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Abstract 

The area under ROC curve (AUC) is frequently used as a measure for the effectiveness of diagnostic processes. The aim of this paper is to 
explore and evaluate several nonparametric test methods of comparing the effectiveness and performance of two competing diagnostic 
processes producing quantitative ratings. These nonparametric methods make use of ROC curves when comparing the diagnostics 
processes. An extensive simulation study is performed to investigate the operating characteristics of the test methods in a wide range of 
settings.  
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I. Introduction 

A great use of diagnostic processes is made in medical 
studies based on clinical observations or laboratory methods 
to specify which individuals are classified as nondiseased or 
as diseased. Diagnostic processes provide important medical 
decision making with improved technology to detect 
disease. During the decades, receiver operating characteris-
tic curve (ROC) analysis has been used as a popular method 
of evaluating the performance or discriminatory power of 
diagnostic processes. The ROC curve is a plot of the 
diagnostic process’s sensitivity versus 1-specificity at 
various observed value of the process. It has been used in 
many areas such as radiology1, psychiatry2, epidemiology3, 
biomedical informatics4, non-destructive testing5 and 
manufacturing inspection systems6. 

For statistical analysis, a recommended index of accuracy 
associated with an ROC curve is the area under the curve7. 
The area under the ROC curve (AUC) is interpreted as the 
probability that the observed value of the diagnostic process 
will be greater for a randomly selected diseased individual 
than for a randomly selected nondiseased individual 
assuming that the higher values of a diagnostic process are 
associated with diseased individuals, while lower values are 
associated with nondiseased8. Thus, AUC lies between 0 
and 1 and the greater the AUC, the better the discriminatory 
power of the diagnostic process9. 

For comparing two diagnostic processes, the difference 
between AUCs is often used. In the field of diagnostic 
imaging it is widely recognized that the variability due to 
subjects represents a substantial component of the overall 
variability of the AUC. To better control for the sources of 
variability when comparing diagnostic processes, a paired 
study design is often implemented. This type of design 
usually induces positive correlation between the ratings of 
the same subjects.  

Various parametric and nonparametric methods have been 
suggested to compare the accuracy of two diagnostic 
processes within a paired design setting. DeLong et. al8  

developed a conventional fully nonparametric approach 
leading to an asymptotically normal test statistic. 
Venkatraman and Begg10 prescribed a permutation test for 
testing equality of two ROC curves at every operating point. 
Bandos et. al11 described an exact nonparametric method to 
test equality of two correlated ROC curves. Their method 
modifies the permutation test for comparing correlated ROC 
curves by Venkatraman and Begg10 by using an AUC 
difference index rather than an index of equality of ROC 
curves at each operating point. 

The scope of this article is limited to a brief review and 
comparing performances of widely used nonparametric 
methods suggested by DeLong et. al8, Venkatraman and 
Begg10 and Bandos et. al11.  

II. Estimation of AUC 

For two diagnostic processes, suppose there are N  
individuals without disease and M individuals with disease. 

Suppose mX  and mY  2,1m  denote the corresponding 

patients without disease and with disease, respectively. 
Corresponding bivariate outcomes should be 

 Nix
m

i ,,2,1   and  Mjy
m

j ,,2,1   respectively for 

two diagnostic processes on the same N  nondiseased and 

M diseased individuals. Bivariate cumulative distribution 

functions are denoted by  21 , xxF  and  21 , yyG , and 

their corresponding marginal    m
m

m
m yGxF ,   2,1m .  

Bamber12 noted that the area under the ROC curve is equal 

to  XYP  . Let  2,1mAm  be the areas under the 

respective ROC curves of diagnostic process 1 and 2. The 
methods of DeLong et. al8 and Bandos et. al11 test the null 

hypothesis 210 : AAH   versus the 

alternative 211 : AAH  .  

The area under an empirical ROC curve can be computed by 
trapezoidal rule12. Hanley and McNeil13 showed that the 
area computed by trapezoidal rule under an empirical ROC 
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curve is equal to the Mann - Whitney U  statistic for 
comparing distributions of values from the two samples. 
The formula that Hanley and McNeil13 suggested for 
computing the area under the ROC curve is given as 
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where, A  Area under the ROC curve, M  Number of 

diseased individuals, N  Number of nondiseased 

individuals, jY  The test score of thj  patient with disease, 

iX  The test score of the thi  patient without disease and 

g  is a function comparing iX  with jY  such that 
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So for the thm  diagnostic process the area under ROC curve 
can be computed as 
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III. Nonparametric Methods of Comparing Diagnostic 
Processes 

DeLong et. al’s Conventional Test 
DeLong et. al8 has developed a totally nonparametric 
approach for comparing areas from two samples on the 
same subjects by using the theory of generalized U  
statistics. The method of structural components is used to 
generate an estimated covariance matrix, and the resulting 

test statistic has asymptotically a 2  distribution. 

For m different diagnostic measures with  r
jY ,  r

iX  

 MjNi ,,2,1;,,2,1    and rÂ , mr ,,2,1  , 

   



N

i

ijj
r XYg

N
YV

1

10 ,
1

, Mj ,,2,1    and  

   



M

j

iji
r XYg

M
XV

1

01 ,
1

, Ni ,,2,1   

The mm  matrices 10S  and 01S  with  th
sr,  elements, 
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Now the estimated covariance matrix for the vector 

 mAAA ˆ,,ˆ,ˆ
21   of estimated areas under the curves of 

srS , is obtained as,
 

0110

11
S

N
S

M
S  .  

DeLong et. al8 thus, showed that for any contrast AL  , 

where L  is a row vector of coefficients, 

 2

1

ˆ

LSL

ALAL




 has a 

standard normal distribution. Squaring this, the test statistic 
then takes the form, 

       AALLSLLAA ˆˆ 1
 

which has a chi-square distribution with degrees of freedom 

equal to the rank of LLS  . 

Bandos et. al’s Area Test 

Bandos et. al11 derived exact and asymptotic permutation 
test methods to test the equality of two correlated ROC 
curves which are designed to have increased power to detect 

differences in the AUCs. If  N

i
m
iX

1
,  M

j

m
jY

1
 be the 

ratings observed in the diagnostic process m
 

for N  
actually nondiseased and M  actually diseased individuals 

and  N

i
m
ix

1
,  M

j

m
jy

1
 be appropriately transformed 

ratings, an unbiased nonparametric estimator for the area 
under the ROC curve for diagnostic process m

 
can be 

written as mÂ . For a paired design, the difference in two 

AUCs can be estimated as, 
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As a member of U statistics the nonparametric estimator of 
the AUC difference is known to be asymptotically normally 
distributed under quite general conditions14. Based on this 
property and the additional assumption of exchangeability, 
they constructed a simple asymptotic test procedure with 
test statistic 

 
 1,0

ˆˆ

ˆˆ

21

21 N
AAVar

AA d



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where,    is the parameter space.  

Venkatraman and Begg’s Permutation Test 

A general problem is that although the two diagnostic 
processes may have different ROC curves, they may have 
same area. But one diagnostic process may genuinely be 
superior to the other despite having the same area. In order 
to detect the differences between two ROC curves 
Venkatraman and Begg10 developed a simple permutation 
test. The test proposed by Venkatraman and Begg10 is thus 
for the equality of the underlying ROC curves and is 

executed by permuting the labels of the two diagnostic 
processes within each diseased and nondiseased subject. 
Such an approach implicitly assumes that both diagnostic 
processes are exchangeable within subject and requires an 
appropriate transformation, such as ranks, for diagnostic 

processes differing in scale. Let  m
j

m
i

m
k yxt ,  

 MjNinkm ,,2,1;,,2,1;,,2,1;2,1   be the 

observed results from a total of MNn  ( N  

nondiseased and M  diseased) individuals under the thm  
diagnostic process. For empirical calculation of the test of 
Venkatraman and Begg10, the entire data set can be denoted 

by  MNkDTT kkk  ,,2,1;,, 21   where 1kD  if the 

case is diseased and 0kD  if the case is nondiseased. The 

corresponding ranks of  1
kT  and  2

kT  be denoted by 

 kR  and  kS ,  respectively. Using the rank statistics of 

the observed diagnostic values and setting 1,,2,1  nl   

an empirical error matrix is defined by

   
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The statistic nllll eeee  21.  is a measure of the 

closeness of the two ROC curves at the thl  order statistic. 

The corresponding overall test statistic is 





1

1

.

n

l

leE . 

If the two diagnostic processes are evaluated on the same 
metric, and there is no systematic measurement bias, then 
the test values for any subject can be directly exchanged to 

generate the permutation distribution. If  nqqq ,,, 21   

represent a sequence of 0’s and 1’s, then a permuted data set 

 *2*1 , kk TT  indexed by that sequence is given by 

  ,1 21*1
kkkkk TqTqT   

   nkTqTqT kkkkk ,,2,11 12*2  . 

A new set of ranks  ** , kk SR  is evaluated based on 

 *2*1 , kk TT  and a corresponding statistic *E  is computed. 

The permutation distribution is the distribution which 

assigns a uniform mass to each value of 
*E given by all the 

n2  sequences of 0’s and 1’s. Since this may be a very large 

number, a sampling scheme is used where  nqqq ,,, 21   is 

a random permutation generated by n  fair coin tosses and 
the process is repeated a sufficiently large number of times 
to obtain a stable p - value. 

If the direct exchangeability of 1
kT  and 2

kT  is not 

considered to be an appropriate assumption, then it is 
necessary to rely on the ranked samples to evaluate the p - 

value. In this case each permuted set of ranks is generated 
by randomly exchanging pairs of ranks and reranking them. 

That is, the set of ranks  **, kk SR
 
will be first generated by 

using 

  ,1*
kkkkk SqRqR   

   nkRqSqS kkkkk ,,2,11*   

This process will invariably introduce numerous ties, so it is 
necessary to have a second randomization step to break the 

ties, that is, to generate  **** , kk SR , where 

     nkSJSRJR kkkk ,,2,1******   

where  .J  represents the process by which tied ranks are 

re-ranked by randomization.  
 

IV. Simulation Study 

An extensive simulation study has been performed to 
compare empirical test sizes (Type I errors) and power of 
the nonparametric test for different underlying AUC 
differences, correlation between diagnostic processes and 
different sample sizes. Four different practically possible 
scenarios as presented in Figure 1 are covered in this 
simulation study. For data generation purpose, we have 
assumed two continuous measurements for each  
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nondiseased individual from a bivariate normal distribution 

centered at 0x  with both measurements having a 

marginal variance of 1.0. That is 0mx
  and  

2,1,12  mmx
 . So we have                                       

  2,1,
1 2

1 


 mA
m

m

y

y

m




                     (1) 

where, 1  is the percentile of standard normal 
distribution15. As two ROC curves drawn from 
measurements having equal variances never cross each 

other, two continuous measurements for each diseased 
individual from a bivariate normal distribution centered at 

y  with both measurements having a marginal variance of 

1.0 are taken for diagnostic processes with non-crossing 
ROC curves.  For diagnostic processes having crossing 

ROC curves unequal variances ( 0.12
1 

y
  & 0.42

2 
y

 ) 

are assumed. In all the cases, three different correlation 
values ( 0.75 0.50, 0.25, ) are considered. The values 

of y  are directly determined from 1A  and 2A  from 

equation (1). 
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Fig. 1. ROC curves. (a). Non-crossing ROC curves with same areas; (b). Non-crossing ROC curves with different areas; (c) Crossing ROC 
curves with same areas and (d) Crossing ROC curves with different areas. 
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Table. 1. Empirical Test size when comparing two diagnostic tests with same areas and non-crossing ROC curves [ 1A  

- Area of diagnostic process 1; 2A  - Area of diagnostic process 2; D  - DeLong et. al Test; V  - Venkatraman & Begg 

Test; B  - Bandos et. al Test]. 
 

Area 
Sample 

Size 
25.0  50.0  75.0  

21 , AA  MN ,  D  V  B  D  V  B  D  V  B  

.60, .60 

20, 20 .074 .056 .065 .060 .047 .050 .047 .052 .040 

40, 40 .059 .044 .050 .046 .043 .039 .053 .051 .049 

80, 80 .058 .058 .054 .053 .054 .048 .042 .044 .040 

.70, .70 

20, 20 .060 .050 .052 .065 .054 .049 .066 .055 .052 

40, 40 .054 .047 .044 .061 .055 .057 .062 .054 .060 

80, 80 .050 .047 .049 .045 .049 .044 .052 .053 .052 

.80, .80 

20, 20 .050 .032 .030 .067 .044 .049 .064 .043 .052 

40, 40 .046 .035 .041 .040 .037 .035 .042 .048 .042 

80, 80 .043 .036 .038 .056 .056 .053 .049 .063 .051 

.90, .90 

20, 20 .044 .040 .042 .056 .045 .042 .045 .040 .045 

40, 40 .043 .036 .037 .048 .045 .047 .046 .060 .049 

80, 80 .042 .037 .042 .051 .054 .053 .065 .053 .058 

 

For each scenario 1000 replications are computed and both 
empirical test size and empirical power are obtained for 
sample sizes 20, 40 and 80. The rejection region for the tests 
are determined using a nominal significance level of 

05.0 . The empirical nominal values are compared with 
the approximate 95% confidence interval (0.036, 0.064) 
around nominal size of 0.05 based on a binomial sample of 
1000 repetitions.  

For both non-crossing and crossing ROC curves, given the 
values of AUCs and variances, the mean values of 
diagnostic scores for diseased and nondiseased individuals 
can be obtained from relation (1) and the variance-
covariance matrix can be constructed as 


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V. Result and Discussion 
 

Table 1 presents the empirical test sizes obtained for the 
discussed nonparametric test methods when testing for 
equality in performance of two diagnostic process having 
non-crossing ROC curves and same areas. An example of 
such configuration is shown in Figure 1(a).  The bold entries 
in Table 1 are the empirical test sizes obtained outside of the 

approximate 95% confidence interval (.036, .064).  It is 
clear from results that, empirical size of the test suggested 
by Venkatraman and Begg10 seems to be less conservative 
than tests by DeLong et. al8 and Bandos et. al11. This is 
especially evident with smaller sample sizes. 
 
Along with the empirical nominal sizes we also have 
considered the statistical power of the test methodologies to 
assess their performance. The power of a statistical 
hypothesis test procedure is defined as 1 – Type II error that 
is, the rate of rejecting the null hypothesis when it was false. 
Table 2 depicts the calculated empirical power of the 
nonparametric test methods when testing equality of 
performance of two diagnostic processes having non-
crossing ROC curves and different area values. As portrayed 
in Figure 1(b), in this case, one diagnostic process is 
uniformly superior in performance than the other. The 
results calculated for a number of set up in Table 2 make it 
clear that the test suggested by DeLong et. al8  exhibits 
better power than the other two. The power of the tests 
increases with increasing correlation and sample size. 
Though the test by Venkatraman and Begg10 gives lowest 
power in almost all set up, it’s power is very closed to test 
by Bandos et. al11. For large sample sizes and higher areas 
differences, the empirical power for each of all three 
nonparametric tests tends to others. 
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Table. 2. Empirical power when comparing two diagnostic tests with different areas and non-crossing ROC curves 

[ 1A  - Area of diagnostic test 1; 2A  - Area of diagnostic test 2; D  - DeLong et. al Test; V  - Venkatraman & Begg 

Test; B  - Bandos et. al Test]. 

Area 
Sample 

Size 
25.0  50.0  75.0  

21 , AA  MN ,  D  V  B  D  V  B  D  V  B  

.60, .70 

20, 20 .153 .129 .127 .176 .164 .170 .262 .242 .261 

40, 40 .256 .235 .239 .325 .304 .310 .504 .464 .491 

80, 80 .410 .404 .402 .574 .542 .568 .870 .817 .854 

.60, .80 

20, 20 .470 .430 .430 .629 .585 .591 .832 .795 .781 

40, 40 .764 .743 .733 .894 .874 .870 .994 .989 .988 

80, 80 .973 .970 .968 .993 .993 .992 1.00 1.00 1.00 

.60, .90 

20, 20 .906 .894 .864 .965 .958 .937 .998 .999 .991 

40, 40 .998 .996 .995 1.00 1.00 .999 1.00 1.00 1.00 

80, 80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.70, .80 

20, 20 .181 .168 .164 .211 .194 .203 .317 .302 .331 

40, 40 .330 .314 .325 .407 .384 .397 .660 .598 .639 

80, 80 .544 .523 .534 .712 .680 .702 .929 .893 .918 

.70, .90 

20, 20 .655 .624 .601 .746 .722 .695 .932 .924 .894 

40, 40 .929 .915 .900 .977 .969 .965 .999 .999 .999 

80, 80 .998 .997 .996 1.00 1.00 1.00 1.00 1.00 1.00 

.80, .90 

20, 20 .252 .236 .246 .290 .278 .292 .429 .394 .434 

40, 40 .466 .448 .447 .605 .578 .589 .838 .789 .828 

80, 80 .773 .761 .769 .881 .863 .868 .989 .987 .987 

Table. 3. Empirical power when comparing two diagnostic tests with same areas but different (crossing) ROC curves 

[ 1A  - Area of diagnostic test 1; 2A  - Area of diagnostic test 2; D  - DeLong et. al Test; V  - Venkatraman & Begg 

Test; B  - Bandos et. al Test]. 

Area 
Sample 

Size 
25.0  50.0  75.0  

21 , AA  MN,  D  V  B  D  V  B  D  V  B  

.60, .60 

20, 20 .066 .096 .061 .059 .079 .043 .062 .131 .050 

40, 40 .057 .147 .054 .071 .186 .065 .046 .236 .049 

80, 80 .050 .348 .051 .047 .434 .047 .046 .574 .050 

.70, .70 

20, 20 .061 .093 .059 .044 .080 .042 .057 .112 .056 

40, 40 .060 .136 .057 .050 .196 .045 .055 .282 .057 

80, 80 .048 .383 .048 .035 .463 .041 .056 .612 .059 

.80, .80 

20, 20 .042 .078 .042 .045 .084 .044 .057 .114 .059 

40, 40 .041 .122 .044 .051 .163 .050 .040 .236 .041 

80, 80 .044 .323 .044 .047 .410 .053 .047 .532 .054 

.90, .90 

20, 20 .040 .057 .054 .038 .060 .053 .050 .084 .061 

40, 40 .044 .093 .046 .044 .112 .049 .051 .151 .055 

80, 80 .048 .207 .049 .041 .252 .046 .046 .337 .050 

Table 3 and Table 4 demonstrate the empirical statistical 
power of the test methods for testing null hypothesis of 
equal performance of two diagnostic processes having 
crossing ROC curves. Particularly, in Table 3, we assumed 
that the two processes have same overall area under curve 

but they have different ROC curves and consequently 
different in their performance. As described in Figure 1(c), 
this is a case where each of diagnostic processes has 
partially better performance than the other but none 
performs uniformly better.  
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Table. 4. Empirical power when comparing two diagnostic tests with different areas as well as different (crossing) 

ROC curves [ 1A  - Area of diagnostic test 1; 2A  - Area of diagnostic test 2; D  - DeLong et. al Test; V  - Venkatraman 

& Begg Test; B  - Bandos et. al Test]. 

Area 
Sample 

Size 
25.0  50.0  75.0  

21 , AA  MN ,  D  V  B  D  V  B  D  V  B  

.60, .70 
20, 20 .165 .203 .152 .179 .221 .171 .223 .283 .212 
40, 40 .209 .310 .206 .273 .418 .277 .311 .519 .318 
80, 80 .414 .669 .412 .465 .775 .475 .547 .886 .571 

.60, .80 
20, 20 .487 .504 .456 .475 .508 .418 .544 .597 .497 
40, 40 .705 .755 .678 .791 .856 .768 .848 .903 .831 
80, 80 .952 .982 .948 .977 .991 .997 .992 .997 .992 

.60, .90 
20, 20 .842 .845 .815 .912 .920 .897 .945 .958 .948 
40, 40 .992 .994 .990 .999 .998 .998 .999 .999 .999 
80, 80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.70, .80 
20, 20 .187 .211 .179 .192 .234 .191 .222 .282 .230 
40, 40 .304 .423 .302 .309 .446 .316 .389 .574 .417 
80, 80 .484 .739 .497 .597 .812 .608 .628 .888 .656 

.70, .90 
20, 20 .560 .596 .545 .623 .661 .612 .695 .735 .703 
40, 40 .853 .886 .844 .903 .938 .900 .952 .967 .956 
80, 80 .991 .998 .990 .998 1.00 .998 .999 1.00 .999 

.80, .90 
20, 20 .242 .269 .242 .243 .275 .255 .294 .353 .330 
40, 40 .402 .483 .412 .482 .576 .516 .565 .662 .594 
80, 80 .712 .839 .726 .774 .907 .790 .848 .950 .871 

 

The configurations considered in Table 3 show very 
interesting results. From these results, it is apparent that 
both the test methods by DeLong et. al8 and Bandos et. al11 
ignore the difference in the ROC curves (the crossing 
nature) when testing for equality in performance of two 
diagnostic processes. As a result, these two test methods 
show very little power in all the set up. A reverse result is 
observed for Vekatraman and Begg10 test method. Despite 
of same area values, it takes the difference in ROC curves 
and exhibits far better power than other two test methods in 
all set up. Table 4 compares two diagnostic processes those 
are different in areas as well as in ROC curves. Figure 1(d) 
elucidates this configuration. As seen in Table 3, the test by 
Venkatraman and Begg10 performs better again in this 
configuration. The same argument makes the difference here 
too. The virtue of tracking difference in the ROC curves 
along with the difference in areas keeps the Venkatraman 
and Begg10 method ahead.     

VI. Conclusion 

Comparing classification and discriminatory performance of 
two diagnostic processes is of great interest in many 
practical research fields including medical science, signal 
processing, engineering, bioinformatics etc. There are a 
number of methodologies devised for this purpose. Little 
knowledge regarding operating conditions of these methods 
often confuses the researchers to select appropriate method 
in their respective applications.  In this article three very 
commonly used and competing nonparametric test 

methodologies to compare performance of two competing 
diagnostic processes namely, DeLong et. al8 test, 
Venkatraman and Begg10  test and Bandos et. al11 test, are 
discussed and the operating characteristics of these methods 
are explored and compared through extensive simulation. 
The simulation study depicts that when the two diagnostic 
processes only differ in areas and have non-crossing ROC 
curves, the DeLong’s test8 method exhibits better operating 
characteristics though it provides little conservative 
measures of Type I error. The method by Bandos et. al8 can 
be considered as a very close alternative in such 
configurations.  On the other hand, if the two diagnostic 
processes have crossing ROC curves with same or different 
areas, the Venkatraman and Begg’s method10 can be 
employed without a second thought. DeLong’s8 and 
Bandos’s11 test methods expose very weak operating 
characteristics in these scenarios. It is expected that, the 
findings of this study will be of help for researchers to avoid 
confusion and to select between the competing test methods 
more confidently.    
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