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Abstract

The existence and uniqueness of a positive solution of a singular nonlinear boundary value problem formulated from the Falkner-Skan
boundary layer equation, are studied. The constructive method such as the method of upper and lower solutions is used to show the

existence and uniqueness of a positive solution.
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1. Introduction

The differential equation

f"raff"+pA-f"7)=0, (L)
with boundary conditions
S =f'(m)=0a n=0 (1.2)

and f'(7) >1 as

is known as Falkner-Skan boundary layer problem. Shin'
studied the differential equation (1.1) for a =1 and
f = 0.5 with boundary conditions (1.2). For « =1and
f = 0.5 the differential equation (1.1) with boundary
conditions (1.2) represents the Homann flow'. For
o =land [ negative, the differential equation (1.1) with

17— o.

boundary conditions (1.2) represents decelerating flow”. In
this article the analysis is made for «a =1 and

P =—k,where 0<k<1.

For ¢ =land f =—k,equation (1.1) takes the form

f'"+ﬁ["—k(1—f'2)=0

with boundary conditions (1.2).

(1.3)

Let Shear stress (= f"(n))as the dependent variable and

tangential velocity X (= f"(n))as the independent variable.

The quantities X and  are called Crocco variables.

Now
L

V' :J_J:L:L ,which implies
e &L T
dn dn

V' =f" (1.4)

Differentiating (1.4) with respect to 77 and simplifying we
get

*Author for correspondence

fiv =y2 yrr+y(y!)2
As before differentiating (1.3) with respect to 77 one gets
fUHQE+D S+ =0

This gives

YY"+ (3" + 2k +Dxy + y[k(1-x*)—1p']1=0
and finally we get

YY"+ Qk+Dxy+k(1-x%)y' =0.
Let 2k +1=k for 0<k <1.
x=f"(0)=0, and

Hence the

For n=0 ,we  get
n—owo, x—I1.

x=f"(n) maps the
X -interval [0,1).

transformation

n -interval [0,00) into the

Assuming a monotonic dependence of X on 77 we

get x = 0implies 77 =0and x — 1implies 7 — ©.
Then

y(1) = Lim f"(n7) = Limwz 0.
n—w A—0 A77

Thatis; y(1) =0.
Again, from (1.3) and (1.4), we get

() =€(l—x2)—f(77)-

ence 0 1-0 ——1m ies
H y()m( 0)-f(0) 0 pli
V' (0)y(0)=k.

Thus by letting y(= f"(n)) and x(= f'(n)), the

boundary layer problem of equation (1.3) with boundary
conditions (1.2) can be written as
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VY +kxy +k(1-x%)y' =0, 0§x<1} L6
YO0 =k, y1)=0 '

Assume )(0) > 0 because we discuss the existence and

uniqueness of a positive solution of a singular nonlinear
boundary value problem.

Here »(0) = £"(0).
The value of f"(0) is still unknown’. We assume
S =n-In(1+n), (1.7)
which satisfies the three boundary conditions of (1.2).

From (1.7) one gets easily that

f"(n) . from which t
= , Irom whnich we ge
Laeray: ;

£(0)=1.

Then the boundary value problem (1.6) becomes

VY +kxy +k(1-x%)y' =0, O£x<1} 08)
V(O)=k, y1)=0

For ¢ =1 and B =0.5, equation (1.1) with boundary
conditions (1.2) takes the form

yzy"—%(l—xz)y'zo, 0<x<l

Y(0)=-0.5, y1)=0

and its positive solution has been studied by Shin'
using a constructive method such as the method of upper
and lower solutions.

(1.9)

The objective of this paper is to establish the existence and
uniqueness of a positive solution of singular non-linear
boundary value problem of the form(1.8) using a
constructive method such as the method of upper and lower
solutions.

Definition1.1: We call a function a, € C*[0,1] a positive
upper solution of (1.8) if

a, >0 on (0,1)
alal+kxa, +k(1-x")a] <0 on (0,1)
&!(0) < kand a,(1) > 0.

Definition1.2: We call a function «, € C’[0,1] a
positive lower solution of (1.8), if
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a, >0 on (0,1)
asal +kxa, +k(1-x*)al >0 on (0,1)

a,(0)>k anda,(1)<0.

Similar definitions hold for positive upper and lower
solutions of a perturbation of (2.1) which will be given in
the following section.

Definition1.3: We call a function y € C[0,1]n C?[0,1)
a positive solution of (1.8) if

y>0on (0,1)
YY" +kxy+k(1-x%)y =0 on (0,1)
V'(0)=kand y(1)=0.
I1. Existence of a Unique Positive Solution

For each p >1, we consider the nonlinear boundary value
problem

Yy +kxy+k(1-x%)y =0, 0<x<1

,(2.1
V) =k, y(l)ﬁ D

which isa perturbation of (1.8).

To prove the existence of positive solution of (1.8) we
establish the existence of positive solution of (2.1).

Lemma 2.1: y, (x)=3In(2-x)+(k+1Dx +$ is a
P

positive upper solution of (2.1), for each p>1 and
0<k<l1.

Proof: It is clear that

3
Yy (X)>00n(0,1),y, (0)= —?-‘r k +1 ,which can
be written as

Yoy (0) = %Jr k+1<k, y, () =k+1 +$, which can
P

be written as Vip M =k+1 +&2éand

Vo Ve Hhxy,, +k(1-x*)y!, =

_—32[3 In(2 - x) + (k +1)x +$]2 +
(2-x) p

kL3102 = x) + (ke + 1)x +eam] +
p

k(l—xz)[—2+x)+k +1]<0,
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for 0<x<1,p>1 and 0<k<1.
Thus y,, isa positive upper solution of (2.1).

Lemma 2.2:

¥, (%) = Jor* In(2 = x) + k(1 - x)” +;50
P"‘?

is a positive lower solution of (2.1), for each p >1 and

0<k<l1.

Proof: It is clear that y,,(x) >0, on(0,1)and

3,(0) =k, which can be written as

y,; 0)=k >k, Vi @ :*i’ which can be written

_l’_i
Py
1
as Y, (1) = emmm—m—n e
_l’_i
Pr
Also

2 2

VY +kxy, +k(1=x")y;, >0, for
O<x<l, p2land O0<k<I.

Thus y,, is a positive lower solution of (2.1).

Hence we can formulate the following Lemma2.3 as an

application of Schauder’s Fixed Point Theorem 3

Lemma 2.3:For any p >1, there exists a positive solution

y,eC ’10,1] of the problem (2.1)such

that y, <y, <y, on 0<x<I, where y, and y,, are

as given in Lemma 2.2 and Lemma 2.1 respectively.
Lemma 2.4:If Yy is a positive solution of (2.1) and
y;,(x) >0 then 0< y;,(x) <k on (0,1] for p=>1
and 0<k<1.

Proof: Since Yy is positive solution of (2.1), we get

2.n

v,y +hkxy, +k( —xz)y;, =0.
This gives

yij; <—k(1-x° )y;,, which implies

4 2
Z?s o) o
Yo Yo
Integrating from 0 to x ., we get
ln(y;, (x)— ln(y;, (0)) <0, it follows

that 0< )" (x)<1 on (0,1].

Lemma 2.5: If Yy is a positive solution of (2.1) and
Y5 (x)<0 then y’ (x)<k on (0,1], for p>1and
0<k<I.

Proof: Since y, is positive solution of (2.1), we get

2.n

vy +kxy, +k(1-x)y!, =0.
This gives

Y2y" <—k(1=x*)y!, which implies
” 2
i&,gﬁﬁgéi.
—Vp Yp

" 2 "
For x € (0,1], etabm < e 11 if ki< (.
_yp yp _yp

n
Now _y&'< 0 gives y,<0,because — ' (x)>0.
»

Integrating y;< 0 from 0 to x , we
get y;, (x)- y;, (0) < 0,it follows that y;, (x) <k on (0,

1],because y;, (0)=k.

Lemma 2.6: If y, and y, are two positive solutions of

(2.1)then y, =y, forp=>land 0 <k <1.

Proof: Since ), and y, are two positive solutions of
(2.1), we get

42 ’
yl” = —ﬁ—m and

i i
y kx k(1-x>)y!
y2 :—i— - .
Y Y

Suppose that there exists an 77 € (0,1] such that

n(@m) = y,(m).
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If ¥,(0)=y,(0), then by the uniqueness theorem of the
N =DV

contradiction. Therefore, without loss of generality, we may
11(0) < 3,(0).

Since y,(1) < y,(1) by the continuity of y, — y,,there
£e(0,1] such that
(%) <y,(x) on [0,8).

initial value problem, we get which is a

assume that

exists a

1(8) =y,(¢)and

So the function @(x) = y,(x)— »,(x) has a maximum at
x =0 or at the interior of [0,£].

If the function @(x) takes its minimum at x =0, then
we obtain ¢"(0) > 0.

Now,
#"(0) = LimM> 0.
x—0" X

It follows that ¢@'(x) > ¢'(0) =0 near x =0 and hence
d(x) > #(0) near x=0.
This is a contradiction.

Hence ¢@(x) does not have a minimumat x=0.

If the function ¢(x) takes its maximum at the interior of

(0.7, £ €0,
#'(&)=0 and ¢"(£)<0.

But  since Nn(&),3:(&) are

(2.1), n(g) <k > (&) <y, (&) and
0< y{(fl) < k ,we obtain,

#"(&) = »2(&) = ¥(&)

:ﬁ—i_ kgl_ ;22 !_ﬁ_ kgl_ ;22 ’
Wi M Y e

1 1 1 1
= k&, (o —cmm) +- (1 — &) /| (wmn— ) > 0,
= Yo W 1 1? y’z

then there exists a such that

solutions of

which again leads to a contradiction. Hence ¢(x) does not

have a maximum at the interior of [0,£].
This implies that y, = y,.

Lemma 2.7:If Yy is a positive solution of (2.1) for each

p=land 0<k <1, then we obtain
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sy, () + k(=52 (5)

y;? (%) 2 [k — | eo————— ] | on
0 Vi (s)
[0, 1).

Proof: Let Vi be a positive lower solution of (2.1). Since

Y, € C’[0,1] is a positive solution of (2.1), we obtain

2.

Vp <y, and y 3 +kxy, + k(1 —xz)y;, =0.
Now
k(1-x*)y'
0= y; +ﬁ+#( ) < y; +-kli
yp yp Ip

+ k(1= x Yk
ylp
k 1_ 2 '
or, y; +ﬁ+%z 0

ylp ylp
klxyl) + k(l _xz)yra

or, y; > —[#]

ylp

Integrating from 0 tox , we obtain

[0,1), because )/, (0) = k.

] on

Lemma 2.8: If p, > p, =1
solutions of (2.1) respectively,
have 0 <y, (x)< Yy, (x) on(0,1)and

and y, .y, arepositive

then we

vy, (x) <y, (x)<k on(0,1].
Proof: It is clear from the fact that y s is a positive upper

Y, (¥) <y, (x) on[0,1].

solution of (2.1) and so

If y,(0)=y, (0), then by the uniqueness theorem of
the initial value problem we obtain

V,(x)=y, (%),

which is a contradiction. So we may assume that
0<y, (0)<y, (0). Thenwe have

1 1
n 0 _ " 0 — ’ 0 _ 0’
Y, (0) =y (0)=ky!, ( )% mb
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which implies that

Vo, () =y, (%) >, (0) =y, (0)=—k+k =0,

Y, ()=, (x)>y, (0)=y, (0)>0, for xnearto
0.

If there & e(0,1]

that ), (£)=y,, (§)=0 and y, (x)—y, (x)>0,
O0<x<l.

exists a such

Then we obtain

" k
Vi, (8) =3, (&) = k& (o pl(f) o (f))

k 1_ 2 '
(1-&9y,, (f)(m W)

y:”l (&)< k7O<J’;,l (&)<k and
y]’z (5) - ypl (5) > 0
Hence we have

Yy, () =y, ()< ¥, (§) =, (£)=0,0<x <&,

which is a contradiction. This completes the proof.

because

Theorem 2.9: (Existence):If Yy is the positive solution of

(2.1) for each p=123..... R

then the sequence

{y,} converges to a positive solution y of (1.8).
Proof: To prove this theorem, we prove the following steps:

Stepl. y, > yas p—>o.

Step2. ye C[0,1] N C[0,1).
Step 3. ) is a positive solution of (1.8).

Our first step is to show that y, — y as p —> . We

know that the sequence {yp} is monotone decreasing

in p and bounded below by
kx* In(2 — x) + k(1 - x)* + ;50
P+ *

Therefore, y, —>y as p —>o0 and
Y(x) > kx* In(2 — x) + kx(1— x)* on (0, 1].

Also from Lemma 2.7 and Lemma 2.8, we know that the
sequence {))} is monotone decreasing in p  and

bounded below by

I BSOSy

#d
Yip (s)

Therefore, )}, — ' as p —> .

and
V(x) > k- IM ] o
ylp (S)
[0,1) ,where y,,(s) = ks*In(2 — ) + ks(1—s5)*.

Now we show that y € C[0,1]" C?[0,1) .If we integrate

k(1
Mfromow X,

then we

Tk k(
V)~ (0) = I éfyi(f)er ((é)f)yi(f) dé

or,

=k Iké‘yi(fﬂk(l STAC P

If we integrate both sides of (2.2) from 0 to x
obtain

Y, ()= y,(0) = kx—
I Iké‘y (&) + k(1= &)y, (&)

e ——— | ]
v,(&) “

, then we

Let

k& (E)+ k(- E7)y
=] g, (§)+yi(<§>§ WD

Then we have,

Y, (0)=3,(0) = ke — [u(s)ds
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ke _x“‘ kgy (o) +k(l —fz)y'g(f) Jé s
0 y,(&)

t sy, () +k(1=5%)y(s)
J.s ds

#

0 yp(s)

Changing sto & we have

Y,(x)-y,(0)=
o _xi &y, + lz(l —¢ )y'g y
0 yp(‘f)
Iklézyg +k§(1—§2)y'g

0 yi(‘f)

If we let p —> o0in both sides of (2.2) and (2.3), then by
Lebesgue’s Dominated Convergence Theorem, we obtain

E+
2.3)

dg

s +k(1=E2)y'
"(x)=k — dé&.
ye=k-] @) :

and

(@) = y(0) = kr - ]ﬁ%md«; ¥

]”-kic_’fzrrkc_?sl—c_?z“:'dé’

0 Y (&)

which implies that y € C*[0,1). Since y converges to 0

(2.4)

as x approaches 1, y is continuous at x =1, which

y € C[0,1]N C?[0,1). Finally, we shall show
that y is a positive solution of (1.8). It is clear that

V'(0)=k and y(1)=0.

implies

If we take second derivatives on both sides of

V() = k- [ *y"(lé‘) e,
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we obtain

y kxy(x) + k(1—x>)y (x
y'(x) = :
y(x)

which implies that ) is a positive solution of (1.8).

Theorem 2.10: (Uniqueness): Assume that ), and y,

are two positive solutions of (1.8). Then y, = y,.

Proof: The proof of this theorem is similar to that of
Lemma 2.6.

II1. Conclusion

Shin' established the existence and uniqueness of a positive
solution of (1.9) by using the method of upper and lower
solutions. In this article we also established the existence
and uniqueness of a positive solution of (1.8) by using the
method of upper and lower solutions. Equation (1.8) and
(1.9) are very different in form and physically because
equation (1.8) represents decelerating flow and equation
(1.9) represents Homann flow. The positive lower and upper
solutions of (1.8) found in this article are achievement of us.
The establishment of the existence and uniqueness of a
positive solution of (1.8) using the constructive method such
as the method of upper and lower solutions is also an
achievement of us. We hope that the result obtained in this
article will be useful to compare the numerical solution of

(1.8).
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