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Abstract 

An analysis is carried out to study the effects of MHD free convection heat and mass transfer of power-law non-Newtonian fluids along a 
stretching sheet with thermal radiation. This has been done under the simultaneous action of suction, thermal radiation and uniform 
transverse magnetic field. The stretching sheet is assumed to continuously moving with a power-law velocity and maintaining a uniform 
surface heat flux. The governing non–linear partial differential equations governing the flow field for heat and mass transfer problem are 
transformed into non–linear ordinary differential equations, using similarity transformation, and the resulting problem is solved numerically 
using Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. The results from numerical 
computations have been presented in the from of dimensionless velocity, temperature and concentration profiles, shown graphically and 
discussed. A parametric study illustrating the influence of the flow field to radiation, buoyancy force, power-law fluid velocity index, 
Schmidt number, suction or injection parameter and uniform transverse magnetic field on the local skin friction coefficient, the local Nusselt 
number and the Sherwood number which are of physical and engineering interest are studied and the obtained results are shown graphically 
and the physical aspects of the problem are discussed. A comparison of the present study is also performed with the previously published 
work and found excellent agreement. 
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I. Introduction 

Considerable interest has recently been shown in radiation 
interaction with free convection for heat transfer in fluid. 
This is due to the significant role of thermal radiation in the 
surface heat transfer when convection heat transfer is small 
particularly in free convection problems involving 
absorbing-emitting fluids. Hot rolling, drawings of plastic 
films and artificial fibers, glass fiber production, metal 
extrusion are examples of such physical applications. Many 
manufacturing processes involve the cooling of continuous 
sheets or filaments by drawing them through a quiescent 
fluid which are stretched during the drawing process. The 
final product  of required characteristics depend to a great 
extent on the rate of cooling which can be controlled  by 
drawing such sheets in an electrically conducting fluid and 
subject to magnetic field. Sakiadis1, first presented boundary 
layer flow over a continuous solid moving with constant 
speed. Elbashbeshy2 investigated heat transfer over a 
stretching surface with variable and uniform surface heat 
flux subject to injection and suction. Vajravelu et al.3 
studied the convective heat transfer in an electrically 
conducting fluid near an isothermal stretching sheet and 
studied the effect of internal heat generation or absorption. 
Also, Glauert4 analyzed magnetohydrodynamic boundary 
layer on a flat plate. 

The study of non-Newtonian fluid flow and heat transfer 
over a stretched surface gets attention because numerous 
industrially important fluids exhibit non linear relationship 
between shear stress and rate of strain such as polymer 
solution, molten plastics, pulps, paints, and foods. Rajgopal 
et al.5 studied flow of viscoelastic fluid over stretching 
sheet. Gupta et al.6 extended the problem to study heat 

transfer, and Datti et al.7 analyzed the problem over a non-
isothermal stretching sheet. The MHD boundary layer flow 
over a continuously moving plate for a micropolar fluid has 
been studied by Rahman and Sattar 8 and Raptis9. Several 
authors (e.g. Anderson et. al.10, Mahmoud and Mahmoud11 
and Chen et. al.12) adopted the non-linearity relation as 
power-law dependency of shear stress on rate of strain. 
Recently, C.H.Chen13 studied the effect of magnetic field 
and suction/injection on the flow of power-law non-
Newtonian fluid over a power-law stretched sheet subject to 
a surface heat flux.All the above investigations are restricted 
to MHD flow and heat transfer problems. However, of late, 
the radiation effect on MHD flow and heat transfer 
problems has become more important industrially. Many 
processes in engineering areas occur at high temperatures 
and the knowledge of radiative heat transfer becomes very 
important for the design of the pertinent equipments. 
Nuclear power plants, gas turbines and the various 
propulsion devices for aircrafts, missiles, satellites and 
space vehicles are examples of such engineering areas. 
There are various kinds of high temperature systems such as 
a heat exchanger and an internal combustor, in which the 
radiation may not be negligible in comparison with the 
conductive and convective heat transfer. During combustion 
of a hydrocarbon fuel and the particles such as soot and coal 
suspended in a hot gas flow absorb, emit and scatter the 
radiation. The interaction of radiation with hydromagnetic 
flow has become industrially more prominent in the 
processes wherever high temperatures occur. Hakiem14 
investigated radiation effect on a heated surface. Takhar et 
al.17 analyzed the radiation effects on MHD free convection 
flow past a semi-infinite vertical plate using Runge-Kutta 
Merson quadrature. Ali et. al.18 studied radiation effects on 
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free convection flow over a horizontal plate. Chamkha et 
al.15 analyzed radiation effects on free convection flow past 
a semi-infinite vertical plate. 

In the present paper, the problem studied by C. H. Chen13 
has been extended for the case of free convection to 
implement the effect of thermal radiation. Here, we have an 
investigation is carried out to investigate the effects of MHD 
free convection heat and mass transfer of power-law non-
Newtonian fluids along a stretching sheet. 

II. Governing Equations 

Let us consider a steady two dimensional MHD free 
convection laminar boundary layer flow of a viscous 
incompressible and electrically conducting fluid obeying the 
power-law model along a permeable stretching sheet under 
the influence of thermal radiation. Introducing the Cartesian 
co-ordinate system, the X-axis is taken along the stretching 
sheet in the vertically upward direction and the Y-axis is 
taken normal to the sheet. Two equal and opposite forces are 
introduced along the X-axis, so that the sheet is stretched. 
This continuous sheet is assumed to move with a velocity 
according to a power-law from, i.e. 𝑢𝑢𝑤𝑤 = 𝐶𝐶𝑥𝑥𝑝𝑝  and be 
subject to a surface heat. The ambient temperature of the 
flow is 𝑇𝑇∞ and the concentration of the uniform flow is𝐶𝐶∞ . 
The fluid is considered to be gray, absorbing- emitting 
radiation but non-scattering medium and the Rossland 
approximation is used to describe the radiactive heat flux in 
the energy equation. The concentration is assumed to be 
non-reactive. The radioactive heat flux in the X-direction is 
considered negligible in the comparison to the Y-direction. 
A strong magnetic field in comparison to the applied 
magnetic field. The electrical current flowing in the fluid 
gives rise to an induced magnetic field if the fluid were an 
electrical insulator, but here we have taken the fluid to be 
the electrically conducting. Hence, only the applied 
magnetic field 𝐵𝐵 plays a role which gives rise to magnetic 

forces 𝐹𝐹𝑥𝑥 = 𝜎𝜎𝐵𝐵𝑢𝑢
𝜌𝜌

 in the X-direction, where 𝜎𝜎 is the electrical 

conductivity, 𝐵𝐵 is the magnetic field  strength (magnetic 
induction ) and 𝜌𝜌 is the density of the fluid. Under the above 
assumptions, the governing boundary layer equations are: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0    (1)  

𝑢𝑢 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝐾𝐾
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜕𝜕
��𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
�
𝑛𝑛−1 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
� + 𝑔𝑔𝑔𝑔(𝑇𝑇 − 𝑇𝑇∞) −  𝜎𝜎𝐵𝐵

2𝑢𝑢
𝜌𝜌

 (2)  

   𝑢𝑢 𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

= 𝛼𝛼 𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2 −

1
𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝜕𝜕

    (3) 

𝑢𝑢 𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑚𝑚
𝜕𝜕2𝐶𝐶
𝜕𝜕𝜕𝜕 2                                       (4)  

The radiative heat flux 𝑞𝑞𝑟𝑟   is described by the Rosseland 
approximation such that, 

𝑞𝑞𝑟𝑟 = − 4𝜎𝜎1
3𝑘𝑘1

𝜕𝜕𝑇𝑇4

𝜕𝜕𝜕𝜕
  (5)                              

where, 𝜎𝜎1 is the Stefan-Boltzman constant and 𝑘𝑘1 is the 
Rosseland mean absorption coefficient.  It is assumed that 
the temperature difference within the flow is sufficiently 
small such that  𝑇𝑇4 can be expressed in a Taylor series about 
the free steam temperature 𝑇𝑇∞ and then neglecting higher-
order terms. This results in the following approximation: 

  𝑇𝑇4 ≈ 4𝑇𝑇∞3𝑇𝑇 − 3𝑇𝑇∞4  (6) 

Using (5) and (6) in the last term of equation (3), we obtain, 

𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝜕𝜕

= − 16𝜎𝜎1𝑇𝑇∞3

3𝑘𝑘1

𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2  (7) 

Introducing 𝑞𝑞𝑟𝑟  in equation (3), we obtain the following 
governing boundary layer equations as: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0  (8) 

 𝑢𝑢 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝐾𝐾
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜕𝜕
��𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
�
𝑛𝑛−1 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
� + 𝑔𝑔𝑔𝑔(𝑇𝑇 − 𝑇𝑇∞) −

𝜎𝜎𝐵𝐵2𝑢𝑢
𝜌𝜌

   (9) 

 𝑢𝑢 𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

= 𝛼𝛼 𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2 + 16𝜎𝜎1𝑇𝑇∞3

3𝜌𝜌𝑐𝑐𝑝𝑝𝑘𝑘1

𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2     (10) 

𝑢𝑢 𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑚𝑚
𝜕𝜕2𝐶𝐶
𝜕𝜕𝜕𝜕 2   (11)  

The appropriate boundary conditions are: 

�𝑢𝑢𝑤𝑤=𝐶𝐶𝑥𝑥𝑝𝑝 ,    𝜕𝜕=𝜕𝜕𝑤𝑤 ,    𝜕𝜕𝑇𝑇 𝜕𝜕𝜕𝜕⁄ =−𝑞𝑞𝑤𝑤 𝜅𝜅⁄ ,𝐶𝐶=𝐶𝐶∞+𝑏𝑏𝑥𝑥     𝑎𝑎𝑎𝑎   𝜕𝜕=0 ,   𝑥𝑥>0 
𝑢𝑢𝑤𝑤⟶0,         𝑇𝑇⟶𝑇𝑇∞,          𝐶𝐶→𝐶𝐶∞                                     𝑎𝑎𝑎𝑎   𝜕𝜕⟶∞                                     � (12) 

where, u and v are the velocity components, K is the 
consistency coefficient, cp is the specific heat at constant 
pressure, B(x) is the magnetic field, T is the temperature of 
the fluid layer,  𝑔𝑔 is the acceleration due to gravity,  𝑔𝑔 is the 
volumetric coefficient of thermal expansion, 𝜎𝜎  is the 
electric conductivity, 𝜌𝜌 is the density of the fluid, 𝛼𝛼 is the 
thermal diffusivity,  𝑘𝑘 is the thermal conductivity of the 
fluid, n is the flow behavior index, and 𝑞𝑞𝑟𝑟  is the radiative 
heat flux. 𝜕𝜕𝑤𝑤  is the velocity component at the wall having 
positive value to indicate suction and negative value for 
injection, 𝑞𝑞𝑤𝑤  is surface heat flux. The power index p 
indicates surface is accelerated or decelerated for positive 
and negative values respectively. 

III. Similarity Analysis 

In order to obtain a similarity solution of the problem, we 
introduce a similarity parameter δ(𝑥𝑥) such that δ(𝑥𝑥) is a 
length scale. We now introduce the following dimensionless 
variables: 

𝜂𝜂 = 𝜕𝜕
𝛿𝛿(𝑥𝑥)

= �𝐶𝐶
2−𝑛𝑛

𝐾𝐾 𝜌𝜌⁄
�

1 (𝑛𝑛+1)⁄
𝑥𝑥{𝑝𝑝(2𝑛𝑛−1)+1} (𝑛𝑛+1)⁄ 𝜕𝜕   (13) 

 𝜓𝜓 = �𝐶𝐶
1−2𝑛𝑛

𝐾𝐾 𝜌𝜌⁄
�
−1 (𝑛𝑛+1)⁄

𝑥𝑥{𝑝𝑝(2𝑛𝑛−1)+1} (𝑛𝑛+1)⁄ 𝑓𝑓(𝜂𝜂)   (14) 

𝜃𝜃(𝜂𝜂) = (𝑇𝑇−𝑇𝑇∞)𝑅𝑅𝑅𝑅𝑥𝑥1 (𝑛𝑛+1)⁄

𝑞𝑞𝑤𝑤𝑥𝑥 𝜅𝜅⁄
                                (15) 
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𝜙𝜙(𝜂𝜂) = 𝐶𝐶−𝐶𝐶∞
𝑏𝑏𝑥𝑥

      (16)  

where, δ is th e stream  fu nction, 𝜂𝜂 is the dimensionless 
distance normal to the sheet , 𝑓𝑓  is  the dimensionless stream 
function, 𝜃𝜃 and 𝜙𝜙 are the dimensionless fluid temperature  
and concentration respectively. Using the transformations 
from equations (13) to (16) in equations (9) to (11), we 
obtain the following dimensionless equations as, 

 (|𝑓𝑓′′|𝑛𝑛−1𝑓𝑓′′)′+ 𝑝𝑝(2𝑛𝑛−1)+1
(𝑛𝑛+1) 𝑓𝑓𝑓𝑓′′− 𝑝𝑝(𝑓𝑓′)2 −𝑀𝑀𝑓𝑓′+ 𝜆𝜆𝜃𝜃 = 0    (17)                                                                               

3𝑁𝑁+4
3𝑁𝑁𝑁𝑁𝑟𝑟

𝜃𝜃′′+ 𝑝𝑝(2𝑛𝑛−1)+1
(𝑛𝑛+1)

𝑓𝑓𝜃𝜃′+ 𝑝𝑝(2−𝑛𝑛)−1
(𝑛𝑛+1)

𝑓𝑓′𝜃𝜃 = 0   (18)  

1
𝑆𝑆𝑐𝑐
𝜙𝜙′′ + 𝑝𝑝(2𝑛𝑛−1)+1

(𝑛𝑛+1)
𝑓𝑓𝜙𝜙′ − 𝑓𝑓′𝜙𝜙=0                (19)          

The transformed boundary conditions are, 

�𝑓𝑓′=1,    𝑓𝑓= 𝑛𝑛+1
𝑝𝑝 (2𝑛𝑛−1)+1𝑓𝑓𝑤𝑤 ,     𝜃𝜃′=−1,   𝜙𝜙=1    𝑎𝑎𝑎𝑎   𝜂𝜂=0

𝑓𝑓′→0,    𝜃𝜃→0 ,     𝜙𝜙→0                                           𝑎𝑎𝑎𝑎   𝜂𝜂→∞
    �   (20) 

where, 𝑀𝑀 = 𝜎𝜎𝐵𝐵2𝑥𝑥
𝜌𝜌𝑢𝑢𝑤𝑤

  is the magnetic field parameter, 𝑁𝑁𝑟𝑟 =
𝑥𝑥𝑢𝑢𝑤𝑤
𝛼𝛼
𝑅𝑅𝑅𝑅𝑥𝑥− 2 (𝑛𝑛+1)⁄  is the generalized Prandtl number, 

𝑁𝑁 = 𝑘𝑘𝑘𝑘1
4𝜎𝜎1𝑇𝑇∞3

  is the radiation number, 𝑓𝑓𝑤𝑤 = − 𝜕𝜕𝑤𝑤
𝑢𝑢𝑤𝑤
𝑅𝑅𝑅𝑅𝑥𝑥1 (𝑛𝑛+1)⁄  is 

the suction parameter, 𝜆𝜆 = 𝐺𝐺𝑟𝑟
𝑅𝑅𝑅𝑅𝑥𝑥1 (𝑛𝑛+1)⁄ = 𝑔𝑔𝑔𝑔 (𝑞𝑞𝑤𝑤 𝑘𝑘⁄ )𝑥𝑥2

𝑢𝑢𝑤𝑤 2 𝑅𝑅𝑅𝑅𝑥𝑥
 −1

(𝑛𝑛+1) 

is the buoyancy parameter, 𝑆𝑆𝑐𝑐 = 𝑢𝑢𝑤𝑤𝑥𝑥
𝐷𝐷𝑚𝑚

𝑅𝑅𝑅𝑅𝑥𝑥
−2

(𝑛𝑛+1) is the local 

Schmidt  number and 𝑅𝑅𝑅𝑅𝑥𝑥 = 𝜌𝜌𝑢𝑢𝑤𝑤 2−𝑛𝑛𝑥𝑥𝑛𝑛

𝐾𝐾
 is the local Reynolds 

number. 

Here, we note that the magnetic field strength B should be 
proportional to 𝑥𝑥 to the power of (𝑝𝑝 − 1) 2⁄  to eliminate the 
dependence of M on 𝑥𝑥, i.e.  𝐵𝐵(𝑥𝑥) = 𝐵𝐵0𝑥𝑥(𝑝𝑝−1) 2⁄  , where 𝐵𝐵0 
is a constant. The parameters of engineering interest for the 
present problem are skin friction coefficient �𝐶𝐶𝑓𝑓�, local 
Nusselt number (𝑁𝑁𝑢𝑢𝑥𝑥) and local Sherwood number (𝑆𝑆ℎ𝑥𝑥), 
which indicate physically wall shear stress, local wall heat 
transfer rate and local wall mass transfer rate respectively. 
The skin friction coefficient �𝐶𝐶𝑓𝑓� is given by,            

                        𝐶𝐶𝑓𝑓 = 𝜏𝜏𝑤𝑤
1
2𝜌𝜌𝑢𝑢𝑤𝑤

2   

or, 𝑅𝑅𝑅𝑅𝑥𝑥1 (𝑛𝑛+1)⁄ 𝐶𝐶𝑓𝑓 = 2  |𝑓𝑓′′(0)|𝑛𝑛−1𝑓𝑓′′(0)    (21) 

 The local Nusselt number 𝑁𝑁𝑢𝑢𝑥𝑥  is defined as, 

                 𝑁𝑁𝑢𝑢𝑥𝑥 = ℎ𝑥𝑥
𝑘𝑘

= 𝑅𝑅𝑅𝑅𝑥𝑥1 (𝑛𝑛+1)⁄

𝜃𝜃(0)
  

   or,        𝑁𝑁𝑢𝑢𝑥𝑥𝑅𝑅𝑅𝑅𝑥𝑥−1 (𝑛𝑛+1)⁄ = 1 𝜃𝜃(0)⁄          (22) 

and the local Sherwood number (𝑆𝑆ℎ) is given by 

𝑆𝑆ℎ =
𝑥𝑥𝑀𝑀𝑤𝑤

𝐷𝐷𝑚𝑚(𝐶𝐶 − 𝐶𝐶∞) 

     or,        𝑆𝑆ℎ𝑅𝑅𝑅𝑅𝑥𝑥
−1 (𝑛𝑛+1)⁄ = −𝜙𝜙′(0)            (23) 

Thus from equation (21), (22) and (23), we see that the skin 
friction coefficient (Cf) local Nusselt number (Nux) and 
Sherwood number (𝑆𝑆ℎ) are proportional to 2|𝑓𝑓′′(0)|𝑛𝑛−1𝑓𝑓′′(0),    
1 𝜃𝜃(0)⁄  and −𝜙𝜙′(0) respectively. 

IV. Results and Discussion 

The system of transformed governing equations (17)-(19) is 
solved numerically using Nachtsheim – Swigert [15] 
shooting iterative technique along with sixth order Runge-
Kutta integration scheme. Now in order to discuss the 
results, we solve the system (17)-(19) for different 
physically important parameters and carry out the discussion 
how these parameters do effect on the velocity, temperature 
and concentration  of the flow field. The effects of suction 
on the velocity, temperature and concentration profiles are 
shown in the Fig.1(a), Fig.1(b) and Fig.1(c) respectively. 
Due to the effect of suction some of the retarded fluid 
particles are taken out from the boundary layer and thus 
prevent the boundary layer separation. We observe that the 
velocity profiles decrease with the increase of suction 
parameter. This indicates the fact that for a flow field of 
higher suction, the velocity of the fluid particle is low and 
velocity stabilizes very quickly (Fig.1(a))  near the 
stretching sheet. The negative values of 𝑓𝑓𝑤𝑤  indicates 
injection. For,𝑓𝑓𝑤𝑤 = −1.0, the velocity increases at first due 
to buoyant force  (𝜆𝜆 = 2.0). The temperature and 
concentration profiles in Fig.1(b) and Fig.1(c) show a 
decreasing trend with the increase of suction parameter(𝑓𝑓𝑤𝑤). 
Thus it reduces the thermal and mass boundary layer 
thickness with the increase of the suction parameter to a 
significant amount. 

In Fig.2 we have plotted the dimensionless velocity, 
temperature and concentration profiles showing the effect of 
different values of buoyancy parameter(𝜆𝜆). Fig.2(a) shows 
the effect of the velocity field. We see that the velocity 
profiles increase with the increase of the buoyancy 
parameter(𝜆𝜆). The velocity  field increases slowly  for 𝜆𝜆  at 
first near the stretching sheet and then decreases 
monotonically. Fig.2(b) shows the effect of buoyancy 
parameter (𝜆𝜆) on the temperature field. The temperature 
profiles decrease as the buoyancy parameter (𝜆𝜆) increases, 
and for a fixed value of 𝜆𝜆, the temperature decreases 
monotonically. It is observed from Fig.2(c) that 
concentration profiles is strictly decreasing with the increase 
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of buoyancy parameter(𝜆𝜆). It is clear from Fig.2(a)- Fig.2(c) 
that the buoyancy force has significant effects on the flow 
field. As 𝜆𝜆 increases the velocity profiles stabilize more 
quickly and near 𝜂𝜂 = 2.2, we observed a  cross flow in the 
velocity field (Fig.2(a)). The case 𝜆𝜆 = 0 corresponds to 
forced convection flow. We thus see that, the velocity 
profiles stablize more quickly for forced convection flow. 
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Fig. 1. Suction parameter (𝑓𝑓𝑤𝑤) effect on (a) velocity, (b) 

temperature and (c) concentration profile.       

In Fig.3, the effect of radiation number (𝑁𝑁) on velocity, 
temperature and concentration profiles are shown 
respectively. It is quite clear from both the graphs that 

velocity and temperature profiles decrease as the radiation 
number (𝑁𝑁) increases. However, the velocity profiles rise 
near the stretching sheet for all values of  𝑁𝑁 . It also clears 
the fact that the velocity profile and wall temperature 
decreases very rapidly for 𝑁𝑁 ≥ 1.0 to indicate that the 
radiation effect can be used to control the velocity and 
temperature of the boundary layer. The concentration profile 
in Fig. 3(c), with increase of radiation parameter(𝑁𝑁), the 
concentration in the vicinity of the boundary layer increases. 
There is a notable difference in the velocity profiles between 
the values 0.10 and 0.50 for radiation parameter(𝑁𝑁). This is 
because, at the value of 0.10 the radiation is negligible and 
upon reaching the value of 0.50, it becomes significant at 
the velocity field in the velocity boundary layer. With the 
increase of the radiation parameter(𝑁𝑁) the velocity 
boundary layer thickness reduces rapidly. Due to the 
radiation from a system, the wall temperature decreases to a 
great extent. From Fig.3(b), we find that our numerical 
results agree with the experimental phenomenon. According 
to the Newton’s law of cooling, the rate of heat transfer is 
thus increased.  
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Fig. 2. Buoyancy parameter (δ) effect on  (a) velocity,  (b) 

temperature and (c) concentration profile.   

No significant effects are seen on the velocity and 
temperature in Fig.4(a) and Fig.4(b). In Fig.4(c), the 
concentration profiles show a sharp variation with the 
increase  of  Schmidt number(𝑆𝑆𝑐𝑐).  The  decreasing  rate  of 
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Fig. 3. Radiation number (N) effect on (a) velocity, (b) 
temperature and (c) concentration profile. 

the concentration profiles decrease to a large extent due to 
the increase in the Schmidt number(𝑆𝑆𝑐𝑐). Because with the 
increase of the Schmidt number (𝑆𝑆𝑐𝑐), the kinematic 
viscosity increase and the mass diffusion coefficient 
decrease causing the concentration decrease rapidly. 
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Fig. 4. Schmidt number (𝑆𝑆𝑐𝑐) effect on (a) velocity, (b) temperature 
and (c) concentration profile. 

Fig. 5 expresses the effect of magnetic field parameter(𝑀𝑀) on the 

velocity, temperature and concentration profiles. From Fig.5, 

we observe that the velocity profiles decrease whereas 

temperature and concentration profiles increase as the 

magnetic field parameter(𝑀𝑀) increase. From Fig.5(a) the 

magnetic field produces a retarded action on the velocity 

field, thus decreasing the velocity at higher rate. The 

momentum boundary layer thickness decreases slightly with 

the increase of the magnetic field parameter(𝑀𝑀). In Fig.5(b) 

the heat transfer increase with  the increase of the magnetic 

field strength. This implies that the thermal boundary layer 

thickness decreases a small amount with the increase of the 

magnetic field parameter(𝑀𝑀). The concentration profiles in 

Fig.5(c) also show a smaller pattern of decreasing transfer 

rate due to the magnetic field parameter(𝑀𝑀). 

In Fig.6 the effects of Prandtl number(𝑁𝑁𝑟𝑟) on the velocity, 

temperature and concentration profiles are shown. Fig.6(a) 

and Fig.6(b) display the effect of Prandtl number (𝑁𝑁𝑟𝑟) on 

velocity and temperature profiles respectively. From both 

the figure we observe that the velocity and temperature 

profiles decrease with the increase of Prandtl number(𝑁𝑁𝑟𝑟). 

However, for 𝑁𝑁𝑟𝑟 = 0.71 and 1.5, there is a rise in the 

velocity boundary layers near the stretching sheet. 

Physically 𝑁𝑁𝑟𝑟 = 0.71 corresponds to air at 20℃ and 

𝑁𝑁𝑟𝑟 = 7.0 corresponds to water at room temperature. From 

Fig.6(b) we see that for small 𝑁𝑁𝑟𝑟 wall temperature is very 

high compared to larger values. From above investigations, 

it follows that 𝑁𝑁𝑟𝑟 strongly influences the relative growth of 

the velocity and thermal boundary layers. On the other hand, 

in Fig. 6(c) the concentration profiles increase with the 

increase of Prandlt number(𝑁𝑁𝑟𝑟). 

The effect of velocity index(𝑝𝑝) on velocity, temperature and 

concentration field are shown in the Fig. 7 for pseudo-

plastic. It is clear from Fig. 7(a) and Fig. 7(b) that, velocity 

and temperature profiles increases with increasing velocity 

index (𝑝𝑝) for pseudo-plastic fluids and in the Fig. 7(c) 

concentration profiles are slightly increase with the increase 

of the velocity-index (𝑝𝑝). 
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Fig. 5. Magnetic field parameter (M) effect on (a) velocity, (b) 
temperature and (c) concentration profile.   
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Fig. 6. Prandtl number (𝑁𝑁𝑟𝑟) effect on (a) velocity, (b) temperature 
and (c) concentration profile. 
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Fig. 7. Velocity index(𝑝𝑝) effect on (a) velocity, (b) temperature 
and (c) concentration profile for pseudo-plastic fluid.      

Table 1 shows the comparison of the skin friction 
coefficient and the local heat transfer for various values of 𝑛𝑛 
and 𝑀𝑀 with 𝑝𝑝 = 0.5 and 𝑁𝑁𝑟𝑟 = 5.0. As can be seen the 
results agree well among these two sets. The skin friction 
coefficient and the local heat transfer rate results have been 
obtained by Chen13 for forced convection (i.e.  𝜆𝜆 = 0 ) in 
the absence of the thermal radiation. 
Table. 1*. Comparison of 𝑹𝑹𝑹𝑹𝒙𝒙𝟏𝟏 (𝒏𝒏+𝟏𝟏)⁄ 𝐂𝐂𝐟𝐟 and 𝑵𝑵𝑵𝑵𝒙𝒙𝑹𝑹𝑹𝑹𝒙𝒙−𝟏𝟏 (𝒏𝒏+𝟏𝟏)⁄  

 
Parameters 

 

 
𝑹𝑹𝑹𝑹𝒙𝒙𝟏𝟏

(𝒏𝒏+𝟏𝟏)⁄ 𝐂𝐂𝐟𝐟 
 

𝑵𝑵𝑵𝑵𝒙𝒙𝑹𝑹𝑹𝑹𝒙𝒙−𝟏𝟏
(𝒏𝒏+𝟏𝟏)⁄  

 
n     M    𝒇𝒇𝒘𝒘 

 
Chen13 

 
Present  
study 

 
Chen13 

 
Present 
study 

 

 0.5  1 -0.2 -2.472213 -2.4723340 0.791413 0.7913201 
  0.0 -2.633241 -2.6334386 1.346116 1.3461035 
  0.6 -3.213067 -3.2137484     3.683003 3.6833107 
 5 -0.2 -3.881351 -3.8813143     0.367234 0.3679528 
  0.6 -4.608094 -4.6078741 3.528467 3.5287845    

1.0 1 -0.2 -2.323803 -2.3238161 1.019734 1.0198238 
  0.0 -2.519363 -2.5193782 1.578424 1.5785883 
  0.6 -3.198565 -3.1985827 3.866662 3.8672224 
 5 -0.2     -4.529439 -4.5294577 0.692476 0.6935165 
  0.0 -4.726210 -4.7262298 1.320497 1.3231287 
  0.6 -5.366930     -5.3668243 3.754876 3.7553935 

1.5 1 -0.2 -2.189081 -2.1891280 1.127959 1.1284628 
  0.0 -2.412287 -2.4121919 1.689593 1.6902300 
  0.6 -3.178401 -3.1782320 3.958697 3.9593387 
 5 0.6 -5.768535 -5.7687145 3.874307 3.8749347 

1.9 0 -0.2 -1.073300 -1.0734818 1.278189 1.2783778 
 1 -0.2 -2.107985 -2.1080359 1.180071 1.1812444 
 5 0.6 -5.977131      -5.977046 3.935870 3.9357910 

V. Conclusion 

The problem has dealt with the two dimensional heat and 
mass transfer free convection flow of an MHD Non-
Newtonian power-law fluid along stretching sheet in the 
presence of magnetic field with thermal radiation. From 

the present investigation we can make the following 
conclusions: 

1. For the increase of the suction parameter(𝑓𝑓𝑤𝑤) the 
velocity, temperature and concentration significantly 
decrease. So, suction stabilizes the velocity, 
temperature and concentration field quickly to prevent 
the boundary layer separation. 

2. Larger values of buoyancy parameter (𝜆𝜆) can be used to 
control the temperature and concentration boundary layers. 

3. The momentum boundary layer and the temperature 
boundary layer thickness reduce as a result of 
increasing radiation. 

4. The presence of a heavier species (large Sc) in the flow 
field decrease the concentration in the boundary layer. 

5. Using magnetic field we can control the flow 
characteristics and it has significant effect on heat and 
mass transfer. 

6. Drag of the pseudo-plastics along a stretched surface 
decreases as the velocity index increases. 

7. The heat transfer rate of dilatant fluids are greater than 
pseudo-plastic fluids for a decelerated surface flow 
while the opposite behavior is visible for accelerated 
surface flow. 
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