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Abstract 

The existence and uniqueness of a positive solution of a singular nonlinear boundary value problem formulated from the Falkner-Skan 
boundary layer equation, are studied. The constructive method such as the method of upper and lower solutions is used to show the 
existence and uniqueness of a positive solution. 
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I. Introduction 

The differential equation 

0)1( 2  ffff  ,          (1.1) 

with boundary conditions 

           0)()(   ff at 0         (1.2)                                                               

and 1)(  f  as  .                                                                                         

is known as Falkner-Skan boundary layer problem. Shin1 

studied the differential equation (1.1) for 1  and 

5.0 with boundary conditions (1.2). For 1 and 

5.0 ,the differential equation (1.1) with boundary 

conditions (1.2) represents the Homann flow1. For 

1 and  negative, the differential equation (1.1) with 

boundary conditions (1.2) represents decelerating flow2. In 

this article the analysis is made for 1 and 

,k where .10  k    

For 1 and k , equation (1.1) takes the form 

0)1( 2  fkfff                  (1.3) 

with boundary conditions (1.2). 

Let Shear stress ))(( nfy  as the dependent variable and 

tangential velocity ))(( nfx  as the independent variable. 

The quantities x  and y are called Crocco variables. 

Now 
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   ,which implies 

ffy                                     (1.4)                                                

Differentiating (1.4) with respect to   and simplifying we 

get 

 
22 )(yyyyf iv   

As before differentiating (1.3) with respect to   one gets 

 .0)12(  ffffkf iv
 

This gives 

0])1([)12()( 222  yyxkyxykyyyy
and finally we get  

 .0)1()12( 22  yxkxykyy  

              Let 112 kk  for .10  k  

For 0 ,we get ,0)0(  fx and 

, .1x Hence the transformation 

)(' fx  maps the  -interval ),0[  into the 

x -interval ).1,0[  

Assuming a monotonic dependence of x on  we 

get 0x implies 0 and 1x implies .  

Then        
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That is; .0)1( y  

Again, from (1.3) and (1.4), we get 

).()1()(' 2 fx
y

k
xy   

Hence 
)0(

)0()01(
)0(

)0('
y

k
f

y

k
y  ,implies 

kyy )0()0(' .   

Thus by letting ))(( nfy   and )),(( nfx  the 

boundary layer problem of equation (1.3) with boundary 
conditions (1.2) can be written as 
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

0)1(,)0()0(

10,0)1( 2
1

2

ykyy

xyxkxykyy
    (1.6)  

Assume 0)0( y because we discuss the existence and 

uniqueness of a positive solution of a singular nonlinear 
boundary value problem. 

                      Here ).0()0( fy   

The value of )0(f   is still unknown2. We assume 

)1ln()(  f ,                        (1.7)                      

which satisfies the three boundary conditions of (1.2). 

From (1.7) one gets easily that                                          

       ,
)1(

1
)(

2



f from which we get    

                      .1)0( f    

Then the boundary value problem (1.6) becomes                                                  

                                             


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

0)1(,)0(

10,0)1( 2
1

2

yky

xyxkxykyy
    (1.8) 

For 1  and ,5.0  equation (1.1) with boundary 

conditions (1.2) takes the form 












0)1(,5.0)0(

10,0)1(
2

1 22

yy

xyxyy
           (1.9) 

and its  positive  solution has been studied by Shin1  
using a constructive method such as the method of upper 
and lower solutions. 

The objective of this paper is to establish the existence and 
uniqueness of a positive solution of singular non-linear 
boundary value problem of the form(1.8) using a 
constructive method such as the method of upper and lower 
solutions. 

Definition1.1: We call a function ]1,0[2
1 C  a positive 

upper solution of (1.8) if 

01  on )1,0(  

0)1( 1
2

111
2

1   xkxk on )1,0(  

.0)1()0( 11   andk  

Definition1.2: We call a function ]1,0[2
2 C  a 

positive lower solution of (1.8), if  

02  on )1,0(  

0)1( 2
2

212
2
2   xkxk on )1,0(  

.0)1()0( 22   andk  

Similar definitions hold for positive upper and lower 
solutions of a perturbation of (2.1) which will be given in 
the following section. 

Definition1.3: We call a function )1,0[]1,0[ 2CCy   

a positive solution of (1.8) if  

           0y on )1,0(  

0)1( 2
1

2  yxkxykyy on )1,0(  

           ky  )0( and .0)1( y  

II. Existence of a Unique Positive Solution 

For each ,1p  we consider the nonlinear boundary value 

problem 
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1
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,(2.1) 

which is a  perturbation of (1.8). 

To prove the existence of positive solution of (1.8) we 
establish the existence of positive solution of (2.1). 

Lemma 2.1: 
p

xkxxyup

1
)1()2ln(3)(  is a 

positive upper solution of (2.1), for each 1p  and 

.10  k  

Proof: It is clear that 

1
2

3
)0(),1,0(0)(  kyonxy upup  ,which can 

be written as 

,
1

1)1(,1
2

3
)0(

p
kykky upup   which can 

be written as 
pp

kyup

11
1)1(  and  
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


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for 10  x , 1p  and .10  k  

Thus upy  is a positive upper solution of (2.1). 

Lemma 2.2: 

k
p

xkxxkxxylp 50
1

)1()2ln()( 24


   

is a positive lower solution of (2.1), for each 1p  and 

.10  k  

Proof: It is clear that ,0)( xylp on (0 ,1) and 

,)0( kylp  which can be written as          

k
p

ykky lplp 50
1

)1(,)0(



 , which can be written 

as .
1

50
1

)1(
p

k
p

ylp 


  

Also  

,0)1( 2
1

2  lplplplp yxkxykyy for 

1,10  px and  .10  k  

Thus lpy  is a positive lower solution of (2.1). 

Hence we can formulate the following Lemma2.3 as an 

application of Schauder’s Fixed Point Theorem
3

. 

Lemma 2.3:For any ,1p  there exists a positive solution 

]1,0[2Cyp  of the problem (2.1)such 

that upplp yyy  on ,10  x where lpy and upy  are 

as given in Lemma 2.2 and Lemma 2.1 respectively. 

Lemma 2.4:If py  is a positive solution of (2.1) and 

0)(  xyp then kxyp  )(0 on ]1,0(  for 1p  

and .10  k  

Proof: Since py  is positive solution of (2.1), we get 

 0)1( 2
1

2  pppp yxkxykyy . 

This gives  

,)1( 22
ppp yxkyy   which implies 

  .0
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Integrating from 0 to x , we get  

,0))0(ln())(ln(  pp yxy  it follows 

that 1)(0  xyp on ].1,0(  

Lemma 2.5: If py  is a positive solution of (2.1) and 

0)(  xyp then kxyp  )( on ]1,0( , for 1p and 

.10  k  

Proof: Since py  is positive solution of (2.1), we get 

 .0)1( 2
1

2  pppp yxkxykyy  

This gives  

,)1( 22
ppp yxkyy   which implies 

  
2

2)1(

pp

p

y

xk

y

y 





. 

For ],1,0(x
2

2 )1(

pp

p

y

xk

y

y 





is true if  0





p

p

y

y
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Now 0




p

p

y

y
 gives 0py , because .0)(  xyp  

Integrating 0py  from 0 to x , we 

get 0)0()( 
pp yxy ,it follows that kxyp  )(  on (0, 

1],because .)0( kyp   

Lemma 2.6: If 1y  and 2y  are two positive solutions of 

(2.1) then 21 yy  , for 1p and .10  k  

Proof: Since 1y  and 2y  are two positive solutions of 

(2.1), we get   

2
1

1
2

1

1
1

)1(

y

yxk

y

xk
y


 and 

.
)1(

2
2

2
2
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1
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y

yxk

y

xk
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
  

Suppose that there exists an ]1,0(  such that 

).()( 21  yy   
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If ),0()0( 21 yy   then by the uniqueness theorem of the 

initial value problem, we get ,21 yy   which is a 

contradiction. Therefore, without loss of generality, we may 

assume that  )0()0( 21 yy  .            

Since )1()1( 21 yy   by the continuity of ,21 yy  there 

exists a ]1,0(  such that                                                                   

)()( 21  yy  and   )()( 21 xyxy   on ).,0[   

 

So the function )()()( 12 xyxyx   has a maximum at 

0x  or at the interior of ].,0[   

If the function )(x  takes its minimum at ,0x  then 

we obtain .0)0(   

Now,   

0
)0()(

)0(
0





 x

x
Lim
x


 .                      

It follows that 0)0()(   x  near 0x  and hence 

)0()(  x  near .0x   

This is a contradiction. 

Hence )(x  does not have a minimum at 0x . 

If the function )(x  takes its maximum at the interior of 

],,0[   then there exists a ),0(1    such that 

0)( 1   and 0)( 1   . 

But since )(),( 1211  yy  are solutions of 

(2.1), ky  )( 11  , )()( 1211  yy  and 

ky  )(0 11  ,we obtain, 

)()()( 11121  yy   

2
2

2
2

1

2

11
2
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1
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1

11 )1()1(

y

yk
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y
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
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()1()
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1
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11 
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k   

which again leads to a contradiction. Hence )(x  does not 

have a maximum at the interior of ].,0[   

This implies that .21 yy   

Lemma 2.7:If py  is a positive solution of (2.1) for each 

1p and ,10  k  then we obtain 





x

lp

plp
p ds

sy

syskssyk
kxy

0

2

2
1 ]

)(

)()1()(
[)( on 

).1,0[  

Proof: Let lpy  be a positive lower solution of (2.1). Since 

]1,0[2Cyp   is a positive solution of (2.1), we obtain 

plp yy  and .0)1( 2
1

2  pppp yxkxykyy  

Now 

2
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1
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Integrating from 0 to x  , we obtain 

 





x
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plp
p ds
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syskssyk
kxy

0

2

2
1 ]

)(

)()1()(
[)( on 

)1,0[ , because .)0( kyp   

Lemma 2.8: If 121  pp  and 
21

, pp yy  are positive 

solutions of (2.1) respectively, then we 

have )()(0
21

xyxy pp  on(0,1)and  

           kxyxy pp  )()(
21

 on (0, 1]. 

Proof: It is clear from the fact that 
2py  is a positive upper 

solution of (2.1) and so )()(
21

xyxy pp  on [0, 1]. 

If ),0()0(
21 pp yy   then by the uniqueness theorem of 

the initial value problem we obtain 

 ),()(
21

xyxy pp   

which is a contradiction. So we may assume that 

).0()0(0
21 pp yy   Then we have 

,0)
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1
)(0()0()0(
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which implies that 

 

,0)0()0()()(
1212

 kkyyxyxy pppp

,0)0()0()()(
1212

 pppp yyxyxy for x near to 

0. 

If there exists a ]1,0(  such 

that 0)()(
12

  pp yy and ,0)()(
12

 xyxy pp

.10  x  

Then we obtain 
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because ky p  )(
1
 , kyp  )(0

1
 and 

.0)()(
12

  pp yy  

Hence we  have 

  xyyxyxy pppp 0,0)()()()(
1212

, 

which is a contradiction. This completes the proof. 

Theorem 2.9: (Existence):If py  is the positive solution of 

(2.1) for each ,..........3,2,1p  then the sequence 

}{ py converges to a positive solution y  of (1.8). 

Proof: To prove this theorem, we prove the following steps: 

 Step 1. . pasyyp    

               Step 2. ).1,0[]1,0[ 2CCy       

               Step 3. y is a positive solution of (1.8).       

Our first step is to show that  pasyyp . We 

know that the sequence }{ py  is monotone decreasing 

in p   and bounded below by 

k
p

xkxxkx
50

1
)1()2ln( 24


 . 

Therefore,  pasyyp   and 

)(xy 24 )1()2ln( xkxxkx   on (0, 1]. 

Also from Lemma 2.7 and Lemma 2.8, we know that the 

sequence }{ py  is monotone decreasing in p   and 

bounded below by  





x
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plp ds
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syskssyk
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[ on [0, 1). 

Therefore, . pasyyp  
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]
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)1,0[ ,where .)1()2ln()( 24 sksskssylp   

Now we show that )1,0[]1,0[ 2CCy  .If we integrate 
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2
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yxkxyk
y


  from 0 to x , then we 
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(2.2) 

If we integrate both sides of (2.2) from 0 to x  , then we 
obtain 


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kxyxy
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Then we have, 
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Changing  s to   we have 
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        (2.3)      

If we let p in both sides of (2.2) and (2.3), then by 

Lebesgue’s Dominated Convergence Theorem, we obtain 
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,                   (2.4) 

which implies that ).1,0[2Cy  Since y converges to 0 

as x  approaches 1, y  is continuous at 1x , which 

implies  ).1,0[]1,0[ 2CCy  Finally, we shall show 

that y  is a positive solution of (1.8). It is clear that 

ky  )0( and .0)1( y  

If we take second derivatives on both sides of 
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x

d
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ykyk
kxy
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we obtain    

,
)(

)()1()(
)(

2

2
1

xy

xyxkxxyk
xy


  

which implies that y is a positive solution of (1.8). 

Theorem 2.10: (Uniqueness): Assume that 1y and 2y  

are two positive solutions of (1.8). Then .21 yy   

Proof: The proof of this theorem is similar to that of 
Lemma 2.6.  

III. Conclusion 

Shin1 established the existence and uniqueness of a positive 
solution of (1.9) by using the method of upper and lower 
solutions. In this article we also established the existence 
and uniqueness of a positive solution of (1.8) by using the 
method of upper and lower solutions. Equation (1.8) and 
(1.9) are very different in form and physically because 
equation (1.8) represents decelerating flow and equation 
(1.9) represents Homann flow. The positive lower and upper 
solutions of (1.8) found in this article are achievement of us.  
The establishment of the existence and uniqueness of a 
positive solution of (1.8) using the constructive method such 
as the method of upper and lower solutions is also an 
achievement of us. We hope that the result obtained in this 
article will be useful to compare the numerical solution of 
(1.8). 
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