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Abstract 

Bisection and regular false-position methods are widely used to find roots of a transcendental function f(x) in a certain interval [a,b] 
satisfying f(a). f(b) < 0. The paper develops a new algorithm to find roots of transcendental functions based on false position method. 
We use two end points of the interval to interpolate f(x) by an equivalent cubic polynomial using clamped cubic spline formula. We 
consider one of the roots of the interpolated function to define a new interval and to approximate the root of  f(x).   
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I. Introduction 

Transcendental equations are equations containing terms 
that are trigonometric, algebraic, exponential, logarithmic, 
etc. terms. Many analytical and iterative methods are used to 
solve transcendental equations e.g. [2],[5]. Though these 
methods are capable of solving many transcendental 
equations they suffer from many common disadvantages. 
Usually transcendental equations have many solutions in a 
given range, and analytical methods are not able to find all 
these roots in a given interval. Even when they find several 
solutions, it is not possible to conclude that the given 
method has found the complete set of roots/solutions, and 
has not missed any particular solution. Also, these methods 
fail in case of misbehaved or discontinuous functions. 
Hence, though these methods may work very well in some 
situations, they are not general in nature and need a lot of 
homework from the Analyst. 

Newton Raphson method is a commonly used method for 
solving transcendental equations. The method makes use of 
the slope of the curve at different points. Therefore, if the 
function is non differentiable at points or has a point of 
inflection, the method is not able to find the root. Secondly, 
if the function changes its slope very quickly (frequently 
achieves slope of zero), or is discontinuous, it cannot be 
solved by this method. If the function is discrete, the 
derivative has no meaning for it and this method cannot be 
used. Also there is no straightforward way to find all the 
roots in an interval or even ascertain the number of roots in 
the interval. 

Bisection method needs two points ))(,( afa  and 

))(,( bfb  on the graph such that 0)()(  bfaf . 

There is no straightforward analytical method to find these 
points. Another problem lies in choosing the distance 

between the points a  and b . For the method to work, a  

and b  should be close enough, such that the function 
behaves monotonously in these limits. At the same time, a 

small difference in values of a  and b  makes it difficult 
to search the sample space. An algorithm to ascertain such 
points for all roots of the equation has to be essentially 
random in nature and it can be another application of genetic 

algorithm (GA). This will be discussed later. Further still, 
the method fails for discontinuities in a function. 

Method of False Position suffers from the same problems as 
in Bisection method. Hence it can be concluded that 
analytical methods cannot find all the roots of a 
transcendental equation reliably [1]. 

To develop a new algorithm of finding roots of a 
transcendental equation, we assume 0)( xf  in an 

interval ],[ ba  so that )(af  and )(bf  are of opposite 

signs. So, )(xf  cuts the x -axis at one point in the 

interval ],[ ba  at least which is guaranteed by the following 

theorems.  

Theorem 1: If )(xf  is a real and continuous function in 

an interval ,bxa   and )(af  and )(bf  are of 

opposite signs [2] i.e. 0)()(  bfaf  then there is at 

least one real root in the interval between a  and .b   

By clamped cubic spline interpolation we can easily make a 
cubic polynomial using two end points of the function 

))(,( afa  and ))(,( bfb  that can represent our 

assumed transcendental function. How a cubic equation can 
be solved by a general formula and how the clamped cubic 
spline formula makes a cubic polynomial are described in 
section II. From a cubic equation, out of the three roots we 

must find at least one real root 1x  lying in the interval 

],[ ba  which is our first approximate root of 0)( xf . 

Checking sign of )( 1xf  we replace 1x  for a  or b  

for furthers iterations. The general formulation of Numerical 
solutions of transcendental equations based on cubic 
polynomials is described in section III and in section IV we 
take examples to illustrate the working rule and its 
geometric interpretation. 

II. Preliminary Results   

In the early 16th century the Italian mathematician Scipione 
del Ferro (1465-1526) found a method for solving a class of 

cubic equations of the form nmxx 3
. In 1530 there 

was a famous contest between Niccolò Tartaglia 
(1500–1557) and Antonio Fiore, the student of Del Ferro, 
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where Tartaglia won the contest. Gerolamo Cardano 
(1501–1576) learned about Ferro's prior work and published 
Ferro's method in his book Ars Magna in 1545. Again 
Tartaglia challenged to Cardano, which Cardano denied. 
The challenge was eventually accepted by Cardano's student 
Lodovico Ferrari (1522–1565). Ferrari did better than 
Tartaglia in the competition, and Tartaglia lost both his 
prestige and income [3]. 

The general cubic equation has the form 

023  dcxbxax    (1) 

with 0a  and the coefficients dcba ,,,  are generally 

assumed to be real numbers. 

We can distinguish several possible cases using the 
discriminant, 

223223 274418 daaccbdbabcd  .     (2) 
The following cases need to be considered: [4] 

 If 0 , then the equation has three distinct real 
roots.  

 If 0 , then the equation has a multiple root and all 
its roots are real.  

 If 0 , then the equation has one real root and two 
nonreal complex conjugate roots.  

Every cubic equation (1) with real coefficients has at least 
one solution x  among the real numbers; this is a 
consequence of the intermediate value theorem. And the 
real solution is: 
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(3) 

Clamped cubic spline interpolation 

The most common piecewise-polynomial approximation 
uses cubic polynomials between each successive pair of 
nodes and is called cubic spline interpolation. A general 
cubic polynomial involves four constants, so there is 
sufficient flexibility in the cubic spline procedure to ensure 
that the interpolant is not only continuously differentiable on 
the interval, but also has a continuous second derivative. 
The construction of the cubic spline does not, however, 
assume that the derivatives of the interpolant agree with 
those of the function it is approximating, even at the nodes 
shown in fig. 1. 

 
Fig. 1.  Interpolant of a curve in different subintervals 

  

Given a function f  defined on ],[ ba  and a set of nodes 

bxxxa n  10 , a clamped cubic spline 

interpolant S  for f  is a function that satisfies the 

following conditions: [5] 

a. )(xS  is a cubic polynomial, denoted )(xS j , on 

the subinterval ],[ 1jj xx  for each 

1,,1,0  nj  ; 

b. )()( jj xfxS   for each nj ,,1,0  ; 

c. )()( 111   jjjj xSxS  for each 

2,,1,0  nj  ; 

d. )()( 111 


jjjj xSxS  for each 

2,,1,0  nj  ; 

e. )()( 111 


jjjj xSxS  for each 

2,,1,0  nj  ; 

f. )()( 00 xfxS   and )()( nn xfxS   

(clamped boundary). 
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To construct the clamped cubic spline interpolant for a 

given function f , the conditions in the definition are 

applied to the cubic polynomials 
32 )()()()( jjjjjjjj xxdxxcxxbaxS  ,

   
       (4) 

for each 1,,1,0  nj  . 

Theorem 2: If f is defined at 

bxxxa n  10  and differentiable at a  and 

b , then f  has a unique clamped spline interpolant S  

on nodes nxxx ,,, 10  ; that is, a spline interpolant that 

satisfies the boundary conditions )()( afaS   and 

)()( bfbS   [5]. 

 
III. Numerical Solutions of Transcendental Equations 
Based on Cubic Polynomials 
 

Given a function f  defined on ],[ ba  and a set of nodes 

bxxa  10 . In this case 1n , a cubic spline 

interpolant S  for f  is to be found that satisfies the 

conditions of clamped cubic spline interpolation formulas. 

Since 1n , conditions (a), (b) and (f) are applicable only. 
Here we have to find a cubic polynomial 

3
00

2
00000 )()()()( xxdxxcxxbaxS     (5) 

 very close to a function f  defined on ],[ ba . We get  

)()( 000 xfaxS         (6) 

 and 

 )()( 000 xfbxS  .       (7) 

Now, 
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Using the results obtained from (6) and (7), equation    (8) 
becomes 

)(
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010010 xf
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


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Again, 

)()(3)(2)(' 1
2

01001001 xfxxdxxcbxS  . (10) 

Using the results of (6) and (7), equation (10) becomes 

)()()(3)(2 01
2

010010 xfxfxxdxxc  .(11) 

Solving (9) and (11) we get, 
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The following algorithm is used for computer 
implementation of the scheme.  

Algorithm: To find a solution of 0)( xf  given the 

continuous function f  on the interval ],[   where 

)(f  and )(f  have opposite signs:  

INPUT endpoints  , ; tolerance TOL; maximum number 

of iterations m  

OUTPUT approximate solution 0x  or message of failure 

Step 1 Set 1i  

Step 2  set 0x  and 1x  

Step 3 while mi   do Step 4 to Step 12 

Step 4  set )( 00 xfa   and )( 00 xfb   

Step 5  set 
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Step 6 set 
3
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           Step 7  rearrange step 6 of the form 

dcxbxaxxS  23)(  

Step 8  set  
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  

Step 10 If 0)()( pff   then set p  

     else set p  

Step 11 If TOLpf )(  then  

OUTPUT ( p ) (Procedure completed successfully) 

STOP 

Step 12 Set 1 ii  
Step 13 OUTPUT (Method failed after m  iterations) 
(Procedure completed unsuccessfully) 
STOP 
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IV. Numerical results and geometric interpretation  

In this section we experiment our scheme to solve 
transcendental functions and compare our results with exact 
roots of the functions.  

Example 1: To find a root of the function [5] 

6cos2)(   xexf xx
            (14) 

Using our present method we need two initial 

approximations a  and b so that 0)( af  and 

0)( bf . 
 

 

Fig. 2. Graph of )(xf  

Since 024142.2)1( f  and 

02205.13)3( f  so, we choose 3,1  ba . Now 

using formula (6), (7), (12) and (13) we can find the 

simplified form of (5) 

11582.570008.530719.448151.1)( 23  xxxxS     

(15) 
To find a real root of the above equation we use the formula 

(3) and find 1.83611 1 x , which is an approximate root 

of )(xf  in the first iteration. 

Since 00.28995(1.83611))( 1  fxf ,   

we replace the value 1.83611 1 x  instead of the value 

of b . Again we have to find out a cubic equation and its 
real root. Continuing this procedure we can find a root of the 
transcendental equation (14). 
 

 

 

Table. 1. Comparison of the result generating by present method with bisection method and false position method in 
[1, 3] with tolerance 0.0001. 

No. of 
iteration 

Regular 
false-position 

method 

Bisection method Present method Exact root using 
Mathematica 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1.2899264806410 
1.4828672009263 
1.6041635463171 
1.6772743547939 
1.7201273029210 
1.7448136944489 
1.7588890365717 
1.7668664291911 
1.7713722534192 
1.7739122998661 
1.7753426113893 
1.7761475257975 
1.7766003365261 
1.7768550184506 
1.7769982475894 
1.7770787923973 
1.7771240851260 
1.7771495540650 
1.7771638755616 

2.0000000000000 
1.5000000000000 
1.7500000000000 
1.8750000000000 
1.8125000000000 
1.7812500000000 
1.7656250000000 
1.7734375000000 
1.7773437500000 
1.7753906250000 
1.7763671875000 
1.7768554687500 
1.7770996093750 
1.7772216796875 
1.7771606445313 
1.7771911621094 

1.8361095176046 
1.7772680527096 
1.7771822746684 

 

1.7771822744895 

Taking two end points 1a  and 3b  with tolerance 
0.0001 in the three cases we observe that the false position 
method takes 19 iterations the bisection method takes 16 
iterations and our present method takes only 3 iterations to 
reach the result with desired tolerance. 

Example 2: To find a root of the function [6] 

.21,2)(  xxexf x
        (16) 



Solution of Transcendental Equation Using Clamped Cubic Spline 

 
51

Table. 2. Comparison of the result generating by present method with bisection method and false position method in 
[1, 2] with tolerance 0.0001. 
 

No. of 
iteration 

Regular false-position 
method 

Bisection method Present method Exact root using 
Mathematica 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1.0767462531835 
1.1137822648029 
1.1311953424248 
1.1392808032624 
1.1430132465703 
1.1447315652384 
1.1455216447739 
1.1458847126630 
1.1460515103022 
1.1461281297700 

1.5000000000000 
1.2500000000000 
1.1250000000000 
1.1875000000000 
1.1562500000000 
1.1406250000000 
1.1484375000000 
1.1445312500000 
1.1464843750000 
1.1455078125000 
1.1459960937500 
1.1462402343750 
1.1461181640625 
1.1461791992188 

1.1474980831453 
1.1461932227191 
1.1461932206206 

1.1461932206206 

 
IV. a. Geometric Interpretation 

Geometrically, a cubic polynomial passing through two 

points like ))(,( afa  and ))(,( bfb  is a twisting curve. 

In this case, the cubic polynomial found by clamped cubic 
spline is a curve for which initial and end points in a fixed 
interval as well as slopes at those points are similar to that of 

)(xf  respectively and cuts the x -axis closed to a zero of 

)(xf . Using the intersecting point we can repeat the 

process again to obtain a better result and so on. The figures 
in Table 3 show the iterations of cubic approximation of 

)(xf . 
 

Table. 3. Geometric interpretation of the iterations of the present method 
 

No. of 
iteration 

Graph of )(xf with cubic approximation 

In remote view In close view 

1 

 

 

2 
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3 

 

 

 
V. Conclusion 

Regular false position method uses straight lines to generate 

an approximate root of any function )(xf . In the present 

method we use cubic polynomials (twisted curves) so that 
the root converges faster, which is shown the Table 3. So, 
this method provides faster approximation than the regular 
false-position and bisection method for transcendental 
equations. 
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