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Abstract 

This paper presents an investigation into a model of chemotherapy drug scheduling for cancer treatment using feedback control and a bio-
inspired optimization algorithm, called Particle Swarm Optimization (PSO). The main aim of chemotherapy treatment is to reduce the 
tumour size. Earlier a feedback control method, namely Integral-Proportional-Derivative (I-PD) was developed in [1] for non-phase specific 
tumour model to control the drug to be infused into the patient’s body by maintaining a tolerable level of drug concentration at tumour sites. 
In this work, PSO is used to devise an effective drug scheduling for a phase-specific tumour model by optimizing the parameters of earlier 
developed I-PD controller. The phase specific cancer tumour model is used to analyze the effects of drug on different cell populations, 
plasma drug concentration and toxic side effects. Results show that proposed method can reduce the tumour size up to 72% with relatively 
lower drug doses. Moreover, the method results very low toxic side effects throughout the whole period of treatment.  
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I.  Introcuction 

Chemotherapy is one of the essential treatment methods 
for cancer. Traditionally one or more drugs are infused to 
the body. The efficiency of the dosages of the treatment is 
often measured as the interval of time from the start of 
therapy, until the end of treatment. A number of models 
have been developed and used to characterise the 
evolution and effects of treatment on cancer by dividing 
the tumour into number of compartments (phase-specific) 
as reported in [2,3]. The cell compartment models of 
cancer cells population show transition rates between 
proliferating and quiescent cells as non-specified 
functions of the total population. In [4,5], Dua and co-
workers have presented phase-specific treatment models 
for cancer chemotherapy. The model considers the cell 
cycle which consists of more than one compartment to 
take into account the type of cells that are affected by the 
drug.  

The main aim of chemotherapy treatment is to eradicate 
or minimize the number of cancer cells after a number of 
fixed treatment cycles. Conventional clinical methods of 
chemotherapy can hardly find optimum doses that can 
minimize cancerous cells and toxic effects 
simultaneously. Researchers have employed/used genetic 
algorithm (GA) in scheduling chemotherapy drug doses 
and results are reported in [1,6-8]. The drawbacks of GA, 
such as, complexity in algorithm, huge computational 
resources, long execution time, premature convergence to 
local minima due to lack of diversity in population etc, 
have led the current researchers in search for more 
efficient and effective algorithms and techniques.  

Particle swarm optimization (PSO) [11], one of the 
relatively new evolutionary computation techniques, has 
been successfully used as an optimisation and design 
technique in various fields [11], mainly due to its 
simplicity, low computational cost, fast convergence and 
good overall performance [12]. These features motivated 

the current researchers to explore the potential of PSO in 
chemotherapy drug scheduling.  

This paper investigates the method of chemotherapy drug 
scheduling for cancer treatment using feedback control and 
PSO. A variant of Proportional-Integral-Derivative (PID), 
namely Integral-Proportional-Derivative (I-PD)[1] has been 
used to control the drug to be infused to the patient’s body. A 
phase specific cancer tumour model, commonly known as 
compartmental model [4] is used for this work. The 
parameters of the I-PD controller are optimized by PSO to 
improve the tumour response as well as other treatment 
objectives.  

II. Mathematical Model 

The cell cycle is a chain of phases that both normal and cancer 
cells undergo from their birth to death [2, 4] as show in Figure 
1. The first stage refers to the gap G1, in which stage the cell 
prepares for DNA synthesis. In the second stage called S the 
DNA synthesis takes place in preparation for cell division 
(many anticancer drugs act by interfering with DNA at this 
stage, causing cell death). The third stage, gap G2, is 
specialized to prepare the proteins and RNA for cell division. 
In the fourth stage M, the cell division takes place to produce 
two identical daughter cells. The last stage called Go is a 
resting phase in which cell is quiescent, viable but unable to 
divide. The tissue, in general, contains three different types of 
cells: the proliferating cells, the quiescent cells and the dead 
cells. Figure 2 shows a two-compartment model where P 
(Proliferating) represents the combination of the first four 
stages of the cell cycle as mentioned earlier (G1,S,G2 and M) 
and Q (Quiescent cells) indicates stage G0. The proliferating 
part contains actively dividing cells whereas quiescent part are 
inactive cells (Go), but capable of dividing if a certain 
stimulus is given. The dead cells are unable to divide because 
they have completed their life cycle. The parameters m and b 
express the immigrants between the proliferating cells and 
quiescent cells respectively. Here ‘a’ indicates the growth rate 
of cycling cells and n is the natural decay of the cycling cells.  
A number of differential equations used to build a two 
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compartment model of cancer chemotherapy treatment are 
explained briefly. The first equation, predicts the rate of 
change of proliferation cells population at the tumour site 
during the treatment, is as follows [4]:  

 

                …..(4) 

 

 

Fig. 1. Different phases of cell cycle 

 

Fig. 2. Two compartment cancer cells model 

. 

 (1) 

 

Here P and Q represent population of proliferating and 
quiescent cells whereas g(t) represents cell killing rate. 
The rate of change of cell population in the quiescent 
compartment is represented by:  

 
  A logistic equation is used to describe the effect of drug 
on normal cells, as expressed by equation (3) below: 
 

 ….(3) 

         

Here  indicates the normal cells population whereas 

  and   represent the growth rate and the carrying 

capacity of normal cells respectively.  is the initial 
value of normal cell population at the beginning of the 
treatment. Equation (4) shows the rate of change of drug 
concentration at the tumour site during the treatment 
cycle.  
 

where  is the amount of drug doses to be infused to 

patient’s body and   is drug decay which is related to the 
metabolism of drug inside patient’s body. Drug concentration 
at the instant before chemotherapy begins is, D(0) = D0, at t = 
0, It is noted that D0 is assumed to be zero as suggested by 
Martin and Teo in [2]. The relationship between cell killing 
rate and drug concentration at the tumour site is [2]: 

             (5) 

where  is a constant related to effect of drug concentration 
on cell killing. Toxicity, T(t), developed during the 
chemotherapy treatment is quantitatively modelled from drug 
concentration as [2]. 
 

 

….. (6) 

 
where  is the level of toxicity developed inside the 

patient’s body due to chemotherapy drug and parameter  
indicates the rate of elimination of toxicity.  
To make the treatment effective and limit the adverse side 
effects, several constraints are imposed on drug concentration 
and toxicity to the model. 
These constraints are as follows: 

D(t) ≤ 50 
…….(7) 

T(t) ≤ 100 

It is to be noted that, for phase-specific chemotherapy 
treatment, these constraints have been derived from clinical 
data by Dua in [5] and Tse and co-workers [6] and used/cited 
by many researchers in similar research [1,2,4,8]. The limiting 
value of normal cell which should be maintained throughout 
the period of treatment is represented by  

                               ....(8) 

The parameter  indicates the minimum number of the 
normal cells at tumour site. Using above equations, a 
Matlab/Simulink model [13] was developed with parameters 
and values as illustrated in Table I. 

III.  Control Scheme 
A schematic diagram of chemotherapy drug scheduling 
scheme is shown in   Figure 3. An I-PD controller involves 
three parameters, the proportional gain , integral gain , 

and derivative gain , and is designed to maintain a 
predefined level of drug concentration at tumour sites.  

Drug concentration at the tumour is used as the feedback 
signal to the controller which is compared with a predefined 
reference level. The difference between these two is called the 
error which is used as input to the controller. The output of the 

controller  is formed by taking three terms as: 
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    …(9) 

Where  is the error which is the difference between 
reference  and drug concentration as: 

                                  …..(10) 

It is noted that   indicates reference signal to the controller 
which can be depicted as the desired drug concentration to be 
maintained at the  tumour  site during  the whole period  of  
treatment. 

Table. 1. Parameters of phase-specific cancer tumour 
model [4] 

Parameters Values 

a growth rate of Proliferating cells  0.5 day-1 

m mutation rate of proliferating 

cells to quiescent cells 

0.218 day-1 

n natural end of the cycling cells 0.477 day-1 

b mutation rate of quiescent cells 

to proliferating cells 

0.05 day-1 

δ growth rate of normal cell  0.1 day-1 

λ growth rate of cancer cells  0.8 day-1 

Κ carrying capacity of  normal cell  109 

P proliferating cells population 0.2x1012 

Q quiescent cells population 0.8x1012 

Y normal cells population 109 

limitation of normal cells 108 

The reference to the controller is chosen in such a way as 
to limit the drug concentration in the plasmas indicated in 
equation (7) which in turn limits the toxic side effects. 
Using equations (4), (5) and (9) in equation (1) and 

solving for  gives: 

 

          (11) 

 Equation (11) shows the interaction between the 
parameters of I-PD controller and the cells reduction. The 
third term of (11) expresses how the parameters of the 
controller affect the rate of cells reduction.  

The output of the I-PD control, which is chemotherapy 
drug dose, is applied to the model to observe its effects. It 
is required to tune three parameters    and  of I-

PD controller to achieve desired performance. In this 
work, PSO is used to optimize parameters of I-PD 
controller that in turn improves the drug scheduling as 
well as treatment. It is important to note that the whole 
control scheme and drug scheduling is designed for a 
period of 84 days as recommended by many researchers 
[1,2,6].  
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Fig. 3. Schematic diagram of drug scheduling scheme for cancer 
treatment 

IV. Particle Swarm Optimization 

The PSO algorithm works on the social behaviour of particles 
in the swarm. The position vector and the velocity vector of 

the th particle in the dimensional search space can be 
represented as  and 

 respectively. According to a user 
defined fitness function, let the best position of each particle 
be,  and the fittest particle found 

so far at time  be . Then, the 

new velocities and positions of the particles for the next fitness 
evaluation are calculated using the following two equations [9, 
10]:  

                      …….(12) 

  

                                                           ….. (13) 

where C1 and C2 are constants known as acceleration 
coefficients, and r1 and r2 are two separately generated 
uniformly distributed random numbers in the range (0,1). 
Initially, a population of particles is generated with random 
positions, and then random velocities are assigned to each 
particle. The fitness of each particle is then evaluated 
according to a user defined objective function. At each 
generation, the velocity of each particle is calculated according 
to equation (12) and the position for the next function 
evaluation is updated according to equation (13). Each time if 
a particle finds a better position than the previously found best 
position, its location is stored in the memory. Generally, a 
maximum velocity vmaxd for each modulus of the velocity 
vector of the particles vid is defined in order to control 
excessive roaming of particles outside the user defined search 
space. Whenever a vid exceeds the defined limit, its velocity is 
set to vmaxd . In order to control the global search and 
convergence to the global best solution, a derivative of particle 
swarm algorithm that uses time-varying inertia weight factor w 
and time-varying acceleration coefficients C1 and C2 [14] is 
used in this work. The mathematical representation of this 
modified PSO is given as: 
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  ….(14) 

           (15) 

            (16) 

         ...(17) 

where  and  are the initial and final values of the 
inertia weight, respectively, are 

constants,  is the current iteration number and 
 is the maximum number of allowable 

iterations. In [14], it has been demonstrated that the 
optimal solution can be improved by varying the value of 

 from 0.9 at the beginning of the search to 0.4 at the end 
of the search for most problems. An improved optimum 
solution for most of the benchmarks was observed when 

changing from 2.5 to 0.5 and changing from 0.5 to 
2.5, over the full range of the search [14]. The commonly 
used PSOs are either global version or local version of 
PSO. In this work, the ring topology is used to find the 
best guide for any particle while updating its velocity. 
Details of the algorithm can be found in [16]. 

V.  Implementation 

An initial swarm of dimension 20×3 is created where 
number of particles and parameters in each individual are 
20 and 3 respectively. Each parameter is randomly 
generated within a range of (0, 2). Each particle represents 
a solution where three elements are assigned to 

proportional gain , second to integral gain , and third 

to derivative gain  respectively as indicated in equation 

(9). The error  as indicated in equation (10) is used to 
form the objective function f(x) of the optimization 
process.  Mean squared error (MSE) is used as the 
objective function. This is given as: 

 

Toxicity is assumed to be inversely proportional to the 
number of normal cells. For compartment models, the 
normal cell population is required to be maintained equal 
or more than 108 during the whole treatment cycle (84 
days)[6]. This can be termed as threshold value which is 
set as a constraint in the PSO optimization process along 
with constraints indicated in equation (7). To extract 
acceptable solution, prior to calculating fitness function, 
the normal cell population of each individual is checked 
and if it is less than the threshold value then  that particle 
(solution) is penalized. 

Matlab coding [13] have been used to implement the 
proposed scheme and the optimization process. The 
maximum number of generations was set to 300. PSO 
optimization process with abovementioned parameters is 
run five times on the same model to show its effectiveness 
and repeatability in such problem. The best objective 

function of each run is recorded at the end of maximum 
generation and shown in Table-II. To assess the 
reproducibility of the PSO optimization process, standard 
deviation of best objective functions of all runs is calculated 
which is 0.567. It is noted that the standard deviation is low 
compared to values of best objective function which exhibits 
the reproducibility of the PSO optimization process. Figure 4 
shows algorithm convergence in different runs and Table II 
shows the results for different runs.  

The average level of drug dosages infused to the patient’s 
body is nearly 4.27 while the maximum dose is 5.52 as 
recorded in run-3. The average level of drug concentration for 
all runs is nearly 11.54 which are effective but much lower 
than the limiting value. It is observed that the percentage of 
proliferating cells reduction is 72% for most of the runs with 
run-5 records maximum reduction of 72.1%. The percentage 
of quiescent cells reduction is slightly lower, 60% for most of 
the runs with run-3 yields minimum reduction of 53%. The 
average level of toxicity for different runs is nearly 32 whereas 
maximum level of  
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Fig. 4. Convergence of PSO optimization process 

toxicity varies within a range of 64.95 to 68.07. It is 
mentioned that the minimum level of toxicity was recorded in 
run-3 whereas maximum level of toxicity was observed in run 
4. The number of normal cells is more than the threshold value 
(=108) in all runs. It is important to observe that, drug 
scheduling with run-5 reduces both the proliferating and 
quiescent cells to the minimum level whereas the level of 
toxicity and drug concentrations are relatively lower.  
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(a) Drug dosages for the whole period of treatment. 
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(b) Drug doses for first week of treatment. 

Fig. 5.  Drug doses 

VI. Results 

The drug dosages obtained with the controller parameters at 
the end of run-5 is applied to the compartment model and 
response is observed. The drug scheduling throughout the 
treatment period is shown Figure 5(a). For more clarity, the 
drug dosage for the first week of treatment is shown in 
figure 5(b). It is observed that the drug dosage is initially 
zero and gradually increases with time and records a 
highest value on day-1, which is 5.45D. The drug dosage 
slightly decreases on day-2 and then becomes almost stable 
for remaining period. The average value of drug dosages is 
recorded as 4.27D and is shown in Table II. 

The effects of the drug concentration at the tumour site 
throughout the treatment period are shown in Figure 6. 
The drug concentration at the tumour site is initially zero 
and record maximum value of 14.74 on day-1. It is noted 
that although the drug concentration exceeds the set point 
(on day-2), it is still much lower that the limiting value as 
indicated in equation (5).  

The maximum level of toxicity throughout the treatment 
period was recorded as 65.50 at the first day of treatment 
while the average value for the whole period is 32.97. The 
level of toxicity for the whole period of treatment cycle is 
shown in Figure 7. It may be noted that both the 
maximum and average values are too low to cause any 
harmful toxic side effects.  The reductions of proliferating 
cells, quiescent cells and normal cells are shown in 
Figures 8(a), (b) and (c) respectively. It may be noted that 
the reductions are also different, with proliferating cells 
showing maximum reduction followed by quiescent cells. 
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Fig. 6. Drug concentration 
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Fig. 7. The toxicity level during treatment 
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(a) Reduction of proliferation cell 
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(b) Reduction of quiescent cell 
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(c) Reduction of normal cells 

Fig. 8. Effects of chemotherapy drug scheduling on different 

types of cells 
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Table. 2  Simulation results of different runs 

No.  
of 
runs 

Best 
Obj 
(MSE) 
 

drug doses drug 
concentration 

Toxicity Reduction 
of 
Proliferation 
cells 

Reduction of 
Quiescent 
cells 

Normal 
cells 

Max Avg Max Avg Max Avg 

Run1 5.46 5.30 4.25 14.35 11.54 66.34 32.90 72.1% 60.3% 1.027x108 

Run2 5.38 5.26 4.25 14.23 11.54 67.56 32.90 72.1% 60.3% 1.027x108 
Run3 5.38 5.52 4.26 14.94 11.55 64.95 32.95 67.2% 53.3% 1.214x108 

Run4 5.33 5.41 4.27 14.64 11.57 68.07 33.01 70.5% 58.1 1.086x108 
Run5 5.46 5.45 4.27 14.74 11.57 65.50 32.97 72.1% 60.3% 1.027x108 

VII. Conclusions 

This paper has presented an investigation into the 
development of a feedback I-PD controller for 
chemotherapy drug scheduling where PSO has been 
used to optimize the parameters of the controller. 
Model based on the cells function has been used to 
analyses the effects of the drug scheduling designed 
by the controller. It is noted that the obtained drug 
schedule is continuous in nature having lower and 
nearly stable value throughout the whole period of 
treatment. The proposed drug scheduling pattern has 
reduced the number of tumour cells significantly with 
the tolerable drug concentration and toxicity level. 
Finally, similar method/strategy can be extended for 
multidrug or combination chemotherapy regimen. 
Future work will include verification of the proposed 
scheduling with clinical data and experiments and 
efforts are underway in that direction. 
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