theory of micropolfuids

constant heat flux was given by Sacheti et®and the
results show that the magnetic field has a retgrdffect on
the velocity profiles while the surface skin frami increases
with it. Ibrahim et af* obtained the analytical solution for
unsteady MHD free convection flow past a semi-iitdin
vertical permeable moving plate with heat source an
chemical reaction.

The objective of this study is to investigate thewf and
heat transfer characteristics on the unsteady kEmirixed
convection boundary layer in a micropolar fluid fpas
vertical wedge. Results have been demonstrateerimstof
the amplitudes of the skin friction, couple stresel heat
transfer with the variations of the Richardson’snber, Ri,

vortex viscosity paramete, and magnetic parameté,

1. Mathematical Formalisms

A two-dimensional, unsteady, laminar mixed conwatti
flow of an incompressible micropolar fluid flow paa

formulated by Eringeh 2 On the other hand, Rees andwedge is considered. The flow configuration andrdoate
Bassont® examined the Blasius boundary-layer flow of asystem are shown in Figure 1. Under the usual baynd

micropolar fluid over a flat plate. They derivednsanilar

boundary layer equations that were solved by thekbox

method. They also performed an asymptotic analfis
large distances from the leading edge becauseuimenical

results indicate that the boundary layer developgoalayer
structure.

" Author for correspondence. e-maillepal@du.ac.bd

layer approximation, the governing equations of
conservation of momentum, angular momentum andggner
in the presence of magnetic field can be expreased
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Fig. 1. Flow configuration and coordinate system

Here, the free-stream velocity(x, t) is assumed to be of the

Here x and y are the coordinates parallel with and form

perpendicular to the wedge surfaneandv are the velocity
components, T is the fluid temperature, T, is the
temperature of the ambient fluigh is the density,a is the
thermal diffusivity, j is the micro inertia densityy/ is the

coefficient of viscosity, K is the coefficient of gyro-

viscosity (or vortex viscosity), g is the electrical
conductivity, g is the acceleration due to gravigyis the

coefficient of volumetric expansiotN is the component of

the micro-rotation vector normal to thg-plane,B, is the
strength of magnetic field which is assumed to fglied in

U (xt) =Upx"(1+£6“), (8)

whereU,, & are constants and is the frequency.

The equation of continuity (1) is satisfied if weoose the
stream functiony such that

_ oy oy

u= , U=
ay oxX

Since, the amplitudes of the free-stream veloaity a

temperature variatiow(<< 1) is very small, we now

(9)

the positivey direction, normal to the surface We have gssume the solutions of the following forms

considered thaB, is proportional to X ~em , that is, the
magnetic field is strong near the leading edge waadk in
the downstream direction.

Furthermore, the spin-gradient viscosily, which gives
some relationship between the coefficients of \dggoand
micro-inertia, is defined as

V=(,U+l;jj- ©)

The above governing equations need to be solvegcuio
the following boundary conditions on velocity, nger
rotation and temperature fields:

u=v=0, N——Ea—u

20y (6)
T=Tw+(TW—Tw)(1+£e ) aty=0

u=U(xt), v=0, N=0,

7
T=T,6 asy - o, )

where T,, is the surface temperature of the wedge. The gy gx

boundary condition (6) means that the micro-rotatie
equal to half of the fluid vorticity at the bounglar

Y(xy.t) =g (xy)+eg,(x,y)e

N(x y,t)=Ng(x,y)+eN,(x,y)e
T(xy.t)=T,(x,y)+€T,(x,y)e“

where only the real part is to be taken as it gsipal
meaning.

In order to obtain the steady state solutions, wiestitute
(9)—(10) into (2)—(4), and equate the coefficiesftss® to
obtain

oW, 0w, oy, oy,
dy oxdy O0x oy°

(10)

3
:mU(fxz’“‘1+'u+Ka"035+56NS (11)
p 0y p oy
oBZ oy
+gh (T )=
(T.-T.) > oy
O, ON, Oy, ON, _ y 9°N,
o 2
ox dy pj oy (12)
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0y, 0T, 0y, 0T, _ 07T, (13)

dy ox 0x ay ay?
The set of equations far;, Ns andTs represents the steady-

state solutions that can be determined by theViatig
functions:

0, = (W, )2 X2 (1),
N, =Uq (Uo/v)"* XCm (),
T,=T.+(T,-T.)6(n),

_ y L m
=(Uy/v) 2xmyzy =(v/U,)x .
Using (14) in (11)—(13), we obtain the dimensiosles
equations

(14)

(1+K)fm+ Khl+m 1f"
(15)
+m(1- £'?)+Ri#-Mf' =0,
(”EJ M gy ok (2 f7)= (16)
6?" —2 fH' 0. (17)
The modified boundary conditions are
f=f'=0,h=—%f”,0=1 atn=0 (18)
f'=1, h=0,60=0 asn - o (19)

Invoking the expressions (8)—(10) into (2)—(4), &aghating
the coefficients of we obtain time-dependent components
;. N, andT, as

a¢l+az,z/ az//l+a¢/161//
dy 0y oxdy 0y Oxoy
OO 0Oy o
ox ay> ox oy’
POy,
p oy
oB; oy,

p oy’

0y, N, , 0y, N,
oy ox dy O0Xx
_OY 9N, 0y N, _ y O°N,
ox oy 0x ay pj oy’

(2N1+ 0 wl)
P ay’

oy, oT, awl 0T, _ 0y, OT,
oy ox oy X O ay
_0y, 0T :aale

ox oy ay*

i ).

(20)
K 0N,

p oy

+2mU O2X2m—1 +
+gpT, -

N, +—=

(21)

il +—=
(22)
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The transformed boundary conditions become

oY, _ __1o%y,
W, = v N1 =75
oy 2 oy (23)
T,=T,-T, at y=0,
0
%:onm, N, - 0,T, » 0 asy » (24)

To non-dimensionalize the equations (20), (21), @2,
we introduce the following expressions

0= (W) X" (£1),
N1:U0(U0/V) xEm /2 H(¢7),

T, =(T, - T.)0(&n).

Using (14) and (25) into (20)—(24), we obtain
(1+K)Fr+M¥ (fF”+Ff ") +ig(1-F')

(25)

+2m(1—fF)— F'+KH'+Ri©
oF' ., 0F

= 1_ f! f"_ ,

-me 19 -1

0¢
[l+%JH"+m2+l(fH’+Fh’)—ifH

h"’_F],

o 0f

fO +F@)-ifO

Pr 2( * ) ¢

—K(2H+F”):(l—m)f[f’
=(1_m)f[f,ae Ha_FJ (28)

(26)

oH (27)

= @"

0é o0& )

The dimensionless boundary conditions for (26)—¢18)

F=F'=0,H=—%F", ©=1atn=0 (29)
F'=1, H=0,0=0 as/f - (30)
In the foregoing equation,é = wx* U, Gr, =

gB(T,~T..)xh? is the Grashof numbeRe, = Ux™/v is the

Reynolds number,Ri = Gr/Re? is the Richardson’s
number, Pr =v/a is Prandtl numberK = «/u is the vortex
viscosity parameter andM =oB{X""/(pU,) is the

magnetic parameter.

The sets of equations (15)—(19) and (26)—(30) aheed by
employing the straight forward finite difference thned.
Then we investigate the effects of the physicabpeaters
on the skin friction, couple stress and the rateheét
transfer at the surface of the wedge. These arerianmt not
only from physical point of view but also from exjmental
point of view. In this study, the results will beepented in
terms of the amplitudes of the skin friction, cautress
and the heat transfer rate having the followingtiehs
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F'2 4 E"2 A = H'%+ H'2 The effects of the Richardson’s numbeRj, on the
' b ' b amplitudes of the skin friction, couple stress ameht
9;2 +@i'2 transfer are shown in Figures 2(a), 2(b) and 2(c),

respectively, Where(

surface.

F" F"

r’t

I11. Results and Discussion

), (H;,H/) and(©;,0!) are
the corresponding real and imaginary parts of thila
velocity, angular velocity and temperature gradieait the

respectively. From the figures, we observe thatHigher
Richardson’s numbeRi, the amplitudes of skin friction and
couple stress are higher. On the other hand, fdndRdson’s
number,Ri, the amplitudes of heat transfer are higher near
the leading edge while the reverse case is obsenvélke
downstream region.

In this study, we have analyzed the mixed convactiow
of micropolar fluid in presence of magnetic fiel@he
governing equations have been solved by usingtth&gkt
forward finite difference method for the entire duency
range. In order to get a clear insight on the pisysif the
problem, aparametric study is performed and the obtained

3.0

numerical resultare presented with the help of graphical

illustrations.
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Fig. 2. Amplitudes of (a) skin friction, (b) couple streasd (c)
heat transfer for different values Bif while M = 0.2, Pr = 0.72 and

K=2.0.

15.0
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Fig. 3. Amplitudes of (a) skin friction, (b) couple streasd (c)

heat transfer for different values Mfwhile Ri = 2.0, Pr = 0.72 and
K=2.0.

Figures 3(a)-(c) illustrate the variations of tepditudes of
skin friction, couple stress and heat transferpeesvely,
owing to the change of the magnetic paraméferWith an
increase of the magnetic parameter, the amplitodeskin
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friction and couple stress decrease. From the iiefinof  The effects of the vortex viscosity parametkr, on the
the magnetic parameter, it is evident that the rgn ampjitudes of skin friction, couple stress and Heansfer
parameteri, increases owing to the increase of_the s_trengtlare shown in Figures 4(a)-(c), respectively. Iséen from
of the magnetic field. As a result, the fluid vetgc i . : .
the figures that when the vortex viscosity paramefe is

decreases with the increase in magnetic intenkityther . o
words, the imposition of the transverse magnetitdftends increased, the amplitudes of skin friction and deugiress

to retard the fluid flow. Thus the amplitudes oftekin ~ decrease. The definition of the vortex viscosityapaeterk
friction and couple stress are lower for highemeal ofM. (= «/u) indicates that the value & becomes higher either
Besides, the amplitudes of heat transfer decrease the the coefficient of viscosity: is lower or the coefficient of
leading edge owing to an increase of the magnetigyro-viscosityx is higher. This change of the fluid property
parameter,M, while the reverse case is observed in thgeqyces its velocity. Consequently, the amplitudeskin

downstream region. friction and couple stress become lower for higheue of

6.0 the vortex viscosity parameteK. On the contrary, the
amplitudes of heat transfer are found to be lowearrthe
5.0 leading edge with an increase df and then the
corresponding values of heat transfer become highére
« 40 downstream region.
i’; 30 IV. Conclusions
A 2.0 We examine the flow and heat transfer of a micrapfuid
over a vertical wedge due to oscillation in theefstream
1.0 and surface temperature. We found that the ampliuaf
skin friction and couple stress strongly depend tha
0-00.0 2!0 4!0 6!0 8!0 10"0 Richardson’s numbelRi, the magnetic parametdy], and
(a) 13 the vortex viscosity parametek. The amplitudes of skin
40 - friction and couple stress are higher for the Ridkan’s

number,Ri, while these become lower owing to the increase
of the magnetic parameteM, and the vortex viscosity
parameterK. Moreover, he effects of the parameters on the
amplitudes of heat transfer are rather weak.
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