
Dhaka Univ. J. Sci. 61(1): 19-26, 2013 (January)

Application of Bounded Variable Simplex Algorithm in Solving Maximal Flow Model
Sohana Jahan, Marzia Yesmin and Fatima Tuj Jahra

Department of Mathematics ,University of Dhaka,Dhaka-1000,Bangladesh

Email:jahansohana@univdhaka.edu

Received on 20.07.2011. Accepted for published on 10. 7.2012.

Abstract

In this paper, A comparative study is made on the determination of maximum flow in a network by Maximal Flow Algorithm
and Bounded Variable Simplex Method. We have introduced a technique to find the route of a flow in any iteration of the bounded
variable simplex algorithm.

Keywords: Maximal Flow Model, Bounded Variable simplex method.

I .Introduction

Networking is one of the most important branch of
Operation Research. Most of the real world problem can
be formulated as network model. There are various
type network models such as Minimal spanning tree,
Shortest route algorithm , Maximal flow algorithm,
Minimum cost capacitated network algorithm. Different
type of network problem can be solved by different
algorithms. In this paper we have worked on Maximal flow
problem. We have formulated the Maximal flow problem as
a linear programming problem and solved it using Bounded
variable simplex algorithm which is very easy to solve.

In a Maximal Flow Problem, we wish to send as much
material as possible from a specified node s in a network,
called the source, to another specified node t, called the
sink.

The maximum flow problem was first formulated in 1954
by T. E. Harris as a simplified model of Soviet railway
traffic flow. In 1955, Lester R. Ford and Delbert R.
Fulkerson [1],[2] created the first known algorithm,
the Ford–Fulkerson algorithm. Over the years, various
improved solutions to the maximum flow problem [7],[8]
were discovered.

An example of a flow network is given by figure 1. The
source node is denoted by 1 and the sink node by 6. Nodes
2, 3, 4,5 are the intermediate nodes. There are nine arcs
connecting the various nodes, denoted by (1,2), (1,3),
(1,4),(2,3), (2,6), (3,5), (3,6), (4,5), (5,6).

The intermediate nodes must satisfy the strict conservation
requirement; that is ,the net flow into these nodes must be
zero. However, the source may have a net outflow and the
sink a net inflow. As a consequence of the conservation at
all intermediate nodes, the outflow f on the source will equal
to the inflow of the sink .A set of arc flows satisfying these
conditions is said to be a flow in the network of value f. The
maximal flow problem is that of determining the maximal
flow that can be established in such a network.

Fig. 1

II. Maximal Flow Algorithm

The Maximum Flow Algorithm [9] is one of the most
important methods to obtain maximum flow in a network.
The algorithm [4],[6] is based on finding breakthrough paths
with net positive flow between the source and sink nodes.
Each paths commits part or all the capacities of its arcs to
the total flow in the network.

Consider arc),(ji with (initial) capacities).,(jiij CC As

portion of this capacities are committed to the flow in the
arc, the residuals (or the remaining capacities) of the arc are
updated. The network with the updated residuals is referred

to as the residue network. We use the notation),(jiij cc
to

represent these residuals.

 For a node j receives flow from node i, we define a label [a
. i], where a is the flow from node i to node j.

The steps of the algorithm are summarized as follows.

Step1. For all arcs),(ji , set the residual capacity equal to

the initial capacity – that),(jiij cc =).,(jiij CC Let a1= ∞

and label source node 1 with [] and go to step 2.

Step2. Determine Si as the set of unlabeled nodes j that can
be reached directly from node i by arcs with positive

residuals (that is, ca> 0 for all i
Sj). If Si ≠ Ø then go to

step 3. Otherwise, go to step 4.

Step 3. Determine i
Sk , such that }{max ij

Sj
ik cc

 .

Set ikk ca and label node k with [ka , i]. If k = n, the

sink node has been labeled, and a breakthrough path is
found, go to step 5. Otherwise, set i = k and go to step 2.

Step 4. (Backtracking) If i = l, no further breakthrough are
possible, go to step 6. Otherwise, let r be the node that has
been labeled immediately before the current node i and
remove i from the set of nodes that are adjacent to r. Set i = r
and go to step 2.

Step 5. (Determination of Residue Network):

Let Np = (l, k1, k2,…..n) define the nodes of the pth
breakthrough path from source node l to sink node n. The
maximum flow along the path is computed as, fp = min

}...,,,{ 211 nkk aaaa .The residual capacity of each arc along

the breakthrough path is decreased by fp in the direction of
the flow and increased by fp in the reverse direction - that is,

1
3

2

4

5

6 15

20

5

10
10

12

15

20

18

0

0

0

Sohana Jahan, Marzia Yesmin and Fatima Tuj Jahra

for nodes i and j on the path, the residual flow is changed

from the current),(jiij cc to

(a)),(pijpij fcfc if the flow is from i to j

(b)),(pijpij fcfc if the flow is from j to i

(c) Reinstate any nodes that were removed in

step 4. Set i = l , and return to step 2 to attempt a new
breakthrough path.

Step 6. (Solution)

 (a) Given that m breakthrough paths have been
determined, the maximal flow in the network is F = f1 + f2 +
….. + fm

 (b) Given that the initial and final residuals of arc

),(ji are given by),(jiij CC and),(jiij cc , respectively

the optimal flow in arc),(ji

is computed as follows:Let (α

, β) =),(jijiijij cCcC . If α > 0, the optimal flow

from i to j is α. Otherwise, if β > 0, the optimal flow from j
to i is β. (It is impossible to have both α and β positive).

Example: Consider the network in Figure 1. The maximal
flow problem is to determine the maximum flow from the
source node 1 to the sink node 6.

The maximum flow in the network can be determined by
Maximal Flow Algorithm as follows:

Iteration 1:

Step1: Set 1a and we label node 1 with],[.

 Set 1i

Step 2: Ø}4,3,2{1 S .

Step 3: 3k because },,max{ 14131213 cccc

 = max{15,20,5}=20. Set 20133 ca , and label

node 3 with [20,1],Set i=3,and repeat step 2.

 Step 2: S 3 = {5,6}≠Ø.

 Step 3: k=6 because c 36 = 12. Set 12366 ca

 and label node 6 with [12,3], breakthrough is achieved

 and go to step 5.

Step 5: Breakthrough path is determined from the labels

starting at node 6 and ending at node 1 – that is, (6) →
[12,3] → (3) → [20,1] → (1). Thus, N1 =
{1,3,6} and f1 = min },,{ 631 aaa = { ∞, 20,12 } =

12. The residual capacities along path N1 are

(c13,c31) = (20 − 12, 0 + 12) = (8,12)

(c36,c63) = (12 − 12, 0 + 12) = (0,12)

Iteration 2:

Step1: Set 1a and we label node 1 with],[. Set

1i .

Step 2: }4,3,2{1S .

Step 3: 2k because },,max{ 14131212 cccc =

 max{15,8,5}=15. Set 15122 ca , and label

 node 2 with [15,1],Set i=2,and repeat step 2.

 Step 2: S 2 = {3,6}≠Ø.

 Step 3: k=6 because c 26 = 10. Set 10266 ca

and label node 6 with [10,2], breakthrough is achieved

and go to step 5.

Step 5: Breakthrough path is determined from the labels

starting at node 6 and ending at node 1 – that is, (6) →

[10,2] → (2) → [15,1] → (1). Thus, N1 = {1,2,6} and

f2 = min },,{ 621 aaa = {∞, 15,10 } = 10. The residual

capacities along path N2 are

(c12,c21) = (15 − 10, 0 + 10) = (5,10)

(c26,c62) = (10 − 10, 0 + 10) = (0,10)

1 3

2

4

5

6

],[
15

8

5

10
10

0

15

20

18

0

12

12

10

[15,1]

1 3

2

4

5

6

[20,1]
],[

15

20

5

10
10

12

15

20

18

0

0

0

[12,3]

Fig: 1.1

Fig. 1.2

20

Application of Bounded Variable Simplex Algorithm in solving Maximal Flow Model

Iteration 3:
Step 1: Let 1a , and we label node 1 with [∞ , −]. Set

i = 1.

Step 2: S1 ={2,3,4}≠Ø.

Step 3: k = 3 and
3a = c13 = max {5,8,5} = 8.

Label node 3 with [8,1],Set i=3,and repeat step 2.

 Step 2: S3 = {2,5}≠Ø.[node 1 is already labeled hence it
cannot be included in S3].

 Step 3: k = 5 because 5a = c 35 =15. Label node 5 with

[15,3]. Set i = 5, and repeat step 2.

 Step 2: S5 = {6}≠Ø.

 Step 3: k = 6 because 6a = c56 = 18. Label node 6

 with [18,6]. Breakthroughs is achieved, go to step 5.

Step 5: N3 ={1,3,5,6} and f3 = min{∞ , 8,15,18} = 8.

The residual along the path of N3 are

(c13,c31) = (8 − 8, 12 + 8) = (0, 20); (c35,c53) = (15−8, 0 +8)
= (7, 8); (c56,c65) = (18 − 8, 0 + 8) = (10, 8)

Iteration 4:

Step 1: Let 1a = ∞ , and we label node 1 with [∞ , −]. Set i

= 1.

Step 2: S1 ={2,4}≠Ø.

Step 3: k = 2 and
2a = c12 = max {5,5} = 5. Set i = 2

and label node 2 with [5,1] and repeat step 2.

 Step 2: S2 = {3}≠Ø.[node 1 is already labeled hence

 it cannot be included in S2].

 Step 3: k = 3 because 3a = c 23 =10. Label node 3 with

[10,2]. Set i = 3, and repeat step 2.

 Step 2: S3 = {5}≠Ø.

 Step 3: k = 5 because 5a = c35 = 7. Label node 5

with [7,3]. Set i=5 and go to step 2.

 Step 2: S5 ={6}≠Ø.

 Step 3: k =6 because 6a = c56 =10. Label node 6

with [10,5]. Breakthrough is achieved and go to step 5.

Step 5: N3 ={1,2,3,5,6} and f4 = min{∞ , 5,10,7,10} = 5.

 The residual along the Path of N4 are

(c12,c21) = (5 − 5, 10 + 5) = (0, 15)

(c23,c32) = (10 − 5, 20 + 5) = (5, 25); (c35,c53) = (7−5, 8+5) =
(2, 13); (c56,c65) =(10 −5, 8+5)=(5, 13)

Iteration 5:

Step 1: Let a 1a = ∞ , and we label node 1 with [∞ , −]. Set i

= 1

Step 2: S1 ={4}≠Ø.

Step 3: k = 4and
4a = c14 =5. Set i = 4 and label node4

with [5,1] and repeat step 2.
Step 2: S4 = {5}≠Ø

Step 3: k = 5 because 5a = c 45 =15. Label node 5 with

[15,4]. Set i = 5, and repeat step 2.

Step 2: S5 = {6}≠Ø.
Step 3: k = 6 because

6a = c56 = 5. Label node 6 with

[5,5]. Breakthrough is achieved, and go to step 5.
Step 5: N3 ={1,4,5,6} and f5 = min{∞ , 5,15,5} = 5. The
residual along the Path of N5 are (c14,c41) =(5−5, 0+5)= (0,
5); (c45,c54) =(15− 5, 0 +5)=(10,5);
(c56,c65) = (5 −5, 13 + 5) = (0, 18)

Iteration 6: All the arcs out of node 1 have zero
residuals. Hence no further breakthrough is possible.
We turn to step 6 to determine the solution.

Step 6: Maximal flow in the network is F = f1 + f2 +
……+f5= 12+10+8+5+5= 40 units. The flow in the
different arc is computed by subtracting the last
residuals (in iteration 6 from the initial

capacities).,(jiij CC as the following table shows.

1 3

2

4

5

6

],[

0

0

0

5
0

0

2

15

0

18

12
10

20

 15

13

5

[5,1]

5

5

1 3

2

4

5

6

],[

0

0

0

5
0

0

2

15

5

13

12
10

20

[5,5] 15

13

[15,4]

5

[5,1]

5

5

1 3

2

4

5

6

],[

5

0

5

5
0

0

7

20

10

8

12
10

20

[10,5] 15

8

[10,2]

[7,3]

5

[5,1]

1 3

2

4

5

6

],[

5

8

5

10
0

0

15

20

18

12
10

12

[18,5] 10

0

[8,1]

[15,3]
Fig: 1.3

Fig: 1.4

Fig: 1.5

21

Fig: 1.6

Sohana Jahan, Marzia Yesmin and Fatima Tuj Jahra

Arc),(jiij CC - (Flow
Amount

Direction

(1,2) (15,0) – (0,15) =(15,-15) 15 1→2

(1,3) (20,0) – (0,20) = (20,-20) 20 1→3

(1,4) (5,0) – (0,5) = (5,-5) 5 1→4

(2,3) (10,0) – (5,5) = (5,- 5) 5 2→3

(2,6) (10,0) – (0,10) = (10,-10) 10 2→6

(3,6) (12,0) – (0,12) = (12,-12) 12 3→6

(3,5) (15,0) –(2,13) = (13,-13) 13 3→5

(4,5) (20,0) – (15,5) = (5,-5) 5 4→5

(5,6) (18,0)-(0,18)=(18,-18) 18 5→6

III. Bounded – Variable Simplex Algorithm:

In LP models, variables may have explicit positive upper
and lower bounds. For example, in production facilities,
lower and upper bound can represent the minimum
maximum demands for certain products. Bounded variable
also arise prominently in the course of solving integer
programming problems by the branch and bound algorithm.

The bounded algorithm is efficient computationally because
it accounts for the bounds implicitly. We consider the lower
bounds first because it is simpler. Given X ≥ L, we can use
the substitution

X = L + X' , X' ≥ 0.

Throughout and solve the problem in terms of X' (whose
lower bound now equals zero). The original X is determined
by back substitution, which is legitimate because it
guarantees that X = L + X' will remain nonnegative for all
X' ≥ 0.

Next, consider the upper bounding constraints, X≤ U. The
idea of direct substitution (i.e, X = U - X'', X'' ≥ 0) is not
correct because back substitution, X= U - X', does not
ensure that X will remain nonnegative. A different
procedure is thus needed.

Define the upper bounded LP model as

Maximize z= {CX | (A,I)X = b ,0 ≤ X ≤ U}

The bounded algorithm uses only the constraints (A,I)X = b
, X ≥ 0 , while accounting for X≤ U implicitly by modifying
the simplex feasibility condition.

Let XB = B-1b be a current basic feasible solution of (A,I)X
= b, X ≥ 0 and suppose that, according to the optimality
condition, Pj is the entering vector. Then given that all the
nonbasic variables are zero, the constraints equation of the
ith basic variable can be written as (XB)i = (B-1b)i – (B-1Pj)i

xj.

When the entering variable xj increases above zero level,
(XB)i will increase or decrease depending on whether (B-1Pj)i
is negative or positive, respectively. Thus in determining the

value of the entering variable xj, three conditions must be
satisfied:

1. The basic variable (XB)i remains nonnegative – that is
(XB)i ≥ 0.

2. The basic variable (XB)i does not exceed its upper bound -
that is (XB)i ≤ (UB)i , where UB comprises the ordered
elements of U corresponding to XB .

3. The entering variable xj cannot assume a value larger than
its upper bound – that is xj ≤ uj ,where uj is the jth element of
U .The first condition (XB)i ≥ 0 requires that

(B-1b)i – (B-1Pj)i xj ≥ 0. It is satisfied if xj ≤Έ 1 =min{(B-

1b)i / (B
-1Pj)i | (B

-1Pj)i > 0} .This condition is the same as the
feasibility condition of the regular singular method. Next,
the condition (XB)i ≤ (UB)i specifies that (B-1b)i – (B-1Pj)i xj

≤ (UB)i . It is satisfied if

xj ≤ 2 = min{[(B-1b)i - (UB)i] / (B
-1Pj)i | (B

-1Pj)i < 0}.

Combining the three restrictions, xj enters the solution at
the level that satisfies all three conditions – that is,

xj = min { 1 , 2 , uj }. The change of basis for the next

iteration depends on whether xj enters the solution at level

1 , 2 or uj. Assuming that (XB)r is the leaving variable,

then we have the following rules :

1. xj = 1 : (XB)r leaves the basic solution (becomes non

basic) at level zero. The new iteration is generated using the
normal simplex method with xj and (XB)r as the entering and
the leaving variables, respectively.

2. xj = 2 : (XB)r becomes nonbasic at its upper bound. The

new iteration is generated in the case of xj = 1 , with one

modification that accounts for the fact that (XB)r will be

nonbasic at upper bound. Because the values of 1 , 2

require all nonbasic variables to be at zero level. Convert the
new nonbasic (XB)r at upper bound to a nonbasic variable at
zero level. This is achieved by using the substitution (XB)r =
(UB)r - (X'B)r , where (X'B)r ≥ 0. It is immaterial whether the
substitution is made before or after the new basis is
computed.

3. xj= uj: The basic vector XB remains unchanged because xj
= uj stops short of forcing any of the current basic variables
to reach its lower (=0) or upper bound. This means that xj
will remain non basic but at upper bound. Following the
argument just presented, the new iteration is generated by
using the substitution xj= uj - x'j.

A tie among 1 , 2 and uj may be broken arbitrarily.

However, it is preferable, where possible, to implement the
rule for xj = uj because it entails less computation.

The substitution xj = uj - x'j will change the original cj, Pj and
b to c'j = - cj , P'j = Pj and b to b' = b – ujPj . This means that
if the revised simplex method is used, all the computations
(e.g., B-1,XB and zj – cj), should be based on the updated
values of C, A and b at each iteration.

Application of Bounded Variable Simplex Algorithm in solving Maximal Flow Model

IV. LP Formulation of Maximal Flow Model:
If v denotes the amount of material sent from nodes s to

node t and ijx denotes the flow from node i to node j over

arc ji the formulation is:

Maximize v,
subject to:

).,,2,1;,,2,1(0

otherwise,0

),sink(if

),source(if

njniux

tiv

siv

xx

ijij

k
ki

j
ij

As usual, the summations are taken only over the arcs in the

network. Also, the upper bound iju for the flow on arc

ji is taken to be if arc ji has unlimited

capacity. The interpretation is that v units are supplied at s
and consumed at t. Let us introduce a fictitious arc st

with unlimited capacity; that is, tsu . Now tsx

represents the variable v , since tsx simply returns the v

units of flow from node t back to node s, and no formal
external supply of material occurs. With the introduction of
the arc st , the problem assumes the following special
form of the general network problem:

Maximize tsx ,

subject to:

).,,2,1(0 nixx
k

ki
j

ij

Thus if xij as the amount of flow in arc (i,j) with capacity
Cij. The objective is to determine xij for all i and j that will
maximize the flow between start nodes s and terminate node
t subjective to flow restriction (input flow = outflow flow) at
all but nodes s and t.
Now we are going to obtain the maximum flow in the
network given in Figure 1 using Bounded Variable Simplex
method.
The following table summarizes the associated LP with two
different , but equivalent, objective functions depending on
whether maximize the output from start node 1 (= z1) or the
input to terminal node 6 (= z2).

Writing this as an Linear Programming Problem (LPP)

 Maximize z = x12+x13+x14

 s/t x12-x23 - x26= 0

 x13+x23-x35-x36 = 0

 x14-x45 = 0

 x35 +x45-x56 = 0

 0 ≤ x12 ≤15, 0 ≤ x13 ≤20 , 0 ≤ x14 ≤ 5, 0 ≤ x23 ≤10 , 0 ≤ x26 ≤
10, 0 ≤ x35 ≤15 , 0 ≤ x36 ≤ 12 , 0 ≤ x45 ≤ 20 , 0 ≤ x56 ≤ 18

If we try to solve this LPP by simplex method, we can write
the bounded variables as constraints by inserting slack
variables. Then we obtain a large set of constraints.

Using Bounded Variable Algorithm this problem can be
solved easily. The initial table is:

Table 0

Iteration 1:

We have B= B-1=I and XB =(x12, x13, x14 ,x56)
T =

B-1b=(0,0,0,0)T. Here x45 is the entering variable, we get

 B-1P45 =(0,0,-1, -1)T which yields 1 ;

2 = min {- , - , (0 – 5)/(-1) ,(0- 18)/(-1) , - ,0 }= 5 ,

corresponding to x14. Next, given the upper bound on the
entering variable x45 ≤ 20 , it follows that

Table 1.1

x45 = min { ,5,20} = 5 (= 2)

Because x14 becomes nonbasic at its upper

bound ,we apply the substitution x14=5 - x'14 to obtain

 cj

Basic

1 1 1 0 0 0 0 0 0

x1

2

x13 x14 x23 x26 x35 x36 x45 x56 Soluti
on

1 x12 1 0 0 -1 -1 0 0 0 0 0

1 x13 0 1 0 1 0 -1 -1 0 0 0

1 x14 0 0 1 0 0 0 0 -1 0 0

0 x56 0 0 0 0 0 -1 0 -1 1 0

Z 0 0 0 0 -1 -1 -1 -1 0 0

 cj

Basic

1 1 -1 0 0 0 0 0 0

x12 x1

3

x'1
4

x23 x26 x35 x36 x45 x56 Sol
utio
n

1 x12 1 0 0 -1 -1 0 0 0 0 0

1 x13 0 1 0 1 0 -1 -1 0 0 0

-1 x'14 0 0 -1 0 0 0 0 -1 0 -5

0 x56 0 0 0 0 0 -1 0 -1 1 0

23

 x12 x13 x14 x23 x26 x35 x36 x45 x56

Max z1
=

1 1 1

Max z2= 1 1 1

Node 2 1 -1 -1 =
0

Node 3 1 1 -1 -1 =
0

Node 4 1 -1 =
0

Node 5 1 1 -1 =
0

Capacity 15 20 5 10 10 15 12 20 18

Sohana Jahan, Marzia Yesmin and Fatima Tuj Jahra

Next, the entering variable x45 becomes basic and the
leaving variable x'14 becomes nonbasic at zero level,
which yields:

Table 1.2

The flow in this iteration is the minimum of the values of
the variable that have changed their values in this
iteration. For, x14 =5, x45 = 5, x56 = 5, min{5,5,5} = 5.
 So flow f1 = 5 in the route 1 →4→5→6.

Iteration 2:

Here x26 is the entering variable, we get B-1P26 =(-1,0,

0,0)T which yields 1 , 2 = min {(0-15)/(-1), -, - ,

- }= 15 , corresponding to x12. Next, given the upper
bound on the entering variable x26 ≤ 10 , it follows that
x26 = min { ,15, 10} =10 = u26.

Because x26 enters at its upper bound, XB remains
unchanged and x26 becomes nonbasic at its upper bound.
We use the substitution x26 = 10 - x'26 to obtain Table 2.

Table 2

x12 =10, x45 = 5, x56 = 5, x26 =10.From the last table
1.2 of the iteration 1and from the table 2 we see that
the values of x45 and x56 remained unchanged. the

value of x12 and x26 changed. Thus min{10,10} = 10.
So flow f2 =10 in the rout 1→2→ 6

Iteration 3:

Here x35 is the entering variable, we get B-1P35 =(0, -1,0 ,-

1)T which yields 1 ; 2 = min {- ,(0 - 20)/(-1) , -

,(5 – 18)/(-1) }= 13 , corresponding to x56. Next, given
the upper bound on the entering variable x35 ≤ 15, it

follows that x35 = min { ,13,15} =13 (= 2)

Because x56 becomes nonbasic at its upper bound, we
apply the substitution x56=18 - x'56 to obtain the following
table:

Table 3.1

Next, the entering variable x35 becomes basic and the
leaving variable x'56 becomes nonbasic at zero level,
which yields:

Table 3.2

x13 =13, x35 =13, x56 = 18, min{13,13,18} = 13. So
flow f3 = 13 in the route 1→3→5→6.

 cj

Basic

1 1 -1 0 0 0 0 0 0

x1

2

x13 x'1
4

x23 x'2
6

x35 x36 x45 x56 So
lut
io
n

1 x12 1 0 0 -1 1 0 0 0 0 10

1 x13 0 1 0 1 0 -1 -1 0 0 0

0 x45 0 0 1 0 0 0 0 1 0 5

0 x56 0 0 1 0 0 -1 0 0 1 5

Z 0 0 1 0 1 -
1↑

-1 0 0 0

 cj

Basic

1 1 -1 0 0 0 0 0 0

x12 x13 x'14 x23 x'26 x35 x36 x45 x'56 Sol
uti
on

1 x12 1 0 0 -1 1 0 0 0 0 10

1 x13 0 1 0 1 0 -1 -1 0 0 0

0 x45 0 0 1 0 0 0 0 1 0 5

0 x'56 0 0 1 0 0 -1 0 0 -1 -13

 cj

Basic

1 1 -1 0 0 0 0 0 0

x12 x13 x'1
4

x23 x'2
6

x35 x36 x45 x'5
6

So
lut
io
n

1 x12 1 0 0 -1 1 0 0 0 0 10

1 x13 0 1 -1 1 0 0 -1 0 1 13

0 x45 0 0 1 0 0 0 0 1 0 5

0 x35 0 0 -1 0 0 1 0 0 1 13

Z 0 0 0 0 1 0 -
1↑

0 1 0

1 3

2

4

5

6

1 3

2

4

5

6

Fig. 2.1

Fig: 2.2

24

 cj

Basic

1 1 -1 0 0 0 0 0 0

x12 x13 x'1
4

x23 x26 x35 x36 x45 x56 So
lut
ion

1 x12 1 0 0 -1 -1 0 0 0 0 0

1 x13 0 1 0 1 0 -1 -1 0 0 0

0 x45 0 0 1 0 0 0 0 1 0 5

0 x56 0 0 1 0 0 -1 0 0 1 5

Z 0 0 1 0 -
1↑

-1 -1 0 0 0

Application of Bounded Variable Simplex Algorithm in solving Maximal Flow Model

Iteration 4:
Here x36 is the entering variable, we get B-1P36 =(0, -1,0
,0)T

 which yields

 1 , 2 = min {- ,(13 - 20)/(-1) , - ,0 }= 7 ,

corresponding to x13
 Next, given the upper bound on the entering variable x36
≤ 12 , it follows that

 x36 = min { ,7,12} =7 (= 2)

Because x13 becomes nonbasic at its upper bound, we
apply the substitution x13=10 - x'13 and obtain Table 4.1.

Table 4.1

Next, the entering variable x36 becomes basic and the leaving
variable x'13 becomes nonbasic at zero level, which yields:

Table 4.2

x13 =20, x36 =7, min{20,7} = 7 So flow f4 = 7 in the route
1→3→6

Iteration 5:
Here x23 is the entering variable, we get

Table 5.1

B-1P23 =(-1, -1,0 ,0)T which yields 1 ; 2 = min {(10

– 20)/(-1) ,(7 - 12)/(-1) ,- ,- }= 5 , corresponding to x36.
Next, given the upper bound on the entering variable x23 ≤
10 , it follows that

 x23 = min { ,5,10} = 5 (= 2)

Because x36 becomes nonbasic at its upper bound, we apply
the substitution x36=15 - x'36 to obtain Table 5.1.

Next, the entering variable x36 becomes basic and the leaving
variable x'13 becomes nonbasic at zero level, which yields

Table 5.2

x12 =15, x23 = 5, x36 = 12, min{15,5,12} = 5. So flow f5 = 5
in the route 1→2 → 3→ 6

 cj

Basic

1 -1 -1 0 0 0 0 0 0

x12 x'1
3

x'1
4

x23 x'2
6

x35 x36 x45 x'5
6

So
lut
io
n

1 x12 1 0 0 -1 1 0 0 0 0 10

-
1

x'13 0 -1 -1 1 0 0 -1 0 1 -7

0 x45 0 0 1 0 0 0 0 1 0 5

0 x35 0 0 -1 0 0 1 0 0 1 13

 cj

Basic

1 -1 -1 0 0 0 0 0 0

x1

2

x'1
3

x'1
4

x2

3

x'26 x3

5

x'36 x4

5

x'56 Sol
uti
on

1 x12 1 -1 -1 0 1 0 1 0 1 15

0 x23 0 -1 -1 1 0 0 1 0 1 5

0 x45 0 0 1 0 0 0 0 1 0 5

0 x35 0 0 -1 0 0 1 0 0 1 13

Z 0 0 0 0 1 0 1 0 0 0

1 3

2

4

5

6

1 3

2

4

5

6

 Fig: 2.3

Fig: 2.4

25

 cj

Basic

1 -1 -1 0 0 0 0 0 0

x1

2

x'1
3

x'1
4

x23 x'2
6

x35 x36 x45 x'5
6

Solu
tion

1 x12 1 0 0 -1 1 0 0 0 0 10

0 x36 0 1 1 -1 0 0 1 0 -1 7

0 x45 0 0 1 0 0 0 0 1 0 5

0 x35 0 0 -1 0 0 1 0 0 1 13

Z 0 1 1 -
1↑

1 0 0 0 0 0

 cj

Basic

1 -1 -1 0 0 0 0 0 0

x1

2

x'1
3

x'1
4

x23 x'2
6

x35 x'3
6

x45 x'5
6

Sol
uti
on

1 x12 1 0 0 -1 1 0 0 0 0 10

0 x'36 0 1 1 -1 0 0 -1 0 -1 -5

0 x45 0 0 1 0 0 0 0 1 0 5

0 x35 0 0 -1 0 0 1 0 0 1 13

Sohana Jahan, Marzia Yesmin and Fatima Tuj Jahra

The last table is feasible and optimal.
The optimal values are obtained by back substitution.

x'13 = 0 gives x13 = 20 – x'13 = 20 - 0 = 20 ;
x'14 = 0 gives x14 = 5 – x'14 = 5 - 0 = 5 ;
x'26 = 0 gives x26 = 10 – x'26 = 10 - 0 = 10 ;
x'36 = 0 gives x36 = 12 – x'36 = 12 - 0 = 12 ;
x'56 = 0 gives x56 = 18 – x'56 = 18 - 0 = 18 ;
The optimal solution is:

x12=15 , x13=20 , x14=5 , x23=5 , x26= 10, x35=13 , x36= 12,
x45= 5, x56 = 18.

So, the associated maximum flow is z = x12 + x13 + x14= 15 +
20 + 5 = 40.

Remark1: In the first iteration since all the non basic
variables that can enter the basis has relative cost factor -1
so any variable can be chosen arbitrarily. We choose the
variable x45 because only one arch x45 is from node 4 and
node 4 is directly linked with the source node 1 and no other
node is linked with node 4, so the route 1→ 4 →5 must be
used for any flow to pass through the node 4.

Remark 2: The flow in iteration is the value of the variable
that has been is chosen to enter the basis. Note that in
iteration 1, x45 is chosen to enter the basis and thus the flow
in that iteration is f1 = x45=5; in the second iteration x26 has
chosen which remained nonbasic at its upper bound. So the
flow in that iteration is f2 = u26 =10.Similarly for other
iterations the flow can be determined. Now, the route in any
iteration can be determined from the value of the variables
that have changed in that iteration. For, in the second
iteration x12 = 10, x26=10, the values of x13, x45, x56 remained
unchanged. So the route is the 1→2 → 6.

Again in the comparing the values of the variables in the
fifth iteration with their values in previous iteration we see
that,

In fourth iteration: x12 = 10, x36 = 7, x45 = 5, x35 = 13

In Fifth iteration: x36 = 12 x12 = 15, x23 = 5, x45 = 5,

x35 = 13.

Thus x23 entered the basis and the variables whose values
have changed are x12, x23 and x36.

Thus the route in fifth iteration is 1→2→3→6 with a flow f5
= x23 = 5.

In general to determine a route in any we set the variables
with changed value in a sequence such that

xsi , xij, xjk, ….xpt where s denotes the source node and t
denotes the terminal node.

V. Conclusion

Bounded variable simplex method is very useful technique.
It makes a large system of constraint set a small one. If there
are upper bounds for the decision variables, Bounded
variable simplex method takes less time to solve a problem
then the simplex method. Using Bounded Variable simplex
method we have solved a maximum flow problem and
determine a technique to obtain the maximum flow in each
iteration from the simplex table of that iteration. The route
thorough which the maximum flow has passed is also
determined.

..................

1. Ford,L.R.,Jr.; Fulkerson, D.R.,"Maximal Flow through a
Network",Canadian Journal of Mathematics (1956),pp.399-
404.

2. Ford, L.R., Jr.; Fulkerson, D.R., Flows in Networks,
Princeton University Press (1962).

3. G. B. Dantzig. Linear programming and extensions.
Princeton University Press, Princeton, NJ, 1963.

4. Hamdy A. Taha ,Operation Research- An Introduction, 7th
Edition.

5. Kambo N.S., Introduction to Operation Research.

6. Ralph P. Grimaldi Discrete and Combinatorial Mathematics-
An Applied Introduction, 4th Edition.

7. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall,
Englewood Cliffs, NJ, 1993.

8. 8. Schrijver, Alexander, "On the history of the transportation
and maximum flow problems", Mathematical Progra-
mming 91(2002) 437-445.

9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein (2001). "26. Maximum
Flow". Introduction to Algorithms, Second Edition.
MIT Press and McGraw-Hill. pp. 643–668. ISBN 0-262-
03293-7.

1 3

2

4

5

6

 Fig: 2.5

26

26

22

Application of Bounded Variable Simplex Algorithm in solving Maximal Flow Model

