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Abstract

In this paper, a new method namely, objective sgpamethod based on Linear Programming with Bodindiiables Algorithm is proposed
for finding an optimal solution to a Quasi-Conc&yeadratic Programming Problems with Bounded Vagsit which the objective function
involves the product of two indefinite factorizeddar functions and the constraint functions arehie form of linear inequalities. For
developing this method, we use programming lang&EHEMATICA. We also illustrate numerical examples to dematstour method.

Keywords: Quadratic Programming, Quasi-Concave Quadratig@mming, Bounded Variable, Lower & Upper Bound,

Objective separable.
I. Introduction

Non-linear programming (NLP) is the process of sajvan
optimization problem defined by a system of eqiediand
inequalities, collectively termed constraints, owerset of
unknown real variables, along with an objectivection to
be maximized or minimized, where some of the cairss
or the objective function is non-linear. It is tkeab-field
of mathematical optimization that deals with probdethat
are not linear. A quadratic programming (QP) ispacsal
type of mathematical optimization problem. It iseth
problem of optimizing (minimizing or maximizing) a
qguadratic function of several variables subjectlitear
constraints on these variables. Because of itsubmesfs in
Producing Planning, Financial and Corporate Plapnin
Health Care and Hospital Planning and Engineel@ig,is
viewed as a discipline in Operational Research iafs
become a fertile area in the field of researcheirent years.
A large number of algorithms for solving QP probsehave

been developed. Some of them are extensions of th€
simplex method and others are based on different

principles. In the conversance, a great number ethods
(Wolf', Bealé, Frank and Woft Shetty, Lemke, Best and
Ritter’, Theil and van de Panh&oof, Fletche?, Swarup’,
Gupta and Sharmia Morard®®® Jensen and Kir§
Bazaraa, Sherali and Shettyare designed to solve QP
problems in a finite number of steps. Among thengIf4
method, Swarup’s simplex methdd and Gupta and

product of two indefinite factorized linear funai® and
constraints functions are in the form of lineargualities. In
this proposed method, we construct two linear @ogning
problems with bounded variables both of maximizatype
from the given quasi-concave QP problems with bednd
variables. Then we obtain an optimal solution te tfiven
quasi-concave QP problems with bounded variables fr
the solutions of the two constructed linear prograng
problems. The OSM based on LPBV algorithm which
differs from the existing methods (Wolf's mettpd
Swarup’s simplex methdd and Gupta and Sharma’s
method?). We use the concept of LPBV method to solve
this problem. For developing this method, use mpgning
language MATHEMATICA. We also illustrate numerical
examples to demonstrate our method.

The rest of the paper is organized as follows. ¢ct®n

Il, we discuss on glossary background of LPBV, QP,
uasi-concave QP, Gonzi property and some reshits.
Section I, we discuss quasi-concave QPBV problems
and constructed two single objective linear prograng
problems from the problem (P). In Section IV, wealiss
the existing method and existing algorithm for LPBV
problems. In Section V, we discuss our proposed
algorithm for quasi-concave QPBV problems and tHus
rate the solution procedure with a number of nuozri

Sharma's methdd are more popular than the other examples. In Section VI, we develop a computer fiech

methods. The above mentioned articles deal withabéas

of the type= 0 but no upper bound. But when considering

real-world applications of QP, it may arrive thateoor
more unknown variableg not only have a non-negativity
restriction but also have upper and lower boundshem.
In this case, the above mentioned articles didcootsider

the upper bounds on the variables. Andrew Whin$ton
developed a method for solving QP problems with
bounded variables but not consider quasi-concave Q

problems with bounded variables.

In this paper, we proposed a new method namelgctilsg
separable method (OSM) based on linear programmitig
bounded variables (LPBV) algorithm for finding aptinnal

ique for this method by using progra-mming language
MATHEMATICA and solve the previous examples through
the computer technique. Finally, we draw a conolusih
Section VII.

Il. Preliminaries

In this section, we briefly discuss definitions bPBV,
QP, guasi-concave QP, Gonzi property and sometsesul

Gonz Property

Let f;(x) and f,(x) be two differentiable functions on
X c R™, ann-dimensional Euclidean space. The functions
fi(x) and f,(x) are said to have the Gonzi propéttin

solution to a quasi-concave QP problems with bodndeX < R™ if

variables in which the objective function involvirte

(fl(x) _f1(u))(f2(x) —fz(u)) <0Vxu€eX
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Theorem 2.1

The productf; (x)f>(x) of two linear functionsf; (x) and
f2(x) is concave iff the functionf (x) andf,(x) have the
Gonzi property.

LPBV Problems

In Linear Programming (LP) modéls variables may

have explicit positive upper and lower bounds. For

example, in production facilities, lower and uppeunds

can represent the minimum and maximum demands for n
certain products. Bounded variables also arise prom
nently in the course of solving integer programming

problems by the branch and bound algorithm.
Consider the following LP problems,
Maximize,Z = CX

Subjectto,(4,H)X =b D
L<X<U (2)
Uy L
uz lZ
where,U = : &L= 7 |, U=L=0
Un+m lysm

The elements of andU for an unbounded variablkand
0o,

QP Problems
The general QP problem can be written as
Maximize, Z=cx+ %xTQx

Subjectto, Ax<bandx =0
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(i) (ecx+a) and (dx+ B) have Gonzi property in
feasible set.

(i) The constraints sef ={x: Ax =b,x =0} is non-
empty and bounded.

I11. Quasi-Concave QPBV Problems
Let us consider the general quasi-concave QPBVIenob
(P) Max,Z = z}(x) - z%(x)

n
= Z C]'x]' +al- Z d]x] + ‘8 (3)
j=1 j=1
Subiject to,
n
ai]-xj = bi , L= 1,2, """ ,m (4)
j=1
L <xj<u, J=12,- - N (5)

where, [; S u;, j= 1,2, ,n. Here [; and u; are
usually called lower-bound and upper-bound of the
constraints.

Let us assume thatl(x), z2(x) have the Gonzi property
in the feasible set for all

x = (xq, %, X Xty 0 o ,x,)T €S, where S
denotes a feasible set defined by the constrgitsand
(5). Also assume that is non-empty and bounded. Thus,
by the Theorem 2.1, it is concluded that the prob(P) is

a concave non-linear programming problem with beanhd
variables in which the objective function involvindpe
product of two indefinite factorized linear funai® and
constraints functions are in the form of lineargualities.
This implies that the optimal solution of the preil (P)
exists and it occurs at an extreme point of thesifida

Where ¢ is ann-dimensional row vector describing the region.

coefficients of the linear terms in the objectiwenétion,
and Q is an(n x n) symmetric real matrix describing the
coefficients of the quadratic terms. If a constaetm
exists it is dropped from the model. As in LP, thexision
variables are denoted by thedimensional column vector
x, and the constraints are defined by(anx n) A matrix
and anm-dimensional column vectdr of right-hand side
coefficients. We assume that a feasible solutiastexand
that the constraints region is bounded. When theative
function Z is strictly convex for all feasible points the

problem has a unique local maximum which is alse th
global maximum. A sufficient condition to guarantee

strictly convexity is forQ to be positive definite.

Quasi-Concave QP Problems

Now, from the problem (P), two single objective elan
programming problems are constructed as follows:

(P1) Max,z'(x)

j=1
Subject to,
n
Eaijszbi' i=1,2,- ,m
j=1
lij]'Suj, ]_1‘2’ ...... n
where, [; S uj, j = 1,2, ,n. Here I, and u; are

usually called lower-bound and upper-bound of the

In this paper, we consider the quasi-concave QPB\gonstraints.

problems subject to linear constraints.

The quasi-concave QP problethsan be written as
Maximize, Z = (cx + a)(dx + f8)
Subjectto, Ax<b andx=0

where, A is an(m X n) matrix, b € R™, andx, c, d € R"
anda, f € R. Here we assume that

(P2) Max,z?(x)

n
j=1

Subject to,
n
Z ai]-xj = bi B i= 1,2, """ ,m
j=1
L <xj<u, J=12, ,n
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where, [; S wuj, j = 1,2, ,n. Here [; and u; are The bounded primal simplex method uses only the
usually called lower-bound and upper-bound of theconstraints (4,1)X =b,X =0, while accounting for
constraints. X < U implicitly by modifying the simplex feasibility

condition. Let X; = B~'b be a current basic feasible
solution of (4,1)X = b,X = 0 and suppose that according
From above, we can easily conclude that if both) @id to the regular optimality conditior is the entering vector.
(P2) are solvable, then the problem (P) is solvable In developing the new feasibility condition, two ima
Ipoints must be considered. First one, the non-magat
and upper-bound constraints for the entering vigialnd
secondly, for those basic variables that may bectétd by
introducing the entering variables.

Existing Algorithm for LPBV Problems

Remark 3.1

Now, the following theorem connecting the optima
solutions of the problem (P), the problem (P1) dhd
problem (P2) which is used in the proposed method.

Theorem 3.1

Let X, be an optimal solution to the problem (P1)XXf} is

a sequence of basic feasible solutions to the prolfP2) by
linear programming with bounded variables algorithm
considering the solutioX, as an initial feasible solution Sep 2: Convert the inequalities of the constraints into
such thatZ (X,) < Z(Xy4,) for all k =0,1,2,- - ,nand equations by the addition of suitable slacks andwplus
either X,,,, is an optimal solution to the problem (P2) or variables and obtain an initial basic feasible Soiu

Z(Xpni1) = Z(Xn42), thenX, ., is an optimal solution to the
problem (P¥-.

V. Existing Method for LPBV Problems

Sep 1: If R.H.S of any constraint is negative, make it
positive by multiplying the constraint by1.

Sep 3: If any variable is at a positive lower bound, ibahd
be substituted at its lower bound.

Sep 4. Calculate the net evaluatioh;=C; — Z;. For a
In this section, we discuss the existing metfiodnd  maximization problem if\;< 0 for the non-basic variables
existing algorithmy’**for LPBV problems. at their upper bound, optimum basic feasible sotutis

One can solve LPBV problems by regular simplex méth attained. It not, go to step-5. Reverse is true éor
by considering the lower and upper bound constsaintMinimization problem.

explicitly which is not computationally efficientsathe  gep 5: Select the most positive = C; — Z;.

number of constraints as well as the number ofaldeis

become large and studied LP problems with uppeBep 6. Let x; be a non-basic variable at zero level which is
bounded variables, which uses smaller basis to esolvselected to enter the solution. Compute the quesitit

LPBV problems. In which case, frorfl) and (2), the

constraints are put in the form, X <6, = mfn (B™'b); (B=1P)). > 0} or
(4,DX = b L ((B1R), .
X+X' =U b
X—-X"=1L _min| B7h)i| 1
XX X" >0 L= {(B‘le)i (B7'b); < 0&(B7'F)). < 0}
Where X' and X"" are slack and surplus variables. This _ 1
problem includes3(m +n) variables and(3m + 2n) X <0, = min w (B—lp.) <0
constraints equations. However, the size can bece ! l (B—le)i i

considerably through the use of special technigtes . N ) o . ]
ultimately reduce the constraints to the G&t1)X = b. Final condition is satisfied simply it; <u; and 6 =
min(6,, 6,, u;), whered = value of the entering variable

andu; is the upper bound for the variablg Let (Xp), be
the leaving variable corresponding &= min (6;,6,,u;)
and then we have the following rules:

First, we consider the lower-bounds. Givére L, we can
use the substitutonX=L+X", X">=0, L=0.
Throughout and solve the problem in termsXdf. The
original X is determined by back-substitution which is
legitimate because it guarantees that L+ X" will  Rulel: If & = 6,, (Xp), leaves the basic solution (because
remain non-negative for ali”” > 0. Next, we consider the non-basic) at level zero ang enter by using the regular
upper-bounding constraints{ < U. The idea of direct row operation of the simplex method.

substitution (i.e. X =U—-X', X' =0) is not correct ) .

because back substitutio = U — X', does not ensure Rule 2 If 6 = 6,, (Xg), Ieaves_the basic splutlo_n at level
that X will remain non-negative. This difficulty is over Z€ro andx; enters ther(Xy), being non-basic at its upper
come by using a simplex method variation that aoteu bound must be substituted out by using;), =

for the upper bounds implicitly. Define the uppeubded  (Ug),- (X'5),, where0 < (X'p), < (Ug);-

LP model as Rule 3. If #=u;, x; is substituted at its upper bound

Maximize,Z = {CX|(A, )X = b,0 < X < U} u; — x'; but remain non-basic.
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A tie among 6, 6, and u; may be broken arbitrarily. problem has a basic feasible solution. If, not thbe
However, it is preferable to implement the rule fo=u;  problem has no optimal solution.

because it entails less computation. Sub-step 5: When it is feasible then remove all columns

In the next section, we will develop a method folving corresponding to the artificial variables and comgta new

quasi-concave QPBV problems and also illustrate thé@ble to solve original quasi-concave QPBV probleith

solution procedure with a number of numerical extesp initial solution found at the end of phase-I. Theapeat step
1to step 6.

V. Proposed M ethod for Quasi-Concave QPBV Problems
Remark 4.1

In this section, we propose a new method namely&Ss h ) ue i | h | h
to finding an optimal solution to the quasi-concaEBV The maximum vajue ofn+1) IS less than or equal to the
number of the iterations to obtain the optimal sotuto the

roblem and also include numerical examples to .
Semonstrate our method. P problem (P2) by the LPBV algorithm.

The proposed method proceeds as follows: Numerical Bxample 1

. L . Consider the followi i- PBV problem:
Step 1: Construct two single objective linear programming onsider the following quasi-concave Q problem

problems with bounded variables namely, the problem Max, Z = (2x; 4+ 3x, + 12). (x; + 3x, + 6)
(P1) and the problem (P2) from the given problem (P Subject to, x; + 2x, > 10

. . 2x1 + 3x, <60
Step 2: Compute the optimal solution to the problem (P1) 5<x, <15 4<ux,<30

using the LPBV algorithm. Let the optimal solutitmthe L
problem (P1) beX, and the maximum value of,(x) =  Solution: Using Our Proposed Method
Z,(Xo). In our problem, the constraints are not in a cacadrfiorm.

So apply step 7. Then our problem becomes:
Sep 3: Use the optimal table of the problem (P1) as anin pg); w P ure

initial bounded variables simplex table for thelgemm (P2), Subject to X+ 2% —s. +w =10
and obtain a sequence of basic feasible solutionthé ' 2;1 +3;2 +;2 =60

problem (P2) by the LPBYV algorithm. X1, Xy, Sy, Sy W = 0

Sep 4: Let{X,} be a sequence of basic feasible solutions te-gp|e 1. Final table for finding basic variables
the problem (P2) obtained in Step 3.ZI(X)) < Z(X);1)

forallk =0,1,2, ,n andX,, is an optimal solution to c

the problem (P2) for some, stop the computation process Ch Bajsis 3?1 3?2 ;)1 :)2 ‘}/ b
and then, go to Step 5 or Step 6. 0 X, 5111 -.5] 0 5 5
Sep 5. If Z(X),) < Z(Xy4q1) forall k=0,1,2,- - ,n and 0 Sy -5/ 0]1-5] 1 |-1-5 45
Z(Xp41) = Z(X,42), then stop the computation process and ¢ — z; 010 0 0 1 U=0

then, go to Step 6.

Since all¢;—z =0 and Min U=0 and all artificial
variables leave the basis. So the original quastawve
QPBV problem has a basic feasible solution. Aftee t

Sep 6: X,,,, IS an optimal solution to the problem (P) and
the maximum value of (X) = Z(X,,,,) by the Theorem

3.1 above calculation, we take
Sep 7: If the constraints set is not in a canonical fdhan x;=5+y,0<y, <10 and
follows the following sub-steps: X =4+y,,0=<y, <26.

Sub-step 1: Introduce artificial variables wherever it is NOW. solve the original quasi-concave QPBV probieith

required. Consider all variables are non-negative. initial solution found at the end of phase-I. Ttika original
guasi-concave QPBV problem becomes

SJb-s_tep 2: Ther_l yvr?te _it as an arFiﬂcigI Ii_near objective (P) Max, Z = (2y; + 3y, + 34). (v, + 3y, + 23)
function as in minimization type (minimization; + w, +  Subject to, 2y +y,—ts ==2
). In phase-l, solve the problem as a regular finea z s 2 852
program. 2V t3se =
0<y,<10,0<y, <26ands;,s, =0

Now, from the problem (P), two single objective elan
A= ¢ — 7. programming problems are constructed as follows:

]
Sub-step 4: For minimization problem, i;> 0 for all non- (P1) Max., z' = (2%’1 +3y: + ;?’4) s
basic variables and the objective function (i.enimization: Subjectto, -~y +y, =78 =3
w; +w, + ) equal to zero and also all artificial variables 2y +3s, _8
leave the basis then the original quasi-concave \QPB z z

Sub-step 3: Compute relative profit factor

2
0<y;,£10,0<y, <26ands;,s, =0
and
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(PZ) MaX, Zz = (yl + 3y2 + 23)
1,3 _ss
V1T 552 T2

0<y;<10,0<y, <26ands;,s, =20

Table 2.1. Initial tablefor P1

Cg ¢ — 2 3 0 0
\ Basisl Vi ¥, S S,
V2 —

3 = _3/2 1/2 1 1/2 0
0 s,=85/2 | 1/2 0 3/2

z =25 ¢ —zf 1/2 0 3/21

. —3/2 85/2 .
Here, 0, = mm{T/z’W} =3, 6, = oo, sinces; = 0. So

9 = min{el, 92, Ul} = 3 = 61.

Table 3.1.
Cp ¢ - 2 3 0 0
1 Basis! vy Vo 5 S,
5, =3 -1 -2 1
s, = 38 2 3
z'=34 | ¢—z 2 317 0
Here, 6, =12:66, 6, =, since s; >0. So 6=
min{el, 62, Uz} = 12 - 66 = 61.
Table 4.1. Optimal table
cp ¢ - 2 3 0 0
! Basisl V1 Vs 51 S,
0 s;=85/3 | 1/3 0 1 2/3
3 y, =38/3 | 2/3 1 0 1/3
21=72 | ¢-—z 0 0 0 -1

0 s, = 38 2 3 0 1
z2=23 | d;-z 1 317 0 0
Here, 6, =12:66, 0, =, since s; =20. So 6 =
mil’l{el, 62, Uz} = 12 - 66 = 61.
Table 4.2 Optimal table
dg dj -» 1 3 0 0
l Basisl ¥1 Y, 5, S,
0 s; =85/3 | 1/3 0 1 2/3
V2
3 383 2/3 1 0 1/3
22=61 | dj—z -1 0 0 -1

Since allA;< 0 in Table-4.2, this table gives the optimal
solution.

The optimal solution in term of the original varie®x, x,
is found as followsx; =5+ y;, =5+ 0=5andx, =4+
y, = 4+ (38/3) = 50/3 with Z,,4, = z* - 22 = 4392.

Numerical Example 2

Consider the following quasi-concave QPBYV problem:
(P) Max,Z = (0.07x; + 0.09x;) - (x; + x, + 100)
Subjectto, x; +x, < 100000
Xy —2x, 20
x1 20,0 < x, <30000

Solution: Using Our Proposed Method

The following two LP problem can be obtained frohe t
given problem (P):
(P1) Max,Z; = (0.07x; + 0.09x,)
Subjectto, x; +x, <100000
Xy —2x, 20
x; 20,0 < x, < 30000
and
(P2) Max,Z, = (x; + x, + 100)
Subjectto, x; + x, < 100000
Xy —2x, 20
x; 20,0 < x, < 30000

Since allA;< 0 in Table-4.1, this table gives the optimal Now by LPBV method, the optimal solution to the tpleom

solution.

Table 2.2. Initial table for P2
dg dj > 1 3 0 0
1 Basisl 1 Yo 5 S,

V2 _
3 = _3/2 1/2 1 1/2 0
0 s,=85/2 | 1/2 0 3/2 1
z? =14 dj—z} | -1/2 0 3/21T | 0
. —3/2 85/2 .

Here, 0, = mm{T/z’W} =3, 6, = oo, sinces; = 0. So

9 = min{el, 92, Ul} = 3 = 61.

Table 3.2.
dg d - 1 3 0 0
1 Basisl V1 Yo S1 S,
0 s;=3 -1 -2 1 0

(P1) isx, =70000,x, = 30000 with MaxZ, = 7600.
Now, by the step 3 of the proposed method, thetisolio
the problem (P2) by LPBV method is given below:

It. Solution Max Max Max

No (%1,%3,51,52,53) Z4 Zy Z =

0 (60000,30000,10000,0,0) 6900 90100 621690000
1 (70000,30000,0,10000,0) 7600 100140 760760000
2 (0,0,100000,0,30000) 0 100 0

3 (100000,0,0,100000,30000 7000 107000 700700000
4 (0,0,100000,0,30000) 0 100 0

5 (0,0,100000,0,30000) 0 100 0

Since the 1 iteration table is optimal and by the step 4 of
the proposed method, the optimal solution to theemi
QPBV problem is x; =70000,x, = 30000 with Max
Z =760760000.

V1. Algorithm and Computer Technique
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In this section, we present algorithm and compoitei
technique for solving LPBV problems. In this studye

extend that method for solving quasi-concave QPB

problems.
Algorithm for solving LPBV problems
Sep 1: Express the LPBV problem to its standard form.

Sep 2: Find anm x m sub-matrix of the coefficient matrix

A by settingn — m variables equal to zero.

Sep 3: Test whether the linear system of equations hasC

unique solution or not.

Sep 4: If the linear system of equations has got any umiq

solution, find it.

<<LinearAlgebra’MatrixManipulation
Clear[basic,sset,AA,bb]

basicfeasible[AA_,bb_]:=Block[{m,n,pp,ss,ns,B,v,vv,

et,bs},{m,n}=Dimensions[AA];pp=Permutations[Range[n
ss=Union[Table[Sort[Take[pp[[K]].m]].{k,1,Length[

ns=Length[ss];B={};

For[k=1,k<=ns,k=k+1,v=Table[TakeColumns[AA {ss[[k

M. Asadujjaman and M. Babul Hasan

Sep 5: Dropping the solutions with negative elements.
Determine all basic feasible solutions.

VStep 6: Calculate the values of the objective functiontfor

basic feasible solutions found in step-5.

Sep 7: For maximization of LPBV problem, the maximum

value ofZ is the optimal value of the objection function and
the basic feasible solution which yields the optinsue is
the optimal solution.

omputer code for solving LPBV problems

In this section, we present a computer techniquesdtving
LPBV problems wusing the programming language
MATHEMATICA®?!

vgr,vplus,vzero,BB,RBB,soI,neW,ss
pRII;
161134, 2, m3;

vv=Transpose[Table[Flatten[v[[i]]],{i,1,m}]];

B=Append[B,vV]];

var=Table[x[i],{i,1,n}];
vplus[k_]:=var[[ss[[K]]II;

vzero[k_]:=Complement[var,vplus[K]];

sset={};For[k=1,k<=ns,k=k+1,BB=B[[k]];RBB=RowRed
IffRBB==IdentityMatrix[m],sol=LinearSolve[BB,bb

uce[BB];
l:sol={};

If[Length[sol]==0]|Min[sol]<0,new={},new=sol;
sset=Append[sset,{vplus[k],new}]]];

bs[k_]:=Block[{u,v,w,zf1,f2},

u=sset[[k,1]];v=sset[[k,2]];w=Complement

[var,u];

z=Flatten[ZeroMatrix[Length[w],1]];
fl=Transpose[{u,v}];f2=Transpose[{w,z}];
Transpose[Union[f1,f2]][[2]]];

Table[bs[k],{k,1,Length[sset]}]]
gpoptimal [AA_, bb_, cc_]:= Block[{vertex, val, opt

, pos, optsol, Ipsoln},

vertex = basicfeasible [AA, bb];

val = Table[((vertex][[k]].c )+
opt = Max|vall;

a){k, 1, Length[vertex]}];

pos = Flatten[Position[val, opt]];
optsol = vertex[[pos[[1]]]];
Ipsoln = {optsol, opt};

Print ["The optimal value of the objective function

Print ["The optimal solution of the LPBV is ", Ipso

Numerical Examples

In this section, solve the same problems which geteed
in section IV by above computer technique.

Input for Numerical Example 1

For problem (P1)

A={{1,2,-1,0,0,0,0,0},{2,3,0,1,0,0,0,0},
{1,0,0,0,-1,0,0,0},{1,0,0,0,0,1,0,0},
{0,1,0,0,0,0,1,0},{0,1,0,0,0,0,0,1}};

B ={10,60,5,15,4,30}

¢ ={2,3,0,0,0,0,0,0}

a = 12;

of the LPBV is ", IpsoIn[[2]]];

In[[11]]

basicfeasible[A,b]
gpoptimal[A, b, c]
For problem (P2)

A={{1,2,-1,0,0,0,0,0},{2,3,0,1,0,0,0,0},
{1,0,0,0,-1,0,0,0},{1,0,0,0,0,1,0,0},
{0,1,0,0,0,0,1,0},{0,1,0,0,0,0,0,1}};

B = {10,60,5,15,4,30};

¢ ={1,3,0,0,0,0,0,0}

a =6;

basicfeasible[A,b]

gpoptimal[A, b, c]

Output for Numerical Example 1
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For problem (P1)
The possible all basic solution is:

{{15,4,13,18,10,0,0,26},{5,4,3,38,0,10,0,26} {15,15,0,1
0,0,6,20},{5,50/3,85/3,0,0,10,38/3,40/3}}

The optimal value of the objective function of thBBV
is 72

The optimal solution of the LPBV is {15,10,25,0,0®,20}
For problem (P2)

The possible all basic solution is:

{{15,4,13,18,10,0,0,26},{5,4,3,38,0,10,0,26},{15,145,0,1
0,0,6,20},{5,50/3,85/3,0,0,10,38/3,40/3}}

The optimal value of the objective function of thBBV
is 61

The optimal solution of the LPBV is
{5,50/3,85/3,0,0,10,38/3,40/3}

So, the optimal solution to the given QPBV problén
x; = 5,x, == with MaxZ = 4392.

Input for Numerical Example 2

For problem (P1)

Clear[A,b,c]

A={{1,1,1,0,0}{1,-2,0,-1,0}, {0,1,0,0,1}};
b={100000,0,30000}; ¢ ={.07,.09,0,0,0},

a =0;

basicfeasible[A,b]

gpoptimal[A, b, c]

For problem (P2)
A={{1,1,1,0,0}{1,-2,0,-1,0}, {0,1,0,0,1}};
b={100000,0,30000}; c = {1,1,0,0,0};

a =100;

basicfeasible[A,b]

gpoptimal[A, b, c]

Output for Numerical Example 2
For problem (P1)

The possible all basic solution is:

{{60000,30000,10000,0,0},{70000,30000,0,10000,0}d0
100000,0,30000},{100000,0,0,100000,30000},{0,0,1000
0,30000},{0,0,100000,0,30000}}

The optimal value of the objective function of theBYV is
7600

The optimal solution of the LPBV is
{70000,30000,0,10000,0}

For problem (P2)
The possible all basic solution is:

{{60000,30000,10000,0,0},{70000,30000,0,10000,0}d0
100000,0,30000},{100000,0,0,100000,30000},{0,0,1000
0,30000},{0,0,100000,0,30000}}

The optimal value of the objective function of theBV is
100100

The optimal solution of the LPBV is
{70000,30000,0,10000,0}

So, the optimal solution to the given QPBV problésn
x; =70000,x, = 30000 with MaxZ = 760760000.

We observed that the result obtained by computdmique

is completely identical with the result obtained bwr
proposed method for solving quasi-concave QPBV
problems. In our computer technique, we just had to
compute the coefficient matrig, right hand side constaht
cost coefficient vectors andd and the constants and

and easily obtained the optimal solution. Also viiserved
that our computer oriented method can solve any\LPB
problems.

VIl. Conclusions

The aim of this paper was to develop an easy tegclenior
solving quasi-concave QPBYV problems. So in thisspawe
developed a new method namely, OSM based on LPBV
algorithm for finding an optimal solution to a qi@sncave

QP problem with bounded variables in which the ctiye
function involves the product of two indefinite fadzed
linear functions and the constraint functions ar¢hie form

of linear inequalities. We illustrate some numdrica
examples to demonstrate our proposed method. We als
developed a computer technique by using programming
language MATHEMATICA for LPBV problems. We
therefore, hope that our proposed method and camput
technique can be used as an effective tool forirsglguasi-
concave QPBV problems and hence our time and ledor

be saved.

Refer ences

1. Wolfe, P., 1959. The simplex method for quadrati
programming, Econometricdy, 3. 382-398.

2. Beale, E.M.L., 1959. On quadratic programming,vaia
Research Logistics Quarterly, 227-243.

3. Frank, M., P. Wolfe, 1956. An algorithm for quatic
programming, Naval Research Logistics Quarted/\35-110.

4. Shetty, C.M., 1963. A simplified procedure foraguatic
programming, Operations Researth, 248-260.

5. Lemke, C.E., 1965. Bi-matrix equilibrium points dan
mathematical programming, Management Scierlde,681-
689.

6. Best, M.J., K. Ritter K, 1988. A quadratic prograimg
algorithm, Zeitschrift for Operational Resea%),271-297.

7. Theil, H., C. Van de Panne, 1961. Quadratic @nogning as
an extension of conventional quadratic maximization
Management Sciencg, 1-20.

8. J.C.G,, Boot, 1961. Notes on quadratic programmirtge
kuhn-Tucker and Theil-van de Panne conditions, degey
and equality constraints, Management ScieBc85-98.

9. Fletcher, R., 1971. A general quadratic programymi
algorithm, J. Inst., Maths. Applicg, 76-91.

10. Swarup, K., 1966. Quadratic programming,
(Belgium),8, 132-136.

CCERO



58

11.

12.

13.

14.

15.

16.

17.

18.

Gupta, ALK, J.K. Sharma, 1983. A generalizéohpkex

- X . ) . 19.
technique for solving quadratic programming prohlémdian
Journal of Technology1, 198-201. 20
Moraru, V., 1997. An algorithm for solving quatic '
programming problems, Computer science Journal of
Moldova,5, 223-235. -

Moraru, V., 2000. Primal-dual method for sofyiconvex
quadratic programming problems, Computer sciencenabu
of Moldova,8, 209-220.

Jensen, D.L., AJ. King, 1992. A decompositinethod for
quadratic programming, IBM Systems Jouri3al, 39-48.

Bazaraa, M., H. Sherali, C.M. Shetty, 2006. Nudr
programming: Theory and algorithm (John Wiley, New
York).

Whinston, A., 1956. The Bounded Variable Problein
Application of The Dual Method For Quadratic Pragraing,
Naval Research Logistics Quarterd(2), 173-179.

Hamadhy, A. Taha, 2007. Operation Research:
Introduction, & edition, Pearson Prentice Hall, Pearson
Education, Inc., Upper Saddle River, NJ 07458.

Hasan, M. B., 2012. A Technique for solving $pie€ype
Quadratic Programming Problems, The Dhaka Uniwersit
journal of science§0(2), 209-215.

M. Asadujjaman and M. Babul Hasan

Gupta, P.K., D.S. Hira, Problem in Operation dResh, S.
Chand & Company Ltd, Ram Nagar, New Delhi-110055.

Don, Eugene, 2001. Theory and Problems of Muadltiea,
Schaum’s Outline Series, McGraw-Hill, New York San
Francisco Washington, D.C.

Wolfram, S., 2000. Mathematica, Addision-weskRyblica-
tion Company, Melno Park, California, New York.

22. Jayalakshmi, M., Pandian P., 2014, A method sfaring

An

quadratic programming problems having linearly daced
objective function, International Journal Of Modern
Engineering Research, 20-24.

Ezio Marchi, 2008, When is the product of twaave functions

concave?, IMA Preprint Series # 2204, InstituteMathematics

and its Applications, University of Minnesota, 1-8.



