
Dhaka Univ. J. Sci. 62(2): 95-102, 2014 (July)

A Study on 1-D Simplex Search Algorithm with its Numerical Experiments Through

Computer Algebra
H. K. Das, Tapash Saha, and M. Babul Hasan*

Department of Mathematics, Dhaka University, Dhaka-1000, Bangladesh

(Received: 14 April 2013; Accepted: 20 March 2014)

Abstract

Computer techniques have been developed to solve 1-D NLP problems. The 1-D simplex search algorithm was studied and a code
corresponding to the modified phase-0 has been developed. The 1-D two phase methods and modified Phase-0 method have been compared
with those reported by others. The efficiency of computer techniques and algorithms have been demonstrated with a number of numerical
examples.

Keywords: Non Linear Programming,1-D, Two Phase, Simplex Search, Computer Algebra.

I. Introduction

Unconstrained problems with nonlinear objective function
has many applications. In addition, Numerical experiments
and developing codes are very important in the current
research of OR. This is often viewed as a discipline in itself.
However, because of difficulty of analyzing non-linear
calculations, the vast majority of questions that are
important to the performance of optimization algorithms.
Also, 1-D simplex search method which was originally
proposed by Powell1 and subsequently modified by Nelder
and Mead2 is one of most widely known multidimensional
direct search methods. In 1987, Choo et al.3, were able to
show that it converges to the optimal solution if the function
to be maximized is unimodal.

In 1989, Xue4 showed that it can be made to behave either
as the Golden Section search or the binary search by
assigning certain parameters. In 1965, Nelder et al.2 simplex
search was developed on the concept of reflection,
expansion and contraction through the entire search phase.
However, Choo et al.3 modified the Nelder et al.2 simplex
search by dividing it into two phases where the contraction
step is eliminated during the first phase, called phase 0. We
must point out, however, there are a strong relation between
Phase 0 and the Nelder et al.2 simplex search.

Das et al.5 developed a computer technique incorporated
with Golden section and Gradient search methods which is
very powerful for the given optimal interval but if a proper
optimal interval is not chosen it should face a complexity to
find the optimal solution like Choo et al.3. In the current
research, the complexity of the Choo et al.3 and Das et
al.5 has been removed by an uniform algorithm of the Choo
et al.3 and as proposed by Ayode6 modified phase-0.

II. One Dimensional Method of NLP

In this section, we discuss the 1-D simplex search methods
for finding the optimum solutions and also present two flow
charts reported by Choo et al. in two phase method.

1-D Simplex Search

In this section, we summarize the method of Choo et al.3’s
1-D simplex search. This method was proposed by Choo et
al.3. in 1987.

i. This method can start with any two points and
converges to the optimum solution.

ii. With appropriate parameters, this algorithm can be
made to behave equivalent to some of the most efficient
1-D search methods.

1-D Simplex Search1

In this section, we summarize the Powel’s 1-Dsimplex
search method which is given as follows:

i. Reviews some of the most successful methods for
unconstrained, constrained and non differentiable
optimization calculations.

ii. Particular attention was given to the contribution of
theoretical analysis.

Golden Section and Fibonacci Search7

In this section, we summarize the method of Golden Section
search method. In 1953 Golden section and Fibonacci
search was developed by Kiefer7 which is given as follows:

i. Find the extremum of a unimodal function over an
interval without using derivatives.

ii. Golden section narrows the range of values and it is
based on the golden ratio.

iii. If the interval is not optimal then the method will fail
and needs more iteration.

Nelder and Mead Method2

In 1965, Nelder et al.2 proposed a method which is
discussed as follows:

i. It was designed for unconstrained optimization without
using gradients.

ii. The operation of this method is to rescale on the local
behavior of the function by using four basic
procedures:1. Reflection, 2. Expansion, 3. Contraction
and 4. Shrinking

III. One Dimensional Unconstrained NLP

In this section, we first modify an algorithm for solving 1-D
simplex search and then develop a code for solving 1-D
NLP problems.

Flow Chart of Phase 0

In this section, we present Phase-0 flowchart corresponding

to the Choo et al.3 algorithm. The parameters α and δ
determine the step sizes where 1≥+δα .

* Author for correspondence. e-mail : babulhasan@yahoo.com

http://en.wikipedia.org/wiki/Jack_Kiefer_%28mathematician%29
http://en.wikipedia.org/wiki/Extremum
http://en.wikipedia.org/wiki/Golden_ratio

96 H. K. Das et al.

YES

 NO

 NO

 YES

 No Yes

Fig. 1. Phase 0 Flow chart

Flow Chart of Phase 1

In this section, we present Phase 1 flowchart corresponding
to the algorithm of Choo – Kim3 Phase-1. The parameters

βα , and δ determines the step sizes of reflection,

contraction, and expansion respectively. The flowchart of
Phase 1 is shown in the following figure.

)(kkkk wbbr −+= α

)()(kk bfrf ≤

1,

,

1

1

+==
=

+

+

kkrb

bw

kk

kk

Select 11 wandb such that

).()(11 bfwf ≥

)()(kk rfef <

)()(kk rfwf ≥
k

k

ws

rm

=
=

0

0

kbh =0

1,

,,

1

11

+==
==

+

++

kker

rbbw

kk

kkkk

k

k

rs

wm

=
=

0

0 ,

 Stop

)()(kkkk wbbe −++= δα

A Study on 1-D Simplex Search Algorithm with its Numerical Experiments Through Computer Algebra 97

 YES NO

 YES
 NO

 YES

 NO YES NO YES

Fig. 2. Phase 1 Flowchart

 Modified Algorithm

In this section, we present a unique algorithm for solving
unconstrained 1-D NLP problems.
Step 1: If number of variables 1 then go to the following
Step.
Step 2: Input the initial interval and check that is it optimal
interval or not.
Step 3: Finding the optimum interval using the following
Sub Steps.

Sub Step1: Select two points 11 wandb such that

).()(11 bfwf ≥ Set k=1.

Sub Step 2: Contraction:

).(111 bwbc −+= β If)()(1bfcf ≤ then set

11 ,, wschbm === and stop. Otherwise go to Sub step

3.
Sub Step 3:
 Reflection:).(kkkk wbbr −+= α

)()(kk hfrf ≤

)(kkkk hmhc −+= β

)()(kkkk mhhe −++= δα

)()(kk mfrf ≥

)()(kk rfef ≤

)()(kk hfef ≤

kk

kk

kk

ms

rm

hh

=
=
=

+

+

+

1

1

1

kk

kk

kk

ms

hm

ch

=
=
=

+

+

+

1

1

1

kk

kk

kk

hs

cm

ch

=
=
=

+

+

+

1

1

1

kk

kk

kk

hs

em

rh

=
=
=

+

+

+

1

1

1

kk

kk

kk

es

hm

rh

=
=
=

+

+

+

1

1

1

kk

kk

kk

ss

rm

eh

=
=
=

+

+

+

1

1

1

 K=k+1

)(kkkk mhhr −+= α

()(kk rfef ≤

K=0

98 H. K. Das et al.

Sub Step 4: If)()(kk bfrf ≥ then go to Sub Step 5.

Expansion:).()(kkkk bwbe +++= δα

If)()(kk rfef > then set

1,,, 111 +==== +++ kkerrbbw kkkkkk and go to Sub

Step 5. Otherwise set 1,, 11 +=== ++ kkrbbw kkkk and

go to Sub Step 3.
Sub Step 5: Set kbh = If)()(kk rfwf ≤ then set

kk rswm == , and stop and go to Step 4. Otherwise set

kk wsrm == , and go to the step 3.

Step 4: To find the optimal solution �̅�𝑥 of the NLP we use
the value kk wsrm == , and follow the following Sub-

Steps.
Sub Step 1: Set k=0 and Go to Sub-Step 2.
Sub Step 2:
Reflection: let).(kkkk mhhr −+= α Go to Sub-Step 3.

Sub Step 3: If)()(kk hfrf ≤ then go to Sub Step 5.

Expansion:).()(kkkk mhhe −++= δα If

)()(kk rfef ≤ then go to Sub Step 4. Otherwise let

1,,, 111 +==== +++ kkssrmeh kkkkkk and go to Sub

Step 2.
Sub Step 4: If)()(kk hfef ≤ then let

1,,, 111 +==== +++ kkeshmrh kkkkkk and go to Sub

Step 2. Otherwise, we let

1,,, 111 +==== +++ kkhsemrh kkkkkk and go to Sub

Step 2.
Sub Step 5: Contraction: if)()(kk mfrf ≥ then let

1,,, 111 +==== +++ kkmsrmhh kkkkkk and go to

Sub-Step 2. Otherwise, we let).(kkkk hmhc −+= β If

)()(kk hfcf ≤ then let

1,,, 111 +==== +++ kkrscmhh kkkkkk and go to

Sub-Step 2. Otherwise, we let

kkkkkk mshmch === +++ 111 ,, 1+= kk and go to

Sub Step 2.
Sub Step 6: Stop and find optimal solution.

IV. Program Organization

In this section, we develop computer codes implementing
the Choo et al.3 1-D simplex search method for solving
unconstrained NLP problems by programming language
Mathematica9.

Program Organization

In this section, we present the programming code for the
Choo et al.3 algorithm. In this sense, we present Phase 0
code and then we present Phase 1 code.

Program of Phase 0 Algorithm

In this section, we develop the code corresponding to the
Fig-1: Phase-0 flowchart of Choo et al. Phase 0 algorithm.

PHASE[0_]:=Module[{},

f[x_]:=Evaluate[Input["objective function"]];

 w1=Input["Enter t4he input"];

 b1=Input["Enter the input"];

α=0.2;δ=1;β=.1; n=100;

If[f[b1]≤f[w1], b[1]=b1;w[1]=w1;

c=b[1]+β (w[1]-b[1]);

If[f[c]≤f[b[1]],

m=b[1];h=c;s=w[1],

Do[r[i]=b[i]+α (b[i]-w[i]);

If[f[b[i]]≤f[r[i]],h=b[i];

If[f[w[i]]≤f[r[i]],m=w[i];Print[i];s=r[i],m=r[i];Print[i];s=w[i
],e[i]=b[i]+(α+δ) (b[i]-w[i]);

If[f[r[i]]<f[e[i]],w[i+1]=b[i];

b[i+1]=r[i];r[i+1]=e[i];

h=b[i+1];If[f[w[i+1]]≤f[r[i+1]],

m=w[i+1];Print[i];s=r[i+1],m=r[i+1];Print[i];s=w[i+1]],

w[i+1]=b[i];b[i+1]=e[i];

m=w[i+1];s=b[i+1];

]],{i,1,n}]],Print["jfdgfdg"]]

 Print[m]; Print[s]; Print[h];]

Program of Phase 1 Algorithm

In this section, we develop the code corresponding to the
Fig-2: Phase-1 flowchart of Choo et al. Phase 1 algorithm.

PHASE[1_]:=Module[{},

f[x_]:=Evaluate[Input["objective function"]];

 m1=Input["Enter t4he input"];

 h1=Input["Enter the input"];

α=0.2;δ=1;β=.1; n=1000;

h[1]=h1;m[1]=m1;

Do[r[i]=h[i]+α (h[i]-m[i]);

If[f[h[i]]≤f[r[i]],

If[f[r[i]]≤f[m[i]],

m[i+1]=r[i];s[i+1]=m[i];h[i+1]=h[i],

c[i]=h[i]+ β (m[i]-h[i]);If[f[c[i]]≥f[h[i]],

m[i+1]=c[i];s[i+1]=r[i];h[i+1]=h[i],

m[i+1]=h[i];s[i+1]=m[i];h[i+1]=c[i]]],

e[i]=h[i]+(α+δ) (h[i]-m[i]);

If[f[e[i]]≥f[r[i]],

If[f[e[i]]≥f[h[i]],m[i+1]=h[i];

s[i+1]=e[i];h[i+1]=r[i],m[i+1]=e[i];

s[i+1]=h[i];h[i+1]=r[i]],

m[i+1]=r[i];s[i+1]=s[i];

h[i+1]=e[i]]],{i,1,n}]

Print[m[n+1]] ; Print[s[n]]; Print[h[n+1]]]

A Study on 1-D Simplex Search Algorithm with its Numerical Experiments Through Computer Algebra 99

Program of Golden Section Algorithm

In this section, we develop the code corresponding to the
Golden Section algorithm.

BA[GOLDEN_]:=Module[{},

a=Input["Enter Largest Left hand point for Golden Section
method i.e. a"];

b=Input["Enter Largest Right hand point for Golden Section
method i.e. b"];

ε=Input["Enter Length of uncertainity"]

g[x_]=Evaluate[Input["Objective function"]];

Print["Initial Interval=[",a,",",b,"]"]; r=0.618;

pts=FindRoot[(b-a)*r^k�ε,{k,1}];

 m=Ceiling[k]/.pts;

Do[Label[st];x1=b-r*(b-a);

Label[th]; x2=a+r*(b-a);

If[g[x1]<g[x2],

Print["Iteration Number =",k," and it's interval of
uncertainity is:"];

Print["[",x1,",", b,"]"];a=x1;Continue[th],

Print["Iteration Number =",k," and it's interval of
uncertainity is:"];

Print["[",a,",",x2,"]"];b=x2;Continue[st]],{k,1,m}]]

Program of Our Modified Algorithm

In this section, we developed a generalized code
corresponding to the modified algorithm.

MODIFIEDPHASE[O_]:=Module[{},

f[x_]:=Evaluate[Input["objective function"]];

 w1=Input["Enter t4he input"];

 b1=Input["Enter the input"];

α=0.2;δ=1;β=.1; n=100;

If[f[b1]≤f[w1], b[1]=b1;w[1]=w1;

c=b[1]+β (w[1]-b[1]);

If[f[c]≤f[b[1]],

m=b[1];h=c;s=w[1],

Do[r[i]=b[i]+α (b[i]-w[i]);

If[f[b[i]]≤f[r[i]],h=b[i];

If[f[w[i]]≤f[r[i]],
m=w[i];Print[i];s=r[i],m=r[i];Print[i];s=w[i],

e[i]=b[i]+(α+δ) (b[i]-w[i]);
If[f[r[i]]<f[e[i]],

w[i+1]=b[i];b[i+1]=r[i];r[i+1]=e[i];

 h=b[i+1]; If[f[w[i+1]]≤f[r[i+1]],
m=w[i+1];Print[i];s=r[i+1],m=r[i+1];Print[i];s=w[i+1]],w[i
+1]=b[i]; b[i+1]=e[i];
m=w[i+1]; s=b[i+1];]],{i,1,n}]],Print["jfdgfdg"]
]Print[m];Print[s];Print[h];]

PHASE[0_]:=Module[{},

f[x_]:=Evaluate[Input["objective function"]];

 w1=Input["Enter t4he input"];

 b1=Input["Enter the input"];

α=0.2;δ=1;β=.1; n=100;

If[f[b1]≤f[w1], b[1]=b1;w[1]=w1;

c=b[1]+β (w[1]-b[1]);

If[f[c]≤f[b[1]],

m=b[1];h=c;s=w[1],

Do[r[i]=b[i]+α (b[i]-w[i]);

If[f[b[i]]≤f[r[i]],h=b[i];

If[f[w[i]]≤f[r[i]],

m=w[i];Print[i];s=r[i],m=r[i];Print[i];s=w[i],

e[i]=b[i]+(α+δ) (b[i]-w[i]);

If[f[r[i]]<f[e[i]],

w[i+1]=b[i];b[i+1]=r[i];r[i+1]=e[i];

h=b[i+1];If[f[w[i+1]]≤f[r[i+1]],

m=w[i+1];Print[i];s=r[i+1],m=r[i+1];Print[i];s=w[i+1]],w[i
+1]=b[i];b[i+1]=e[i];

m=w[i+1];s=b[i+1];]],{i,1,n}]],Print["jfdgfdg"]]

 Print[m];

 Print[s];

 Print[h];]

PHASE[1_]:=Module[{},

f[x_]:=Evaluate[Input["objective function"]];
m1=Input["Enter t4he input"];

h1=Input["Enter the input"];

α=0.2;δ=1;β=.1; n=1000;

h[1]=h1;m[1]=m1;

Do[r[i]=h[i]+α (h[i]-m[i]);

If[f[h[i]]≤f[r[i]],If[f[r[i]]≤f[m[i]],

m[i+1]=r[i];s[i+1]=m[i];h[i+1]=h[i],

c[i]=h[i]+ β (m[i]-h[i]);

If[f[c[i]]≥f[h[i]],

m[i+1]=c[i];s[i+1]=r[i];h[i+1]=h[i],

m[i+1]=h[i];s[i+1]=m[i];h[i+1]=c[i]]],

e[i]=h[i]+(α+δ) (h[i]-m[i]);

If[f[e[i]]≥f[r[i]],

If[f[e[i]]≥f[h[i]],m[i+1]=h[i];s[i+1]=e[i];h[i+1]=r[i],m[i+1]=
e[i];

s[i+1]=h[i];h[i+1]=r[i]],

m[i+1]=r[i];s[i+1]=s[i];

h[i+1]=e[i]]],{i,1,n}]

Print[m[n+1]] ; Print[s[n]]; Print[h[n+1]]]

Program of Golden Section Algorithm

100 H. K. Das et al.

In this section, we develop the code corresponding to the
Golden Section algorithm.

BA[GOLDEN_]:=Module[{},

a=Input["Enter Largest Left hand point for Golden Section
method i.e. a"]; b=Input["Enter Largest Right hand point
for Golden Section method i.e. b"];

ε=Input["Enter Length of uncertainity"]

g[x_]=Evaluate[Input["Objective function"]];

Print["Initial Interval=[",a,",",b,"]"];

r=0.618;pts=FindRoot[(b-a)*r^k�ε,{k,1}];
m=Ceiling[k]/.pts;

Do[Label[st];x1=b-r*(b-a);

Label[th]; x2=a+r*(b-a);

If[g[x1]<g[x2],

Print["Iteration Number =",k," and it's interval of
uncertainity is:"];

Print["[",x1,",", b,"]"];a=x1;Continue[th],

Print["Iteration Number =",k," and it's interval of
uncertainity is:"];

Print["[",a,",",x2,"]"];b=x2;Continue[st]],{k,1,m}]

Input and Output System

In this section, we have shown run file Local kernel box to
get the results. When we run the prescribed program and
complete the required statement, we must press “Enter”
individually for each required statement. Finally, we will get
the desired results is the following way.

Fig. 3. Local Kernel Input Box

V. Numerical Experiments

In this section, we present a number of numerical examples
to show the efficiency of our computer techniques.

Test Problem Number (TPN)

Example: 1 This numerical example is taken from Bazaraa
et al8.

Find the extreme points of the function 62𝑥𝑥2 − 28𝑥𝑥 − 4 ?
Arbitrarily, we choose the initial interval −12 ≤ 𝑥𝑥 ≤ 5.

Example 2: This numerical example is taken from Bazaraa
et al8.

Find the optimal solution to Minimize the function (𝑥𝑥 −
2)4. Arbitrarily we choose the interval −4≤𝑥𝑥≤4.
Example 3: This numerical example is taken from Bazaraa
et al8.

Find the optimal solution to Minimize the function 4𝑥𝑥3 +
3𝑥𝑥4. Arbitrary we choose the interval −4 ≤ 𝑥𝑥 ≤ 2.

Example 4: This numerical example is taken from Das
&Hasan5.

Suppose that the function to be maximized is 𝑓𝑓(𝑥𝑥) = 12𝑥𝑥 −
3𝑥𝑥4 − 2𝑥𝑥6. Arbitrary we choose the initial interval −80 ≤
𝑥𝑥 ≤ 100.

Example 5: This numerical example is taken from Das et
al.5.

Find the optimal solution to Max 𝑥𝑥2 + 2𝑥𝑥 . S/t.−3 ≤ 𝑥𝑥 ≤
5 within an initial length of 0.8.

VI. Results and Discussion

In the present section, we present the comparison and
discussion of the Choo et al.3 methods and Golden Section
methods and with their limitations. We also present the
Ayoade6 modified phase 0 with its effectiveness.

Convergence of Different Methods

In this section, we present the convergence of our algorithm
using the test problems in Section 5. We also present the
convergence of Choo et al. Phase 0, Phase 1 using computer
algebra.

In the previous tables, we can say that, our 1-D simplex
search is a powerful technique compared to the method of
Golden Section Search and Choo et al. method. But if we
use phase 0 or our modified phase-0 before using Golden
Section then it will give good accuracy whereas Golden
section method fails. It should be mentioned that Golden
Section Search starts with the optimal point x ,that must lie
between a and b that is,],[bax ∈ . If we consider,

],[bax ∉ “Golden Section Search” cannot be applied.
While 1-D simplex search can be applied not only
considering],[bax ∈ but also],[bax ∈ . From the
above comparison and the computational results, we can say
that our method is still one of the most robust and efficient
method for solving 1-D NLP problems compared to the
Choo et al.Phase-0 and Phase-1and Golden Section method.

A Study on 1-D Simplex Search Algorithm with its Numerical Experiments Through Computer Algebra 101

Table 1. Accuracy test with Different methods

Accuracy test of the test Problem No-1

Data Phase-0 N Phase-1 N Modified Phase0 N Phase-1 N

Input PHASE [0]
1

PHASE [1]
33

1

PHASE [1]
21

Output+ Solution [5, 8.4] 0.225807 [3.3,5] 0.225807

Total Iteration of phase 0 & Phase 1 is 34 Total Iteration of Modified & Phase 1 is 22

The comparison from TPN-1 show that modified phase-0 is stronger than phase-0.

Golden Section method Failed because the initial interval is not optimal.

Accuracy test of the test Problem No-2

Data Phase-0 N Phase-1 N Modified Phase0 N Phase-1 N

Input PHASE [0]
1

PHASE [1]
14

1

PHASE [1]
13

Output+ Solution [1, 5.6] 2 [3.2,4] 2

Total Iteration of phase 0 & Phase 1 is 15 Total Iteration of Modified & Phase 1 is 14

The comparison from TPN-1 show that modified phase-0 is stronger than phase-0.

Golden Section method Failed because the initial interval is not optimal.

Accuracy test of the test Problem No-3

Data Phase-0 N Phase-1 N Modified Phase0 N Phase-1 N

Input PHASE [0]
2

PHASE [1]
19

2

PHASE [1]
19

Output+ Solution [-2, 0.88 -1 [-2, 0.88] -1

Total Iteration of phase 0 & Phase 1 is 21 Total Iteration of Modified & Phase 1 is 21

The comparison from TPN-1 show that modified phase-0 and Phase-0results is coinciding.

Golden Section method Failed because the initial interval is not optimal.

VII. Conclusion

In this paper, we developed computer techniques to verify
Choo and Kim’s method for solving 1-D NLP problems. We
also constructed codes corresponding to the Ayoade’s
modified phase-0. Finally, we compared the 1-D two phase
methods and Ayoade’s modified Phase-0 with the Golden
section method. We demonstrated the efficiency of our
computer techniques with a number of numerical examples.

References

1. Powell, M. J. D., 1986. Convergence properties of algorithms
for nonlinear optimization, SIAM, Rev.

2. Nelder, J. A, and, R. Meal, 1965. A Simplex method for
function Minimization, Computer Journal, 7, 308-313.

3. Choo E. & Kim, 1987. One Dimensional Simplex search,
Computer and Operations Research, 14, 47-54.

4. Xue G., 1989. One the convergence of one dimensional simplex
search, Computer & Operations Research, 16, 113-116.

5. Das H. K., & M. B. Hasan, 2013. A Generalized Computer
technique for solving unconstrained NLP problems, Dhaka
Univ. J. Sci, 61(1), 75-80.

6. Ayoade K., 1991. Numerical Experiments with 1-D Non-
linear Simplex search, Computers & Operations Research, 18,
497-506.

7. Kiefer, J., 1957. Optimum sequential search and approximation
methods under minimum regularity assumptions, J. Soc. Indust.
Appl. Math., 5(3), 105-136.

8. Bazaraa M.S., H. D. Sherali and Shetty, 2003. NLP theory
and Applications, Canada., 343-462.

9. Wolfram, S., Mathematica, 2001. Addision-Wesly, Company,
New York., 201-250

10. Winston, W. L., 1994. Application and algorithms, Duxbury
press, U.S.A., 610-695.

11. Don, E ., 2001. Theory and Problems of Mathmatica,
Schaum’s Outline Series., 70-80.

	A Study on 1-D Simplex Search Algorithm with its Numerical Experiments Through Computer Algebra
	I. Introduction
	Fig. 3. Local Kernel Input Box
	V. Numerical Experiments
	Test Problem Number (TPN)
	References

