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Abstract 

In this paper, a new method namely, objective separable method based on Linear Programming with Bounded Variables Algorithm is proposed 
for finding an optimal solution to a Quasi-Concave Quadratic Programming Problems with Bounded Variables in which the objective function 
involves the product of two indefinite factorized linear functions and the constraint functions are in the form of linear inequalities. For 
developing this method, we use programming language MATHEMATICA. We also illustrate numerical examples to demonstrate our method. 
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I. Introduction 

Non-linear programming (NLP) is the process of solving an 
optimization problem defined by a system of equalities and 
inequalities, collectively termed constraints, over a set of 
unknown real variables, along with an objective function to 
be maximized or minimized, where some of the constraints 
or the objective function is non-linear. It is the sub-field 
of mathematical optimization that deals with problems that 
are not linear. A quadratic programming (QP) is a special 
type of mathematical optimization problem. It is the 
problem of optimizing (minimizing or maximizing) a 
quadratic function of several variables subject to linear 
constraints on these variables. Because of its usefulness in 
Producing Planning, Financial and Corporate Planning, 
Health Care and Hospital Planning and Engineering, QP is 
viewed as a discipline in Operational Research and it has 
become a fertile area in the field of research in recent years. 
A large number of algorithms for solving QP problems have 
been developed. Some of them are extensions of the 
simplex method and others are based on different 
principles. In the conversance, a great number of methods 
(Wolf1, Beale2, Frank and Wolf3, Shetty4, Lemke5, Best and 
Ritter6, Theil and van de Panne7, Boot8, Fletcher9, Swarup10, 
Gupta and Sharma11, Moraru12,13, Jensen and King14, 
Bazaraa, Sherali and Shetty15) are designed to solve QP 
problems in a finite number of steps. Among them, Wolf’s 
method1, Swarup’s simplex method10 and Gupta and 
Sharma’s method11 are more popular than the other 
methods. The above mentioned articles deal with variables 
of the type ≥ 0 but no upper bound. But when considering 
real-world applications of QP, it may arrive that one or 
more unknown variables �� not only have a non-negativity 
restriction but also have upper and lower bounds on them. 
In this case, the above mentioned articles did not consider 
the upper bounds on the variables. Andrew Whinston16 
developed a method for solving QP problems with 
bounded variables but not consider quasi-concave QP 
problems with bounded variables. 

In this paper, we proposed a new method namely, objective 
separable method (OSM) based on linear programming with 
bounded variables (LPBV) algorithm for finding an optimal 
solution to a quasi-concave QP problems with bounded 
variables in which the objective function involving the 

product of two indefinite factorized linear functions and 
constraints functions are in the form of linear inequalities. In 
this proposed method, we construct two linear programming 
problems with bounded variables both of maximization type 
from the given quasi-concave QP problems with bounded 
variables. Then we obtain an optimal solution to the given 
quasi-concave QP problems with bounded variables from 
the solutions of the two constructed linear programming 
problems. The OSM based on LPBV algorithm which 
differs from the existing methods (Wolf’s method1, 
Swarup’s simplex method10 and Gupta and Sharma’s 
method11). We use the concept of LPBV method to solve 
this problem. For developing this method, use programming 
language MATHEMATICA. We also illustrate numerical 
examples to demonstrate our method. 

The rest of the paper is organized as follows. In Section 
II, we discuss on glossary background of LPBV, QP, 
quasi-concave QP, Gonzi property and some results. In 
Section III, we discuss quasi-concave QPBV problems 
and constructed two single objective linear programming 
problems from the problem (P). In Section IV, we discuss 
the existing method and existing algorithm for LPBV 
problems. In Section V, we discuss our proposed 
algorithm for quasi-concave QPBV problems and illust-
rate the solution procedure with a number of numerical 
examples. In Section VI, we develop a computer techn-
ique for this method by using progra-mming language 
MATHEMATICA and solve the previous examples through 
the computer technique. Finally, we draw a conclusion in 
Section VII. 

II. Preliminaries 

In this section, we briefly discuss definitions of LPBV, 
QP, quasi-concave QP, Gonzi property and some results. 

Gonzi Property 

Let ��(�) and �	(�) be two differentiable functions on 
 ⊂ �
, an �-dimensional Euclidean space. The functions ��(�) and �	(�) are said to have the Gonzi property23 in 
 ⊂ �
 if  ���(�) − ��(�)���	(�) − �	(�)� ≤ 0, ∀ �, � ∈ 
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Theorem 2.1 

The product ��(�)�	(�) of two linear functions ��(�) and �	(�) is concave iff the functions ��(�) and �	(�) have the 
Gonzi property. 

LPBV Problems 

In Linear Programming (LP) models17, variables may 
have explicit positive upper and lower bounds. For 
example, in production facilities, lower and upper bounds 
can represent the minimum and maximum demands for 
certain products. Bounded variables also arise promi-
nently in the course of solving integer programming 
problems by the branch and bound algorithm.  

Consider the following LP problems, 

                    Maximize,   � = �
 

        Subject to,  (�, �)
 = �                                  (1) 

                                        � ≤ 
 ≤                                    (2) 

where,  = " ���	⋮�
$%
& & � = " '�'	⋮'
$%

& ,  ≥ � ≥ 0.  

The elements of � and   for an unbounded variable 0 and ∞. 

QP Problems 

The general QP problem can be written as 

Maximize,        � = )� + �	 �+,� 

 Subject to,        �� ≤ � and � ≥ 0 

Where ) is an �-dimensional row vector describing the 
coefficients of the linear terms in the objective function, 
and , is an (� × �) symmetric real matrix describing the 
coefficients of the quadratic terms. If a constant term 
exists it is dropped from the model. As in LP, the decision 
variables are denoted by the �-dimensional column vector �, and the constraints are defined by an (. × �) � matrix 
and an .-dimensional column vector � of right-hand side 
coefficients. We assume that a feasible solution exists and 
that the constraints region is bounded. When the objective 
function � is strictly convex for all feasible points the 
problem has a unique local maximum which is also the 
global maximum. A sufficient condition to guarantee 
strictly convexity is for , to be positive definite. 

Quasi-Concave QP Problems 

In this paper, we consider the quasi-concave QPBV 
problems subject to linear constraints. 

The quasi-concave QP problems18 can be written as 

Maximize,   � = ()� + /)(0� + 1) 

Subject to,     �� ≤ �  and  � ≥ 0 

where, � is an (. × �) matrix, � ∈ ℜ%, and �, ), 0 ∈ ℜ
 
and /, 1 ∈ ℜ. Here we assume that 

(i)  ()� + /) and (0� + 1) have Gonzi property in 
feasible set. 

(ii)  The constraints set 3 = { � ∶ �� = �, � ≥ 0 } is non-
empty and bounded. 

III. Quasi-Concave QPBV Problems 

Let us consider the general quasi-concave QPBV problem 

(P)  Max, � = 7�(�) ∙ 7	(�) 

               = 9: )��� + /

�;� < ∙ 9: 0��� + 1


�;� <                  (3) 

Subject to,  

                  : >?���



�;� = �?  ,       @ = 1,2, ⋯ ⋯ , .                 (4) 

            '� ≤ �� ≤ �� ,          C = 1,2, ⋯ ⋯ , �                       (5) 
where, '� ≤ ��, C = 1,2, ⋯ ⋯ ⋯ , �. Here '� and �� are 
usually called lower-bound and upper-bound of the 
constraints. 
Let us assume that 7�(�), 7	(�) have the Gonzi property 
in the feasible set for all 
 � = (��, �	, ⋯ ⋯ , �% , �%$�, ⋯ ⋯ , �
)+ ∈ 3, where 3 
denotes a feasible set defined by the constraints (4) and (5). Also assume that 3 is non-empty and bounded. Thus, 
by the Theorem 2.1, it is concluded that the problem (P) is 
a concave non-linear programming problem with bounded 
variables in which the objective function involving the 
product of two indefinite factorized linear functions and 
constraints functions are in the form of linear inequalities. 
This implies that the optimal solution of the problem (P) 
exists and it occurs at an extreme point of the feasible 
region. 

Now, from the problem (P), two single objective linear 
programming problems are constructed as follows: 
 
(P1)  Max, 7�(�) 

 = 9: )��� + /

�;� <          

Subject to,  

              : >?���



�;� = �?  ,       @ = 1,2, ⋯ ⋯ , .            
                     '� ≤ �� ≤ ��  ,          C = 1,2, ⋯ ⋯ , �             
where, '� ≤ ��, C = 1,2, ⋯ ⋯ ⋯ , �. Here '� and �� are 
usually called lower-bound and upper-bound of the 
constraints. 
(P2)  Max, 7	(�) 

    = 9: 0��� + 1

�;� <          

Subject to,  

   : >?���



�;� = �?  ,       @ = 1,2, ⋯ ⋯ , .            
   '� ≤ �� ≤ �� ,          C = 1,2, ⋯ ⋯ , �             
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where, '� ≤ ��, C = 1,2, ⋯ ⋯ ⋯ , �. Here '� and �� are 
usually called lower-bound and upper-bound of the 
constraints. 

Remark 3.1 

From above, we can easily conclude that if both (P1) and 
(P2) are solvable, then the problem (P) is solvable. 

Now, the following theorem connecting the optimal 
solutions of the problem (P), the problem (P1) and the 
problem (P2) which is used in the proposed method. 

Theorem 3.1 

Let 
E be an optimal solution to the problem (P1). If {

} is 
a sequence of basic feasible solutions to the problem (P2) by 
linear programming with bounded variables algorithm 
considering the solution 
E as an initial feasible solution 
such that �(
F) ≤ �(
F$�) for all G = 0, 1, 2, ⋯ ⋯ , � and 
either 

$� is an optimal solution to the problem (P2) or �(

$�) ≥ �(

$	), then 

$� is an optimal solution to the 
problem (P)22.  

IV. Existing Method for LPBV Problems 

In this section, we discuss the existing method17 and 
existing algorithm17,19 for LPBV problems. 

One can solve LPBV problems by regular simplex method 
by considering the lower and upper bound constraints 
explicitly which is not computationally efficient as the 
number of constraints as well as the number of variables 
become large and studied LP problems with upper 
bounded variables, which uses smaller basis to solve 
LPBV problems. In which case, from (1) and (2), the 
constraints are put in the form, (�, �)
 = � 
 + 
H =   
 − 
HH = � 
, 
H, 
HH ≥ 0 

Where 
H and 
HH are slack and surplus variables. This 
problem includes 3(. + �) variables and (3. + 2�) 
constraints equations. However, the size can be reduced 
considerably through the use of special techniques that 
ultimately reduce the constraints to the set (�, �)
 = �. 

First, we consider the lower-bounds. Given 
 ≥ �, we can 
use the substitution 
 = � + 
HH, 
HH ≥ 0, � ≥ 0. 
Throughout and solve the problem in terms of 
HH. The 
original 
 is determined by back-substitution which is 
legitimate because it guarantees that 
 = � + 
HH will 
remain non-negative for all 
HH ≥ 0. Next, we consider the 
upper-bounding constraints, 
 ≤  . The idea of direct 
substitution (i.e. 
 =  − 
H, 
H ≥ 0) is not correct 
because back substitution, 
 =  − 
H, does not ensure 
that 
 will remain non-negative. This difficulty is over 
come by using a simplex method variation that accounts 
for the upper bounds implicitly. Define the upper bounded 
LP model as 

Maximize, � = {I�
|(�, �)
 = �, 0 ≤ 
 ≤  } 

The bounded primal simplex method uses only the 
constraints (�, �)
 = �, 
 ≥ 0, while accounting for 
 ≤   implicitly by modifying the simplex feasibility 
condition. Let 
K = LM�� be a current basic feasible 
solution of (�, �)
 = �, 
 ≥ 0 and suppose that according 
to the regular optimality condition, N�  is the entering vector. 
In developing the new feasibility condition, two main 
points must be considered. First one, the non-negativity 
and upper-bound constraints for the entering variable and 
secondly, for those basic variables that may be affected by 
introducing the entering variables. 

Existing Algorithm for LPBV Problems 

Step 1: If R.H.S of any constraint is negative, make it 
positive by multiplying the constraint by −1. 

Step 2: Convert the inequalities of the constraints into 
equations by the addition of suitable slacks and or surplus 
variables and obtain an initial basic feasible solution. 

Step 3: If any variable is at a positive lower bound, it should 
be substituted at its lower bound. 

Step 4: Calculate the net evaluation ∆�= �� − ��. For a 
maximization problem if ∆�≤ 0 for the non-basic variables 
at their upper bound, optimum basic feasible solution is 
attained. It not, go to step-5. Reverse is true for a 
minimization problem. 

Step 5: Select the most positive ∆�= �� − ��. 
Step 6: Let ��  be a non-basic variable at zero level which is 
selected to enter the solution. Compute the quantities, 

�� ≤ Q� = min@ UI (LM��)?�LM�N��?V �LM�N��? > 0X  or 

Q� = min@ UI (LM��)?�LM�N��?V (LM��)? < 0 & �LM�N��? < 0X 
�� ≤ Q	 = min@ UI(LM��)? − ( K)?�LM�N��? V �LM�N��? < 0X 

Final condition is satisfied simply it �� ≤ �� and Q =min(Q�, Q	, ��), where Q = value of the entering variable 
and �� is the upper bound for the variable ��. Let (
K)] be 
the leaving variable corresponding to θ =  min (θ�,θ	, ��) 
and then we have the following rules:  

Rule 1: If θ = θ�, (
K)] leaves the basic solution  (because 
non-basic) at level zero and �� enter by using the regular 
row operation of the simplex method. 

Rule 2: If θ = θ	, (
K)] leaves the basic solution at level 
zero and ��  enters then (
K)] being non-basic at its upper 
bound must be substituted out by using (
K)] =( K)]– (
HK)], where 0 ≤ (
HK)] ≤ ( K)] . 
Rule 3: If θ = ��, �� is substituted at its upper bound �� − �H� but remain non-basic. 
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A tie among θ�, θ	 and ��  may be broken arbitrarily. 
However, it is preferable to implement the rule for Q = �� 
because it entails less computation.  

In the next section, we will develop a method for solving 
quasi-concave QPBV problems and also illustrate the 
solution procedure with a number of numerical examples. 

V. Proposed Method for Quasi-Concave QPBV Problems 

In this section, we propose a new method namely, OSM22 
to finding an optimal solution to the quasi-concave QPBV 
problem and also include numerical examples to 
demonstrate our method. 

The proposed method proceeds as follows: 

Step 1: Construct two single objective linear programming 
problems with bounded variables namely, the problem 
(P1) and the problem (P2) from the given problem (P).  

Step 2: Compute the optimal solution to the problem (P1) 
using the LPBV algorithm. Let the optimal solution to the 
problem (P1) be 
E and the maximum value of ��(
) =��(
E). 

Step 3: Use the optimal table of the problem (P1) as an 
initial bounded variables simplex table for the problem (P2), 
and obtain a sequence of basic feasible solutions to the 
problem (P2) by the LPBV algorithm. 

Step 4: Let {

} be a sequence of basic feasible solutions to 
the problem (P2) obtained in Step 3. If �(
F) ≤ �(
F$�) 
for all G = 0, 1, 2, ⋯ ⋯ , � and 

$� is an optimal solution to 
the problem (P2) for some �, stop the computation process 
and then, go to Step 5 or Step 6.  

Step 5: If �(
F) ≤ �(
F$�) for all G = 0, 1, 2, ⋯ ⋯ , � and �(

$�) ≥ �(

$	), then stop the computation process and 
then, go to Step 6. 

Step 6: 

$� is an optimal solution to the problem (P) and 
the maximum value of �(
) = �(

$�) by the Theorem 
3.1. 

Step 7: If the constraints set is not in a canonical form then 
follows the following sub-steps: 

Sub-step 1: Introduce artificial variables wherever it is 
required. Consider all variables are non-negative. 

Sub-step 2: Then write it as an artificial linear objective 
function as in minimization type (minimization: _� + _	 +⋯). In phase-I, solve the problem as a regular linear 
program. 

Sub-step 3: Compute relative profit factor  ∆�= )� − 7�. 

Sub-step 4: For minimization problem, if ∆�≥ 0 for all non-
basic variables and the objective function (i.e. minimization: _� + _	 + ⋯) equal to zero and also all artificial variables 
leave the basis then the original quasi-concave QPBV 

problem has a basic feasible solution. If, not then the 
problem has no optimal solution. 

Sub-step 5: When it is feasible then remove all columns 
corresponding to the artificial variables and construct a new 
table to solve original quasi-concave QPBV problem with 
initial solution found at the end of phase-I. Then, repeat step 
1 to step 6. 

Remark 4.1 

The maximum value for (� + 1) is less than or equal to the 
number of the iterations to obtain the optimal solution to the 
problem (P2) by the LPBV algorithm. 

Numerical Example 1 

Consider the following quasi-concave QPBV problem: 

              Max,   � = (2�� + 3�	 + 12). (�� + 3�	 + 6) 
     Subject to,    �� + 2�	 ≥ 10 
                          2�� + 3�	 ≤ 60 
                          5 ≤ �� ≤ 15,   4 ≤ �	 ≤ 30 

Solution: Using Our Proposed Method 

In our problem, the constraints are not in a canonical form. 
So apply step 7. Then our problem becomes: 
Min,   = _ 
Subject to,         �� + 2�	 − a� + _ = 10 
            2�� + 3�	 + a	          = 60 
                           ��, �	, a�, a	,_ ≥ 0 

Table 1. Final table for finding basic variables 
 

 )K 
)� 0 0 0 0 1  � Basis �� �	 a� a	 _ 0 �	 ∙ 5 1 − ∙ 5 0 ∙ 5 5 0 a	 ∙ 5 0 1 ∙ 5 1 −1 ∙ 5 45 )� − 7�  0 0 0 0 1  = 0 

 
Since all )� − 7� ≥ 0 and Min  = 0 and all artificial 
variables leave the basis. So the original quasi-concave 
QPBV problem has a basic feasible solution. After the 
above calculation, we take  �� = 5 + b�, 0 ≤ b� ≤ 10   and �	 = 4 + b	, 0 ≤ b	 ≤ 26.  

Now, solve the original quasi-concave QPBV problem with 
initial solution found at the end of phase-I. Then the original 
quasi-concave QPBV problem becomes 
(P)  Max,  � = (2b� + 3b	 + 34). (b� + 3b	 + 23) 

Subject to,      
�	 b� + b	 − �	 a� = − c	 

                       
�	 b� + c	 a	           = de	  0 ≤ b� ≤ 10, 0 ≤ b	 ≤ 26 and a�, a	 ≥ 0 

Now, from the problem (P), two single objective linear 
programming problems are constructed as follows: 

(P1)  Max,  7� = (2b� + 3b	 + 34) 

         Subject to,      
�	 b� + b	 − �	 a� = − c	 

                                
�	 b� + c	 a	           = de	  0 ≤ b� ≤ 10, 0 ≤ b	 ≤ 26 and a�, a	 ≥ 0 

and 
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(P2)  Max,  7	 = (b� + 3b	 + 23) 

         Subject to,      
�	 b� + b	 − �	 a� = − c	 

                                
�	 b� + c	 a	           = de	  

                        0 ≤ b� ≤ 10, 0 ≤ b	 ≤ 26 and a�, a	 ≥ 0 

Table 2.1. Initial table for P1 )K ↓ 
)� → 2 3 0 0 

Basis ↓ b� b	 a� a	 3 b	= −3/2 
1/2 1 −1/2 0 0 a	 = 85/2 1/2 0 3/2 1 7� = 25 )� − 7�� 1/2 0 3/2 ↑ 0 

 

Here, Q� = min{Mc/	M�/	 , de/	c/	 } = 3,  Q	 = ∞, since a� ≥ 0. So Q = min{θ�, θ	, U�} = 3 = θ�. 

Table 3.1. )K ↓ 
)� → 2 3 0 0 

Basis ↓ b� b	 a� a	 0 a� = 3 −1 −2 1 0 0 a	 = 38 2 3 0 1 7� = 34 )� − 7�� 2 3 ↑ 0 0 

 
Here, Q� = 12 ∙ 66, Q	 = ∞, since a� ≥ 0. So Q =min{θ�, θ	, U	} = 12 ∙ 66 = θ�. 

Table 4.1. Optimal table )K ↓ 
)� → 2 3 0 0 

Basis ↓ b� b	 a� a	 0 a� = 85/3 1/3 0 1 2/3 3 b	 = 38/3 2/3 1 0 1/3 

7� = 72 )� − 7�� 0 0 0 −1 

 
Since all ∆�≤ 0 in Table-4.1, this table gives the optimal 
solution.  

Table 2.2. Initial table for P2 0K ↓ 
0� → 1 3 0 0 

Basis ↓ b� b	 a� a	 3 b	= −3/2 
1/2 1 −1/2 0 0 a	 = 85/2 1/2 0 3/2 1 7	 = 14 0� − 7�	 −1/2 0 3/2 ↑ 0 

 

Here, Q� = min{Mc/	M�/	 , de/	c/	 } = 3,  Q	 = ∞, since a� ≥ 0. So Q = min{θ�, θ	, U�} = 3 = θ�. 

Table 3.2. 0K ↓ 
0� → 1 3 0 0 

Basis ↓ b� b	 a� a	 0 a� = 3 −1 −2 1 0 

0 a	 = 38 2 3 0 1 7	 = 23 0� − 7�	 1 3 ↑ 0 0 
 
Here, Q� = 12 ∙ 66, Q	 = ∞, since a� ≥ 0. So Q =min{θ�, θ	, U	} = 12 ∙ 66 = θ�. 

Table 4.2 Optimal table 0K ↓ 
0� → 1 3 0 0 

Basis ↓ b� b	 a� a	 0 a� = 85/3 1/3 0 1 2/3 3 b	= 38/3 
2/3 1 0 1/3 7	 = 61 0� − 7�	 −1 0 0 −1 

 
Since all ∆�≤ 0 in Table-4.2, this table gives the optimal 
solution. 

The optimal solution in term of the original variables ��, �	 
is found as follows: �� = 5 + b� = 5 + 0 = 5 and �	 = 4 +b	 = 4 + (38/3) = 50/3 with �%no = 7� ∙ 7	 = 4392. 

Numerical Example 2 

Consider the following quasi-concave QPBV problem: 
(P)  Max, � = (0.07�� + 0.09�	) ∙ (�� + �	 + 100) 

    Subject to,        �� + �	 ≤ 100000   
                             �� − 2�	 ≥ 0 �� ≥ 0, 0 ≤ �	 ≤ 30000 

Solution: Using Our Proposed Method 

The following two LP problem can be obtained from the 
given problem (P): 
(P1)  Max, �� = (0.07�� + 0.09�	) 
    Subject to,        �� + �	 ≤ 100000   
                             �� − 2�	 ≥ 0 �� ≥ 0, 0 ≤ �	 ≤ 30000 

and 
(P2)  Max, �	 = (�� + �	 + 100) 
    Subject to,        �� + �	 ≤ 100000   
                             �� − 2�	 ≥ 0 �� ≥ 0, 0 ≤ �	 ≤ 30000 

Now by LPBV method, the optimal solution to the problem 
(P1) is �� =70000, �	 = 30000 with Max �� = 7600. 
Now, by the step 3 of the proposed method, the solution to 
the problem (P2) by LPBV method is given below: 

It. 
No 

Solution (��, �	, a�, a	, ac) Max �� 
Max �	 

Max � =���	 
0 (60000,30000,10000,0,0) 6900 90100 621690000 
1 (70000,30000,0,10000,0) 7600 100100 760760000 
2 (0,0,100000,0,30000) 0 100 0 
3 (100000,0,0,100000,30000) 7000 107000 700700000 
4 (0,0,100000,0,30000) 0 100 0 
5 (0,0,100000,0,30000) 0 100 0 

Since the 1st iteration table is optimal and by the step 4 of 
the proposed method, the optimal solution to the given 
QPBV problem is �� =70000, �	 = 30000 with Max � = 760760000. 

VI. Algorithm and Computer Technique 
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In this section, we present algorithm and computational 
technique for solving LPBV problems. In this study, we 
extend that method for solving quasi-concave QPBV 
problems. 

Algorithm for solving LPBV problems 

Step 1: Express the LPBV problem to its standard form. 

Step 2: Find an . × . sub-matrix of the coefficient matrix � by setting � − . variables equal to zero. 

Step 3: Test whether the linear system of equations has 
unique solution or not. 

Step 4: If the linear system of equations has got any unique 
solution, find it. 

Step 5: Dropping the solutions with negative elements. 
Determine all basic feasible solutions. 

Step 6: Calculate the values of the objective function for the 
basic feasible solutions found in step-5. 

Step 7: For maximization of LPBV problem, the maximum 
value of � is the optimal value of the objection function and 
the basic feasible solution which yields the optimal value is 
the optimal solution. 

Computer code for solving LPBV problems 

In this section, we present a computer technique for solving 
LPBV problems using the programming language 
MATHEMATICA20,21. 

 

<<LinearAlgebra`MatrixManipulation` 
 
Clear[basic,sset,AA,bb] 
 
basicfeasible[AA_,bb_]:=Block[{m,n,pp,ss,ns,B,v,vv, var,vplus,vzero,BB,RBB,sol,new,ss
et,bs},{m,n}=Dimensions[AA];pp=Permutations[Range[n ]]; 
  ss=Union[Table[Sort[Take[pp[[k]],m]],{k,1,Length[ pp]}]]; 
  ns=Length[ss];B={}; 
  For[k=1,k<=ns,k=k+1,v=Table[TakeColumns[AA,{ss[[k ]][[j]]}],{j,1,m}]; 
   vv=Transpose[Table[Flatten[v[[i]]],{i,1,m}]]; 
          B=Append[B,vv]]; 
   var=Table[x[i],{i,1,n}]; 
   vplus[k_]:=var[[ss[[k]]]]; 
   vzero[k_]:=Complement[var,vplus[k]]; 
   sset={};For[k=1,k<=ns,k=k+1,BB=B[[k]];RBB=RowRed uce[BB]; 
    If[RBB==IdentityMatrix[m],sol=LinearSolve[BB,bb ],sol={}]; 
    If[Length[sol]==0||Min[sol]<0,new={},new=sol; 
     sset=Append[sset,{vplus[k],new}]]]; 
   bs[k_]:=Block[{u,v,w,zf1,f2}, 
           u=sset[[k,1]];v=sset[[k,2]];w=Complement [var,u]; 
           z=Flatten[ZeroMatrix[Length[w],1]]; 
     f1=Transpose[{u,v}];f2=Transpose[{w,z}]; 
     Transpose[Union[f1,f2]][[2]]]; 
   Table[bs[k],{k,1,Length[sset]}]] 
qpoptimal [AA_, bb_, cc_]:= Block[{vertex, val, opt , pos, optsol, lpsoln},  
      vertex = basicfeasible [AA, bb]; 
val = Table[((vertex[[k]].c )+ α),{k, 1, Length[vertex]}]; 
     opt = Max[val]; 
      pos = Flatten[Position[val, opt]]; 
      optsol = vertex[[pos[[1]]]]; 
      lpsoln =  {optsol, opt}; 
Print ["The optimal value of the objective function  of the LPBV is ", lpsoln[[2]]]; 
 
Print ["The optimal solution of the LPBV is ", lpso ln[[1]]]] 
 

Numerical Examples 

In this section, solve the same problems which were solved 
in section IV by above computer technique. 

Input for Numerical Example 1 

For problem (P1) 
A= {{1,2,-1,0,0,0,0,0},{2,3,0,1,0,0,0,0}, 
     {1,0,0,0,-1,0,0,0},{1,0,0,0,0,1,0,0}, 
  {0,1,0,0,0,0,1,0},{0,1,0,0,0,0,0,1}}; 
B = {10,60,5,15,4,30};       
c = {2,3,0,0,0,0,0,0}; 
α = 12;  

basicfeasible[A,b] 
qpoptimal[A, b, c] 
For problem (P2) 
 
A= {{1,2,-1,0,0,0,0,0},{2,3,0,1,0,0,0,0}, 
    {1,0,0,0,-1,0,0,0},{1,0,0,0,0,1,0,0}, 
    {0,1,0,0,0,0,1,0},{0,1,0,0,0,0,0,1}}; 
B = {10,60,5,15,4,30};    
c = {1,3,0,0,0,0,0,0};    
α = 6;  
basicfeasible[A,b] 
qpoptimal[A, b, c] 

Output for Numerical Example 1 
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For problem (P1) 

The possible all basic solution is: 

{{15,4,13,18,10,0,0,26},{5,4,3,38,0,10,0,26},{15,10,25,0,1
0,0,6,20},{5,50/3,85/3,0,0,10,38/3,40/3}} 

The optimal value of the objective function of the LPBV    
is 72 

The optimal solution of the LPBV is {15,10,25,0,10,0,6,20} 

For problem (P2) 

The possible all basic solution is: 

{{15,4,13,18,10,0,0,26},{5,4,3,38,0,10,0,26},{15,10,25,0,1
0,0,6,20},{5,50/3,85/3,0,0,10,38/3,40/3}} 

The optimal value of the objective function of the LPBV    
is   61 

The optimal solution of the LPBV is 
{5,50/3,85/3,0,0,10,38/3,40/3} 

So, the optimal solution to the given QPBV problem is �� = 5, �	 = eEc  with Max � = 4392. 

Input for Numerical Example 2 
For problem (P1) 
Clear[A,b,c] 
A={{1,1,1,0,0},{1,-2,0,-1,0}, {0,1,0,0,1}}; 
b={100000,0,30000}; c = {.07,.09,0,0,0};  
α = 0;  
 
basicfeasible[A,b] 
qpoptimal[A, b, c] 
For problem (P2) 
A={{1,1,1,0,0},{1,-2,0,-1,0}, {0,1,0,0,1}}; 
b={100000,0,30000}; c = {1,1,0,0,0};  

α = 100;  

basicfeasible[A,b] 

qpoptimal[A, b, c] 

Output for Numerical Example 2 

For problem (P1) 

The possible all basic solution is: 

{{60000,30000,10000,0,0},{70000,30000,0,10000,0},{0,0,
100000,0,30000},{100000,0,0,100000,30000},{0,0,100000,
0,30000},{0,0,100000,0,30000}} 

The optimal value of the objective function of the LPBV is   
7600 

The optimal solution of the LPBV is 
{70000,30000,0,10000,0} 

For problem (P2) 

The possible all basic solution is: 

{{60000,30000,10000,0,0},{70000,30000,0,10000,0},{0,0,
100000,0,30000},{100000,0,0,100000,30000},{0,0,100000,
0,30000},{0,0,100000,0,30000}} 

The optimal value of the objective function of the LPBV is   
100100 

The optimal solution of the LPBV is 
{70000,30000,0,10000,0} 
So, the optimal solution to the given QPBV problem is �� =70000, �	 = 30000 with Max � = 760760000. 

We observed that the result obtained by computer technique 
is completely identical with the result obtained by our 
proposed method for solving quasi-concave QPBV 
problems. In our computer technique, we just had to 
compute the coefficient matrix �, right hand side constant �, 
cost coefficient vectors ) and 0 and the constants / and 1 
and easily obtained the optimal solution. Also we observed 
that our computer oriented method can solve any LPBV 
problems.  

VII. Conclusions 

The aim of this paper was to develop an easy technique for 
solving quasi-concave QPBV problems. So in this paper, we 
developed a new method namely, OSM based on LPBV 
algorithm for finding an optimal solution to a quasi-concave 
QP problem with bounded variables in which the objective 
function involves the product of two indefinite factorized 
linear functions and the constraint functions are in the form 
of linear inequalities. We illustrate some numerical 
examples to demonstrate our proposed method. We also 
developed a computer technique by using programming 
language MATHEMATICA for LPBV problems. We 
therefore, hope that our proposed method and computer 
technique can be used as an effective tool for solving quasi-
concave QPBV problems and hence our time and labor can 
be saved. 

References 

1. Wolfe, P., 1959. The simplex method for quadratic 
programming, Econometrica, 27, 3. 382-398. 

2. Beale, E.M.L., 1959. On quadratic programming, Naval 
Research Logistics Quarterly, 6, 227-243. 

3. Frank, M., P. Wolfe, 1956. An algorithm for quadratic 
programming, Naval Research Logistics Quarterly, 3, 95-110. 

4. Shetty, C.M., 1963. A simplified procedure for quadratic 
programming, Operations Research, 11, 248-260. 

5. Lemke, C.E., 1965. Bi-matrix equilibrium points and 
mathematical programming, Management Science, 11, 681-
689. 

6. Best, M.J., K. Ritter K, 1988. A quadratic programming 
algorithm, Zeitschrift for Operational Research,32, 271-297. 

7. Theil, H., C. Van de Panne, 1961. Quadratic programming as 
an extension of conventional quadratic maximization, 
Management Science, 7, 1-20. 

8. J.C.G., Boot, 1961. Notes on quadratic programming: The 
kuhn-Tucker and Theil-van de Panne conditions, degeneracy 
and equality constraints, Management Science, 8, 85-98. 

9. Fletcher, R., 1971. A general quadratic programming 
algorithm, J. Inst., Maths. Applics, 7, 76-91. 

10. Swarup, K., 1966. Quadratic programming, CCERO 
(Belgium), 8, 132-136. 



58 M. Asadujjaman and M. Babul Hasan 
 

 

11. Gupta, A.K., J.K. Sharma, 1983. A generalized simplex 
technique for solving quadratic programming problem, Indian 
Journal of Technology, 21, 198-201. 

12. Moraru, V., 1997. An algorithm for solving quadratic 
programming problems, Computer science Journal of 
Moldova, 5, 223-235. 

13. Moraru, V., 2000. Primal-dual method for solving convex 
quadratic programming problems, Computer science Journal 
of Moldova, 8, 209-220. 

14. Jensen, D.L., A.J. King, 1992. A decomposition method for 
quadratic programming, IBM Systems Journal, 31, 39-48. 

15. Bazaraa, M., H. Sherali, C.M. Shetty, 2006. Nonlinear 
programming: Theory and algorithm (John Wiley, New 
York). 

16. Whinston, A., 1956. The Bounded Variable Problem- An 
Application of The Dual Method For Quadratic Programming, 
Naval Research Logistics Quarterly, 12(2), 173-179. 

17. Hamadhy, A. Taha, 2007. Operation Research: An 
Introduction, 8th edition, Pearson Prentice Hall, Pearson 
Education, Inc., Upper Saddle River, NJ 07458. 

18. Hasan, M. B., 2012. A Technique for solving Special Type 
Quadratic Programming Problems, The Dhaka University 
journal of science, 60(2), 209-215. 

19. Gupta, P.K., D.S. Hira, Problem in Operation Research, S. 
Chand & Company Ltd, Ram Nagar, New Delhi-110055. 

20. Don, Eugene, 2001. Theory and Problems of Mathematica, 
Schaum’s Outline Series, McGraw-Hill, New York San 
Francisco Washington, D.C. 

21. Wolfram, S., 2000. Mathematica, Addision-wesley Publica-
tion Company, Melno Park, California, New York. 

22. Jayalakshmi, M., Pandian P., 2014, A method for solving 
quadratic programming problems having linearly factorized 
objective function, International Journal Of Modern 
Engineering Research, 4, 20-24. 

23. Ezio Marchi, 2008, When is the product of two concave functions 
concave?, IMA Preprint Series # 2204, Institute for Mathematics 
and its Applications, University of Minnesota, 1-8. 

 
 
 

 


