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Abstract 

Computer techniques have been developed to solve 1-D NLP problems. The 1-D simplex search algorithm was studied and a code 
corresponding to the modified phase-0 has been developed. The 1-D two phase methods and modified Phase-0 method have been compared 
with those reported by others. The efficiency of computer techniques and algorithms have been demonstrated with a number of numerical 
examples.  
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I. Introduction 

Unconstrained problems with nonlinear objective function 
has many applications. In addition, Numerical experiments 
and developing codes are very important in the current 
research of OR. This is often viewed as a discipline in itself. 
However, because of difficulty of analyzing non-linear 
calculations, the vast majority of questions that are 
important to the performance of optimization algorithms. 
Also, 1-D simplex search method which was originally 
proposed by Powell1 and subsequently modified by Nelder 
and Mead2 is one of most widely known multidimensional 
direct search methods. In 1987,  Choo et al.3, were able to 
show that it converges to the optimal solution if the function 
to be maximized is unimodal.  

In 1989, Xue4 showed that it can be made to behave either 
as the Golden Section search or the binary search by 
assigning certain parameters. In 1965, Nelder et al.2 simplex 
search was developed on the concept of reflection, 
expansion and contraction through the entire search phase. 
However, Choo et al.3 modified the Nelder et al.2  simplex 
search by dividing it into two phases where the contraction 
step is eliminated during the first phase, called phase 0. We 
must point out, however, there are a strong relation between 
Phase 0 and the Nelder et al.2 simplex search. 

Das et al.5 developed a computer technique incorporated 
with Golden section and Gradient search methods which is 
very powerful for the given optimal interval but if a proper 
optimal interval is not chosen it should  face a complexity to 
find the optimal solution like Choo et al.3. In the current 
research, the complexity of the Choo et al.3 and Das et 
al.5  has been removed by an uniform algorithm of the Choo 
et al.3 and as proposed by Ayode6  modified phase-0. 

II. One Dimensional Method of NLP 

In this section, we discuss the 1-D simplex search methods 
for finding the optimum solutions and also present two flow 
charts reported by Choo et al. in two phase method. 

1-D Simplex Search 

In this section, we summarize the method of Choo et al.3’s 
1-D simplex search. This method was proposed by Choo et 
al.3. in 1987. 

i. This method can start with any two points and 
converges to the optimum solution. 

ii. With appropriate parameters, this algorithm can be 
made to behave equivalent to some of the most efficient 
1-D search methods. 

1-D Simplex Search1  

In this section, we summarize the Powel’s 1-Dsimplex 
search method which is given as follows: 

i. Reviews some of the most successful methods for 
unconstrained, constrained and non differentiable 
optimization calculations.   

ii. Particular attention was given to the contribution of 
theoretical analysis. 

Golden Section and Fibonacci Search7 

In this section, we summarize the method of Golden Section 
search method. In 1953 Golden section and Fibonacci 
search was developed by Kiefer7 which is given as follows: 

i. Find the extremum of a unimodal function over an 
interval without using derivatives. 

ii. Golden section narrows the range of values and it is 
based on the golden ratio. 

iii. If the interval is not optimal then the method will fail 
and needs more iteration. 

Nelder and Mead Method2 

In 1965, Nelder et al.2 proposed a method which is 
discussed as follows: 

i. It was designed for unconstrained optimization without 
using gradients. 

ii. The operation of this method is to rescale on the local 
behavior of the function by using four basic 
procedures:1. Reflection, 2. Expansion, 3. Contraction 
and 4. Shrinking 

III. One Dimensional Unconstrained NLP 

In this section, we first modify an algorithm for solving 1-D 
simplex search and then develop a code for solving 1-D 
NLP problems. 

Flow Chart of Phase 0 

In this section, we present Phase-0 flowchart corresponding 

to the Choo et al.3 algorithm. The parameters α and δ
determine the step sizes where 1≥+δα . 

 
* Author for correspondence. e-mail : babulhasan@yahoo.com 

http://en.wikipedia.org/wiki/Jack_Kiefer_%28mathematician%29
http://en.wikipedia.org/wiki/Extremum
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Fig. 1. Phase 0 Flow chart 

 

Flow Chart of Phase 1  

In this section, we present Phase 1 flowchart corresponding 
to the algorithm of Choo – Kim3 Phase-1. The parameters 

βα , and δ   determines the step sizes of reflection, 

contraction, and expansion respectively. The flowchart of 
Phase 1 is shown in the following figure.  
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Fig. 2. Phase 1 Flowchart 
 
 Modified Algorithm 

In this section, we present a unique algorithm for solving 
unconstrained 1-D NLP problems. 
Step 1: If number of variables 1 then go to the following 
Step. 
Step 2: Input the initial interval and check that is it optimal 
interval or not. 
Step 3: Finding the optimum interval using the following 
Sub Steps. 

Sub Step1: Select two points 11 wandb  such that 

).()( 11 bfwf ≥ Set k=1.  

Sub Step 2: Contraction:  

).( 111 bwbc −+= β  If )()( 1bfcf ≤  then set 

11 ,, wschbm ===  and stop. Otherwise go to Sub step 

3. 
Sub Step 3: 
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Sub Step 4: If )()( kk bfrf ≥  then go to Sub Step 5. 

Expansion: ).()( kkkk bwbe +++= δα  

If )()( kk rfef >  then set 

1,,, 111 +==== +++ kkerrbbw kkkkkk  and go to Sub 

Step 5. Otherwise set 1,, 11 +=== ++ kkrbbw kkkk  and 

go to Sub Step 3.  
Sub Step 5: Set kbh = If )()( kk rfwf ≤ then set 

kk rswm == ,  and stop and go to Step 4. Otherwise set 

kk wsrm == ,  and go to the step 3. 

Step 4: To find the optimal solution   �̅�𝑥  of the NLP we use 
the value kk wsrm == ,  and follow the following Sub-

Steps.  
Sub Step 1: Set k=0 and Go to Sub-Step 2.  
Sub Step 2: 
Reflection: let ).( kkkk mhhr −+= α  Go to Sub-Step 3. 

Sub Step 3: If )()( kk hfrf ≤  then go to Sub Step 5. 

Expansion: ).()( kkkk mhhe −++= δα  If 

)()( kk rfef ≤  then go to Sub Step 4. Otherwise let 

1,,, 111 +==== +++ kkssrmeh kkkkkk  and go to Sub 

Step 2.  
Sub Step 4: If )()( kk hfef ≤  then let 

1,,, 111 +==== +++ kkeshmrh kkkkkk  and go to Sub 

Step 2. Otherwise, we let 

1,,, 111 +==== +++ kkhsemrh kkkkkk  and go to Sub 

Step 2.  
Sub Step 5: Contraction: if )()( kk mfrf ≥  then let 

1,,, 111 +==== +++ kkmsrmhh kkkkkk  and go to 

Sub-Step 2. Otherwise, we let ).( kkkk hmhc −+= β If

)()( kk hfcf ≤  then let  

1,,, 111 +==== +++ kkrscmhh kkkkkk  and go to 

Sub-Step 2. Otherwise, we let 

kkkkkk mshmch === +++ 111 ,, 1+= kk  and go to 

Sub Step 2. 
Sub Step 6: Stop and find optimal solution. 

IV. Program Organization 

In this section, we develop computer  codes implementing 
the Choo et al.3 1-D simplex search method for solving 
unconstrained NLP problems by programming language 
Mathematica9.  

Program Organization 

In this section, we present the programming code for the 
Choo et al.3 algorithm. In this sense, we present Phase 0 
code and then we present Phase 1 code. 

Program of Phase 0 Algorithm 

In this section, we develop the code corresponding to the 
Fig-1: Phase-0 flowchart of Choo et al. Phase 0 algorithm. 

PHASE[0_]:=Module[{}, 

f[x_]:=Evaluate[Input["objective function"]]; 

  w1=Input["Enter t4he input"]; 

  b1=Input["Enter the input"]; 

α=0.2;δ=1;β=.1;  n=100; 

If[f[b1]≤f[w1], b[1]=b1;w[1]=w1; 

c=b[1]+β (w[1]-b[1]); 

If[f[c]≤f[b[1]], 

m=b[1];h=c;s=w[1],                

Do[r[i]=b[i]+α (b[i]-w[i]); 

If[f[b[i]]≤f[r[i]],h=b[i]; 

If[f[w[i]]≤f[r[i]],m=w[i];Print[i];s=r[i],m=r[i];Print[i];s=w[i
],e[i]=b[i]+(α+δ) (b[i]-w[i]); 

If[f[r[i]]<f[e[i]],w[i+1]=b[i]; 

b[i+1]=r[i];r[i+1]=e[i];  

h=b[i+1];If[f[w[i+1]]≤f[r[i+1]], 

m=w[i+1];Print[i];s=r[i+1],m=r[i+1];Print[i];s=w[i+1]], 

w[i+1]=b[i];b[i+1]=e[i]; 

m=w[i+1];s=b[i+1]; 

 ]],{i,1,n}]],Print["jfdgfdg"]] 

 Print[m]; Print[s]; Print[h];  ] 

Program of Phase 1 Algorithm 

In this section, we develop the code corresponding to the 
Fig-2: Phase-1 flowchart of Choo et al. Phase 1 algorithm. 

PHASE[1_]:=Module[ {}, 

f[x_]:=Evaluate[Input["objective function"]]; 

    m1=Input["Enter t4he input"]; 

    h1=Input["Enter the input"]; 

α=0.2;δ=1;β=.1;    n=1000; 

h[1]=h1;m[1]=m1; 

Do[r[i]=h[i]+α (h[i]-m[i]); 

If[f[h[i]]≤f[r[i]], 

If[f[r[i]]≤f[m[i]], 

m[i+1]=r[i];s[i+1]=m[i];h[i+1]=h[i], 

c[i]=h[i]+ β (m[i]-h[i]);If[f[c[i]]≥f[h[i]],                                        

m[i+1]=c[i];s[i+1]=r[i];h[i+1]=h[i],               

m[i+1]=h[i];s[i+1]=m[i];h[i+1]=c[i]]],      

e[i]=h[i]+(α+δ) (h[i]-m[i]); 

If[f[e[i]]≥f[r[i]],                                                                

If[f[e[i]]≥f[h[i]],m[i+1]=h[i]; 

s[i+1]=e[i];h[i+1]=r[i],m[i+1]=e[i]; 

s[i+1]=h[i];h[i+1]=r[i]],  

m[i+1]=r[i];s[i+1]=s[i]; 

h[i+1]=e[i]] ],{i,1,n}] 

Print[m[n+1]] ;  Print[s[n]]; Print[h[n+1]] ] 
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Program of Golden Section Algorithm 

In this section, we develop the code corresponding to the 
Golden Section algorithm. 

BA[GOLDEN_]:=Module[{},                            

a=Input["Enter  Largest Left hand point for Golden Section 
method i.e. a"];  

b=Input["Enter Largest Right hand point for Golden Section 
method i.e. b"];     

ε=Input["Enter  Length of uncertainity"] 

g[x_]=Evaluate[Input["Objective function"]]; 

Print["Initial Interval=[",a,",",b,"]"];    r=0.618; 

pts=FindRoot[(b-a)*r^k�ε,{k,1}];     

    m=Ceiling[k]/.pts;     

Do[Label[st];x1=b-r*(b-a);       

Label[th]; x2=a+r*(b-a); 

If[g[x1]<g[x2],         

Print["Iteration Number =",k," and it's interval of 
uncertainity is:"];         

Print["[",x1,",", b,"]"];a=x1;Continue[th],             

Print["Iteration Number =",k," and it's interval of 
uncertainity is:"];         

Print["[",a,",",x2,"]"];b=x2;Continue[st]],{k,1,m}]] 

Program of Our Modified Algorithm 

In this section, we developed a generalized code 
corresponding to the modified algorithm. 

MODIFIEDPHASE[O_]:=Module[{}, 

f[x_]:=Evaluate[Input["objective function"]]; 

    w1=Input["Enter t4he input"]; 

    b1=Input["Enter the input"]; 

α=0.2;δ=1;β=.1;    n=100; 

If[f[b1]≤f[w1],  b[1]=b1;w[1]=w1;          

c=b[1]+β (w[1]-b[1]); 

If[f[c]≤f[b[1]],  

m=b[1];h=c;s=w[1],                

Do[r[i]=b[i]+α (b[i]-w[i]);                                            

If[f[b[i]]≤f[r[i]],h=b[i]; 

If[f[w[i]]≤f[r[i]],                                                                                   
m=w[i];Print[i];s=r[i],m=r[i];Print[i];s=w[i],               

e[i]=b[i]+(α+δ) (b[i]-w[i]);                                                                                                    
If[f[r[i]]<f[e[i]], 

w[i+1]=b[i];b[i+1]=r[i];r[i+1]=e[i];          

 h=b[i+1];    If[f[w[i+1]]≤f[r[i+1]],                                                                                        
m=w[i+1];Print[i];s=r[i+1],m=r[i+1];Print[i];s=w[i+1]],w[i
+1]=b[i]; b[i+1]=e[i];                                                                                                                          
m=w[i+1];  s=b[i+1];  ] ],{i,1,n}]],Print["jfdgfdg"] 
]Print[m];Print[s];Print[h];]   

PHASE[0_]:=Module[{}, 

f[x_]:=Evaluate[Input["objective function"]]; 

  w1=Input["Enter t4he input"]; 

  b1=Input["Enter the input"]; 

α=0.2;δ=1;β=.1;  n=100; 

If[f[b1]≤f[w1], b[1]=b1;w[1]=w1; 

c=b[1]+β (w[1]-b[1]); 

If[f[c]≤f[b[1]], 

m=b[1];h=c;s=w[1],                

Do[r[i]=b[i]+α (b[i]-w[i]); 

If[f[b[i]]≤f[r[i]],h=b[i]; 

If[f[w[i]]≤f[r[i]], 

m=w[i];Print[i];s=r[i],m=r[i];Print[i];s=w[i], 

e[i]=b[i]+(α+δ) (b[i]-w[i]); 

If[f[r[i]]<f[e[i]], 

w[i+1]=b[i];b[i+1]=r[i];r[i+1]=e[i];          

h=b[i+1];If[f[w[i+1]]≤f[r[i+1]], 

m=w[i+1];Print[i];s=r[i+1],m=r[i+1];Print[i];s=w[i+1]],w[i
+1]=b[i];b[i+1]=e[i]; 

m=w[i+1];s=b[i+1]; ]],{i,1,n}]],Print["jfdgfdg"]] 

 Print[m]; 

 Print[s]; 

 Print[h];  ] 

PHASE[1_]:=Module[ {}, 

f[x_]:=Evaluate[Input["objective function"]];   
m1=Input["Enter t4he input"]; 

h1=Input["Enter the input"]; 

α=0.2;δ=1;β=.1;   n=1000; 

h[1]=h1;m[1]=m1; 

Do[r[i]=h[i]+α (h[i]-m[i]); 

If[f[h[i]]≤f[r[i]],If[f[r[i]]≤f[m[i]], 

m[i+1]=r[i];s[i+1]=m[i];h[i+1]=h[i], 

c[i]=h[i]+ β (m[i]-h[i]);  

If[f[c[i]]≥f[h[i]],                                       

m[i+1]=c[i];s[i+1]=r[i];h[i+1]=h[i],               

m[i+1]=h[i];s[i+1]=m[i];h[i+1]=c[i] ]],           

e[i]=h[i]+(α+δ) (h[i]-m[i]); 

If[f[e[i]]≥f[r[i]],  

If[f[e[i]]≥f[h[i]],m[i+1]=h[i];s[i+1]=e[i];h[i+1]=r[i],m[i+1]=
e[i]; 

s[i+1]=h[i];h[i+1]=r[i]],  

m[i+1]=r[i];s[i+1]=s[i]; 

h[i+1]=e[i]] ],{i,1,n}] 

Print[m[n+1]] ;  Print[s[n]]; Print[h[n+1]] ] 

Program of Golden Section Algorithm 
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In this section, we develop the code corresponding to the 
Golden Section algorithm. 

BA[GOLDEN_]:=Module[{},                            

a=Input["Enter  Largest Left hand point for Golden Section 
method i.e. a"];  b=Input["Enter Largest Right hand point 
for Golden Section method i.e. b"];     

ε=Input["Enter  Length of uncertainity"] 

g[x_]=Evaluate[Input["Objective function"]]; 

Print["Initial Interval=[",a,",",b,"]"]; 

r=0.618;pts=FindRoot[(b-a)*r^k�ε,{k,1}];    
m=Ceiling[k]/.pts;   

Do[Label[st];x1=b-r*(b-a);       

Label[th]; x2=a+r*(b-a); 

If[g[x1]<g[x2],       

Print["Iteration Number =",k," and it's interval of 
uncertainity is:"];         

Print["[",x1,",", b,"]"];a=x1;Continue[th],             

Print["Iteration Number =",k," and it's interval of 
uncertainity is:"];         

Print["[",a,",",x2,"]"];b=x2;Continue[st]],{k,1,m}] 

Input and Output System 

In this section, we have shown run file Local kernel box to 
get the results. When we run the prescribed program and 
complete the required statement, we must press “Enter” 
individually for each required statement. Finally, we will get 
the desired results is the following way. 

 

Fig. 3. Local Kernel Input Box 

V. Numerical Experiments 

In this section, we present a number of numerical examples 
to show the efficiency of our computer techniques.  

Test Problem Number (TPN) 

Example: 1 This numerical example is taken from Bazaraa 
et al8. 

Find the extreme points of the function 62𝑥𝑥2 − 28𝑥𝑥 − 4 ? 
Arbitrarily, we choose the initial interval −12 ≤ 𝑥𝑥 ≤ 5. 

Example 2: This numerical example is taken from Bazaraa 
et al8. 

Find the optimal solution to Minimize the function  (𝑥𝑥 −
2)4. Arbitrarily we choose the interval −4≤𝑥𝑥≤4. 
Example 3: This numerical example is taken from Bazaraa 
et al8. 

Find the optimal solution to Minimize the function 4𝑥𝑥3 +
3𝑥𝑥4. Arbitrary we choose the interval −4 ≤ 𝑥𝑥 ≤ 2. 

Example 4: This numerical example is taken from Das 
&Hasan5. 

Suppose that the function to be maximized is 𝑓𝑓(𝑥𝑥) = 12𝑥𝑥 −
3𝑥𝑥4 − 2𝑥𝑥6. Arbitrary we choose the initial interval −80 ≤
𝑥𝑥 ≤ 100. 

Example 5: This numerical example is taken from Das et 
al.5. 

Find the optimal solution to Max  𝑥𝑥2 + 2𝑥𝑥 . S/t.−3 ≤ 𝑥𝑥 ≤
5 within an initial length of 0.8. 

VI. Results and Discussion 

In the present section, we present the comparison and 
discussion of the Choo et al.3 methods and Golden Section 
methods and with their limitations. We also present the 
Ayoade6 modified phase 0 with its effectiveness. 

Convergence of Different Methods 

In this section, we present the convergence of our algorithm 
using the test problems in Section 5. We also present the 
convergence of Choo et al. Phase 0, Phase 1 using computer 
algebra. 

In the previous tables, we can say that, our 1-D simplex 
search is a powerful technique compared to the method of  
Golden Section Search and Choo et al. method. But if we 
use phase 0 or our modified phase-0 before using Golden 
Section then it will give good accuracy whereas Golden 
section method fails. It should be mentioned that Golden 
Section Search starts with the optimal point x ,that must lie 
between a and b that is, ],[ bax ∈ . If we consider, 

],[ bax ∉ “Golden Section Search” cannot be applied. 
While 1-D simplex search can be applied not only 
considering  ],[ bax ∈   but also ],[ bax ∈ . From the 
above comparison and the computational results, we can say 
that our method is still one of the most robust and efficient 
method for solving 1-D NLP problems compared to the 
Choo et al.Phase-0 and Phase-1and Golden Section method.

  

 



A Study on 1-D Simplex Search Algorithm with its Numerical Experiments Through Computer Algebra 101 
 
Table 1. Accuracy test with Different methods 

Accuracy test of the test Problem No-1 

Data Phase-0   N Phase-1 N Modified Phase0 N Phase-1 N 

Input  PHASE [0] 
1 

PHASE [1] 
33 

 
1 

PHASE [1] 
21 

Output+ Solution [5, 8.4] 0.225807 [3.3,5] 0.225807 

Total Iteration of phase 0 & Phase 1 is 34 Total Iteration of Modified & Phase 1 is 22 

The comparison from TPN-1 show that modified phase-0 is stronger than phase-0. 

Golden Section method Failed because the initial interval is not optimal. 

Accuracy test of the test Problem No-2 

Data Phase-0   N Phase-1 N Modified Phase0 N Phase-1 N 

Input  PHASE [0] 
1 

PHASE [1] 
14 

 
1 

PHASE [1] 
13 

Output+ Solution [1, 5.6] 2 [3.2,4] 2 

Total Iteration of phase 0 & Phase 1 is 15 Total Iteration of Modified & Phase 1 is 14 

The comparison from TPN-1 show that modified phase-0 is stronger than phase-0. 

Golden Section method Failed because the initial interval is not optimal. 

Accuracy test of the test Problem No-3 

Data Phase-0   N Phase-1 N Modified Phase0 N Phase-1 N 

Input  PHASE [0] 
2 

PHASE [1] 
19 

 
2 

PHASE [1] 
19 

Output+ Solution [-2, 0.88 -1 [-2, 0.88] -1 

Total Iteration of phase 0 & Phase 1 is 21 Total Iteration of Modified & Phase 1 is 21 

The comparison from TPN-1 show that modified phase-0 and Phase-0results is coinciding. 

Golden Section method Failed because the initial interval is not optimal. 
 
VII. Conclusion 

In this paper, we developed computer techniques to verify 
Choo and Kim’s method for solving 1-D NLP problems. We 
also constructed codes corresponding to the Ayoade’s 
modified phase-0. Finally, we compared the 1-D two phase 
methods and Ayoade’s modified Phase-0 with the Golden 
section method. We demonstrated the efficiency of our 
computer techniques with a number of numerical examples. 
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