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Abstract

We study stability and convergence analysis of a finite difference approximation of a linear parabolic partial differential equation (PDE) in
a periodic domain. In particular, we analyze consistency, stability and order of accuracy of a central space forward time scheme to solve the

PDE.
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I. Introduction

Various problems from chemical, physical, mechanical,
biological and many other applied sciences have been
modeled by reaction diffusion systems as well as by
advection reaction diffusions systems. There are various
such models that contain local [8, 12] or nonlocal diffusion
[2,4, 5, 7] operators and many contain both [6]. These types
of models are typically complicated, interesting to scientists,
challenging to understand substantially and to analyze. In
general, these type of models can be written as

u, (x,t) =au, (x,t)+ 5(J(x)* u(x,t)— u(x, t) )+
(xv,1))+ (), x € 91, ()

where @ € R, <0, & >0are constants, J(x) is a kernel
function representing
modeled, f(u) is a nonlinear function, and J(x) * u (x,t )
is a convolution represented by

J(x) *u (x,t)==J.J (x=y)u (y,t)dy.

special behavior of the problem

In [11], the author discussed various issues of finite
difference approximations of partial differential equations
(PDE) in an infinite domain. He discussed welposedness,
stability, accuracy and convergence of various finite
difference approximations of time dependent PDE. In [8],
the author analyzed accuracy of Crank-Nicolson and
Richtmyer-Morton methods for local diffusion and
advection operators considering a non-periodic domain. In
[9], the author discussed finite difference schemes for linear
variable coefficient diffusion operators.

In [7], the authors study the model (1) considering ¢ = 0,
L = 0: They show coarsening of solutions, numerical

approximations of the problem. Accuracy of any such
approximation is also discussed in [7] in short.

In [10] and [12] authors study spectral methods for
parabolic problems. In particular, the authors in [10], restrict
themselves with the stability issues of the Fourier spectral
method. A simple one step approximation of a linear

partial integro-differential equation is well studied in [3].
The author analyzed stability and accuracy conditions as
well as the rate of convergence considering both smooth and
non-smooth initial functions.

To be precise, we consider the linear part of (1) with € =0
(f (u) = 0) which contains advected local diffusion operator
(which is related to the famous Fokker- Planck equation
[11]) here. Instead of considering the problem as a Cauchy
or a Neumann problem in a bounded domain, we consider it
as an initial boundary value problem (IBVP) in a periodic
domain and analyze the stability and convergence of the
scheme used to solve the IBVP. Finite difference methods
are used here to approximate solutions of partial differential
equations as it is required in several practical situations.
There are various highly accurate schemes like pseudo-
spectral method, Fourier transform techniques, higher order
piecewise polynomial schemes to approximate (1). Here we
restrict our self with the stability and convergence analysis
of a finite difference scheme in both space and time. We use
discrete and continuous Fourier transforms in our stability
and convergence analysis. As we consider the problem in a
periodic domain we link the discrete Fourier transform
results in a periodic domain and the continuous Fourier
transform using Poisson summation formula. We study the
famous book [1] for the definitions and theorems about
Sobolev space in a periodic domain which has been
extensively used in our convergence analysis.

We organize this paper in the following way. In Section 2,
we present the Problem and it's discretisation in both space
and time. In Section 3, we show consistency and stability of
the scheme, whereas Section 4 deals with accuracy of the
scheme used to generate approximate solutions.

II. The Problem and Finite Difference Approximation
We consider the following IBVP

Lu(xat) zut(x7t)_aux(x7t)_ﬂuxx(x7t):0 (2)

in a periodic spatial domain [0; 2L] i.e, the boundary
condition is u(x, ) = u(x+2kL, t) for all k € Z with a given

initial function u(x, 0) = u,, : We approximate (2) in space by



du. Ui 2u, +u

- — (y ﬂ# 3)
dt

For all i=1,2,3, ... , N where Ax is an uniform space

mesh and zu(x,. t). (3) is now semidiscrete time

dependent ordinary differential equations (ODE) and can be
solved by any one or multistep explicit or implicit schemes.
Here we use the explicit Euler scheme to integrate the time
dependent system of ODEs. Using the explicit Euler scheme
for the time integration of (3) we get

(ji”Jrl U +aﬂ( l/:" Ui”) ﬁ ( lllrl

w7 +U})
2Ax

“)
where Atis the time step lengthand U" = (x, , tn)

III. Stability of the Approximation

In this section we discuss stability of the scheme (4). It is
very straight-forward to verify that the scheme used to solve
(2) is consistent. Thus we motivate ourselves to discuss
stability of the scheme (4). Throughout the stability,
accuracy and convergence analysis we apply the Fourier
series and the Fourier transform definitions and theorems.
Before getting into the main discussion let us introduce
some necessary definitions and theorems which are
discussed in detail in [13].

Definition 1. The Discrete Fourier Transform for a periodic

function (DFTPF) can be defined by

il N-1 _ i7Z']OC _

T, =nY ulx, )e—Lsfor allk=0,1, 2, ., N-1

or k = _£+ Li ,,,,,, ﬁ 2 where u(x, t) is a periodic
2 2

function with period L and its inverse Fourier transform is

i kx,

defined by U e— or
i ~ imkx,

u, = Z U j_
k:—§+1 L

Definition 2. For any periodic function f{(x) with period 2L,
its Fourier series can be defined by

imx

fx)=>7 Fet

—in,
where F, =
2

IL [ e = ax

Definition 3. >0,H"Qx)

is defined to be the closure of Cl; (27r) under the inner

[1, page 223] For integer k
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1
. ' 1
product norm u# = |:Zj0'0(j t2 }2 . For arbitrary

reals > 0, H® (27) can also be obtained following [1,
pages, 219-223]. For exact details of the Theorem 1 please
see [1, page 223].

Theorem 1. [1, page 223] For s € R,HS(27z)is the set of
all series Q)(x) = Z::_w aml//(x) for which

TN T

where

v (x)=al.e
" 27

norm Mvis equivalent to the standard Sobolev norm

uf" for ¢ eHs(2 ).

imx

,m=0,%1, £2,.. Moreover, the

—i2 thxj
Now from the DFT definition U —hz ]Ax)e S
Jj=0
and from the Fourier series definition
127110»

2L
u, - (x)e dx and the corresponding Fourier

0 —i2 mkx
series is Z ue *t Thus following [11] we
k=—0

have

N-l o i275x —i2nkx/- N-l o i27(s—k).
U, =h Zﬁve Loe hzz ue 2

Jj=0 s=—0 Jj=0 s=—00

© N-1 lZIZAx/-(Y k) ©
— 5 2L — 5
—hz u, e —hZuSNé‘N(s—k)
§=—00 Jj=0 §=—00
0
= iy, 5)
q=—o

if j=qNforallq Z,

0, otherwise.

1
Where 5(N)(])={ ’

The relation (5) is known as discrete Poisson sum formula.

Also from the Fourier series definition, the k™ Fourier
coefficient can be written as
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—i27kx

j f(x)e 2L dx

—i2 7hx

I [ S (et 2Lj))je”dx

2L0 | &

L (o iy o 225
- dy = P
o (2

which establishes the relation between Fourier co-efficient
and the continuous Fourier transform. Using the Fourier
transform definition (4) can be written as

o 27k, v 2k A 2k 2k,
AXZU,(NHE 2L —AXZU e +a—AxZU A —e 2

k=0 k=0

No1 2k 2iky; 27k,
N}(V e 2L _Dp 2 o 2L

k=0

We simplify the above equation to get

- - A 2 'nl\A —2mkAx A[ 2 mikAx _ 2mikAx
Xt =U] [1+a—2AxAx( —e ]+ﬁsz(e AL _Dye 2 ]]

and we write

U =g(Ax,ALk )T},

Where
g(Ax,ALk) =

2 mikAx —2mikAx 2 mikAx 2 mikAx
{1-&-(1%&[6 AL —e 2 j-&—ﬁﬁe AL 2+ U D

(1 +2i a%sm[%jj 45 qsin (”kAx)

2L 2L
Now repeated substitution of U L,n=0;1;2; _  ;inthe
above equation gives
Ul =g"(Ax,ALK)T?. (6)
Thus the scheme (6) is stable [11] if
fe(axack]<i
Now
At it )
'g(Ax,At,klz = 1= 4 femmmnsin’ | comm—
Ax 2L
. %)
At . (27Ax )
+| rem—-sir | c—
Ax 2L
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Here 'g(Ax,At,k’z <1, gives

At Sﬂz%.

L +a Ax

Thus we conclude with the following stability result.
Theorem 1. The one step scheme (4) for the IBVP is stable
2 5Ax°
ifo< Ar < - —
P~ +a Ax
IV. Accuracy and Convergence Analysis

In this section we analyze convergence of the one step
approximation (4) used to solve (2). This analysis is based
on [11]. We define the exact solution of (2) as

0

u(x,t)=">" Bj(z)ezi.ﬂ. @®)

2L

Jj=—w
Differentiating (8) with respect to x and t we get

2ijmx

ux(x,z)zi%fzj(z)e 2L )
~ 2L
= (2ix Y 2
u, (,t)=Y -2-th B,(t)e 2", (10)
Jj=—0

and

aﬁﬁ=i(2j Bk,

j==o

2ijme

ZB' (t)e 2t .

Jj=—0

and u

Substituting (9), (10) and (11) in (2) and then simplifying
we write

0| o 0

= B(t)=4B,(t) (12)

where
[a.g ﬁ.gj

The solution of (12) can be written as
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Bj(t)sz(o)eq” (13)
where
O)=LJ.L u(x,0)6¥dx
2L°-L

Now using (13) the exact solution of (2) can be written as

uwr)= 3 B0k

j=—o0

ymc

(14

Definition 4. (similar to [11]) An initial value problem of
type (12) is well-posed if for any choice of initial solution
Bj(0), there exists a constant C such that the following

inequality holds
ke (|<cc]s, 0}

From the above definition it can be verified that the
differential equation of type (12) is well-posed if and only
if there exists a constant ¢' such that

Re(g)<c’ (15)

Then we return to our main discussion. Applying the inverse
of the DFT in (6)

N
"y ik ;
= Zzzg”ﬁ,?e L (16)
= %4—1
Thus from (14) and (16)
u(xj ’ tm )_ Ujm
ijmx E ik
© ym; 2 PO
:Z B,(0)ee L — Zg'”U,?e L
n=—® k:-gﬂ
N
B ik ;
= > (B ( (0)e — g"U? )e + Y B, (0)e"e - .
k:—ﬁ+1 ‘k‘>ﬁ
2 2
So
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Foo)-uf s 3 fnow o]

Z O)e aty , L |

K>3

(17

To get bound and to distinguish between periodic and non-
periodic functions (u(x; t)) here by #"” we mean a function

u™ (x,t) € RXxR" and u(x, t) € [0, 2L]x R". Using the
Poisson summation formula

l .,
B, (O) _Z”kp (0)

where 2™ represents u(x, t) in infinite domain, see [11] for
similar discussion.

Now
N N
i ‘ )eqt gmﬁ lzg i ‘eqt _g kjnp 0|Z
N, k=
2

e™ — g(At,Ax k)

A’[LML - ] At 7 Ax At Ax
—| 1+ ummn)isin | | — 4 fammsin’ | dm—
( 2Ax ( L ] Ax ( 2L ]]

3
%}At +iaAtAX? [%] +O(AX4)

=e

ioknr
— D G —
2[ L

+ ﬂAz[%sz +0(Ax* )J +o(ar’)
= Atle,At+c,Ax? )+ O(AL, Ax*)

where ¢, ¢, € C. Thus

qu - g(AtanakIS At(CIAt‘F Czsz ) <
At(CI*AH- C;sz), (18)

where Cl* , C; € R gives the accuracy of the scheme. So,
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" (At,dx,k) ),z'“f Z (™) —g"(At.dx k))”"”|Z
k=——+1

N
2
1,
2 (e"
=
2

N

2
=[(Z;;‘H'I( A Atdxky 'Z
iquA"Sl and 'g'Sl hold
<AR?(C) AL+ CiAY?) Zh'; )

H 2(4—11 3

5#0

(19)

A,,,,(2iz'sk + le
1§70 2L

N‘)MN‘>

N

<L Z (M]Z<2LC g,
j=N #0
2

=con g, (1)

for somev >1/2 and

ZlB O)eq‘frlz< Z'B lz

(20)

\k\>5 \k\>—
D LX) EETI Y F
k >—

Thus combining (19), (20) and (21), the error estimate (17)
can be written as

'4(xj,tn)—U;lz <i(ejar+ & o+
V)szv'”olﬁ“(zm

Thus we conclude the convergence estimate of the scheme
used to solve (2) with some smooth initial function by the
following theorem.

Theorem 2. If the initial boundary value problem (2) with
0) = gx) is
approximated by the stable one step finite difference

some smooth initial function (X,

formula (4), then there exists nonnegative constants C 1* , C;
and C such that the following inequality holds

booo)-vfc dciaer cnc e, -
C(V)Ax”'%'m(m

(erae+cnc i
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where v > e,

N

had
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