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Abstract 

In this paper, A comparative  study  is  made  on  the  determination  of  maximum  flow  in  a  network  by    Maximal  Flow  Algorithm   
and  Bounded  Variable Simplex  Method. We have introduced a technique to find the route of a flow in any iteration of the bounded 
variable simplex algorithm. 
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I .Introduction 
 

Networking  is  one  of  the most  important  branch  of  
Operation  Research. Most  of  the  real  world  problem  can  
be  formulated  as  network model.  There  are   various  
type  network  models  such  as  Minimal  spanning  tree, 
Shortest  route  algorithm , Maximal  flow  algorithm, 
Minimum  cost  capacitated network  algorithm. Different  
type  of  network  problem  can  be  solved  by  different  
algorithms. In this paper we have worked on Maximal flow 
problem. We have formulated the Maximal flow problem as 
a linear programming problem and solved it using Bounded 
variable simplex algorithm which is very easy to solve. 

In a Maximal Flow Problem, we wish to send as much 
material as possible from a specified node s in a network, 
called the source, to another specified node t, called the 
sink. 

The maximum flow problem was first formulated in 1954 
by T. E. Harris as a simplified model of Soviet railway 
traffic flow. In 1955, Lester R. Ford and Delbert R. 
Fulkerson [1],[2] created the first known algorithm, 
the Ford–Fulkerson algorithm. Over the years, various 
improved solutions to the maximum flow problem [7],[8]  
were discovered. 

An example of a flow network is given by figure 1. The 
source node is denoted by 1 and the sink node by 6. Nodes 
2, 3, 4,5 are the intermediate nodes. There are nine arcs 
connecting the various nodes, denoted by (1,2), (1,3), 
(1,4),(2,3), (2,6), (3,5), (3,6), (4,5), (5,6).  

The intermediate nodes must satisfy the strict conservation 
requirement; that is ,the net flow into these nodes must be 
zero. However, the source may have a net outflow and the 
sink a net inflow. As a consequence of the conservation at 
all intermediate nodes, the outflow f on the source will equal 
to the inflow of the sink .A set of arc flows satisfying these 
conditions is said to be a flow in the network of value f. The 
maximal flow problem is that of determining the maximal 
flow that can be established in such a network. 
 

 

Fig. 1 

II. Maximal Flow Algorithm 

The Maximum Flow Algorithm [9] is one of the most 
important methods to obtain maximum flow in a network. 
The algorithm [4],[6] is based on finding breakthrough paths 
with net positive flow between the source and sink nodes. 
Each paths commits part or all the capacities of its arcs to 
the total flow in the network. 

Consider arc ),( ji with (initial) capacities ).,( jiij CC  As 

portion of this capacities are committed to the flow in the 
arc, the residuals (or the remaining capacities) of the arc are 
updated. The network with the updated residuals is referred 

to as the residue network. We use the notation ),( jiij cc  
to 

represent these residuals. 

 For a node j receives flow from node i, we define a label [ a 
. i ], where a is the flow from node i to node j. 

The steps of the algorithm are summarized as follows. 

Step1. For all arcs ),( ji , set the residual capacity equal to 

the initial capacity – that  ),( jiij cc = ).,( jiij CC   Let a1= ∞ 

and label source node 1 with [ ] and go to step 2. 

Step2. Determine Si as the set of unlabeled nodes j that can 
be reached directly from node i by arcs with positive 

residuals (that is, ca> 0 for all i
Sj  ). If Si ≠ Ø then go to 

step 3. Otherwise, go to step 4. 

Step 3. Determine i
Sk   , such that }{max ij

Sj
ik cc


 . 

Set ikk ca   and label node k with [ ka , i]. If k = n, the 

sink node has been labeled, and a breakthrough path is 
found, go to step 5. Otherwise, set i = k and go to step 2. 

Step 4. (Backtracking) If i = l, no further breakthrough are 
possible, go to step 6. Otherwise, let r be the node that has 
been labeled immediately before the current node i and 
remove i from the set of nodes that are adjacent to r. Set i = r 
and go to step 2. 

Step 5. (Determination of Residue Network):  

Let Np = ( l, k1, k2,…..n ) define the nodes of the pth 
breakthrough path from source node l to sink node n. The 
maximum flow along the path is computed as, fp = min 

}...,,,{ 211 nkk aaaa .The residual capacity of each arc along 

the breakthrough path is decreased by fp in the direction of 
the flow and increased by fp in the reverse direction - that is, 
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for nodes i and j on the path, the residual flow is changed 

from the current ),( jiij cc to 

(a) ),( pijpij fcfc   if the flow is from i to j 

(b) ),( pijpij fcfc   if the flow is from j to i 

(c) Reinstate any nodes that were removed in  

step 4. Set i = l , and return to step 2 to attempt a new 
breakthrough path. 

Step 6.  (Solution) 

       (a) Given that m breakthrough paths have been 
determined, the maximal flow in the network is F = f1 + f2 + 
….. + fm 

       (b) Given that the initial and final residuals of arc 

),( ji are given by ),( jiij CC and ),( jiij cc , respectively 

the optimal flow in arc ),( ji
 
is computed as follows:Let (α 

, β) = ),( jijiijij cCcC   . If α > 0, the optimal flow 

from i to j is α. Otherwise, if β > 0, the optimal flow from j 
to i is β. ( It is impossible to have both α and β positive). 

Example: Consider the network in Figure 1. The maximal 
flow problem is to determine the maximum flow from the 
source node 1 to the sink node 6. 

The maximum flow in the network can be determined by 
Maximal Flow Algorithm as follows: 

Iteration 1: 

Step1: Set 1a  and we label node 1 with ],[  . 

 Set 1i  

Step 2:  Ø}4,3,2{1 S . 

Step 3: 3k  because },,max{ 14131213 cccc 
 

             = max{15,20,5}=20. Set 20133  ca , and label 

node 3 with [20,1],Set i=3,and repeat step 2. 

    Step 2: S 3 = {5,6}≠Ø. 

    Step 3: k=6 because c 36 = 12. Set 12366  ca  

  and label node 6 with [12,3], breakthrough is achieved  

  and go to step 5. 

Step 5: Breakthrough path is determined from the labels  

starting at node 6 and ending at node 1 – that is, (6) → 
[12,3] → (3) → [20,1] → (1). Thus,               N1 = 
{1,3,6} and  f1 = min },,{ 631 aaa = { ∞, 20,12 } = 

12. The residual capacities along path N1 are 

(c13,c31) = (20 − 12, 0 + 12) = (8,12) 

(c36,c63) = (12 − 12, 0 + 12) = (0,12) 

 

 

 

Iteration 2: 

Step1: Set 1a  and we label node 1 with ],[  . Set 

1i . 

Step 2:  }4,3,2{1S . 

Step 3: 2k  because },,max{ 14131212 cccc  =  

  max{15,8,5}=15. Set 15122  ca , and label  

  node 2 with [15,1],Set i=2,and repeat step 2. 

 

     Step 2: S 2 = {3,6}≠Ø. 

     Step 3: k=6 because c 26 = 10. Set 10266  ca   

and label node 6 with [10,2], breakthrough is achieved  

and go to step 5. 

Step 5: Breakthrough path is determined from the labels  

starting at node 6 and ending at node 1 – that is, (6) →  

[10,2] → (2) → [15,1] → (1). Thus, N1 = {1,2,6} and 

f2 = min },,{ 621 aaa  = {∞, 15,10 } = 10. The residual 

capacities along path N2 are 

(c12,c21) = (15 − 10, 0 + 10) = (5,10) 

(c26,c62) = (10 − 10, 0 + 10) = (0,10) 
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Iteration 3: 
Step 1: Let 1a , and we label node 1 with [∞ , −]. Set 

i = 1. 

Step 2: S1 ={2,3,4}≠Ø. 

Step 3: k = 3 and 
3a  = c13 = max {5,8,5} = 8. 

Label node 3 with [8,1],Set i=3,and repeat step 2. 

    Step 2: S3 = {2,5}≠Ø.[node 1 is already labeled hence it 
cannot be included in S3]. 

    Step 3: k = 5 because 5a  = c 35 =15. Label node 5 with 

[15,3]. Set i = 5, and repeat step 2. 

        Step 2: S5 = {6}≠Ø. 

      Step 3: k = 6 because 6a  = c56 = 18. Label node 6  

  with [18,6]. Breakthroughs is achieved, go to step 5. 

Step 5: N3 ={1,3,5,6} and f3 = min{∞ , 8,15,18} = 8. 

The residual along the path of N3 are 

(c13,c31) = (8 − 8, 12 + 8) = (0, 20);  (c35,c53) = (15−8, 0 +8) 
= (7, 8); (c56,c65) = (18 − 8, 0 + 8) = (10, 8) 

 
Iteration 4: 

Step 1: Let 1a  = ∞ , and we label node 1 with [∞ , −]. Set i 

= 1. 

Step 2: S1 ={2,4}≠Ø. 

Step 3: k = 2 and 
2a  = c12 = max {5,5} = 5. Set i = 2  

and label node 2 with [5,1] and repeat step 2. 

   Step 2: S2 = {3}≠Ø.[node 1 is already labeled hence  

     it cannot be included in S2]. 

   Step 3: k = 3 because 3a  = c 23 =10. Label node 3 with  

[10,2]. Set i = 3, and repeat step 2. 

       Step 2: S3 = {5}≠Ø. 

      Step 3: k = 5 because 5a  = c35 = 7. Label node 5  

with [7,3]. Set i=5 and go to step 2. 

     Step 2: S5 ={6}≠Ø. 

     Step 3: k =6 because 6a = c56 =10. Label node 6  

with [10,5]. Breakthrough is achieved and go to step 5. 

Step 5: N3 ={1,2,3,5,6} and f4 = min{∞ , 5,10,7,10} = 5.  

  The residual along the Path of N4 are 

(c12,c21) = (5 − 5, 10 + 5) = (0, 15) 

(c23,c32) = (10 − 5, 20 + 5) = (5, 25); (c35,c53) = (7−5, 8+5) = 
(2, 13); (c56,c65) =(10 −5, 8+5)=(5, 13) 

 
Iteration 5: 

Step 1: Let a 1a  = ∞ , and we label node 1 with [∞ , −]. Set i 

= 1 

Step 2: S1 ={4}≠Ø. 

Step 3: k = 4and 
4a = c14 =5. Set i = 4 and label node4 

with [5,1] and repeat step 2. 
Step 2: S4 = {5}≠Ø 

Step 3: k = 5 because 5a  = c 45 =15. Label node 5 with 

[15,4]. Set i = 5, and repeat step 2. 

Step 2: S5 = {6}≠Ø. 
Step 3: k = 6 because 

6a  = c56 = 5. Label node 6 with 

[5,5]. Breakthrough is achieved, and go to step 5. 
Step 5: N3 ={1,4,5,6} and f5 = min{∞ , 5,15,5} = 5. The 
residual along the Path of N5 are (c14,c41) =(5−5, 0+5)= (0, 
5);  (c45,c54) =(15− 5, 0 +5)=(10,5);  
(c56,c65) = (5 −5, 13 + 5) = (0, 18) 

 
Iteration 6: All the arcs out of node 1 have zero  
residuals. Hence no further breakthrough is possible.  
We turn to step 6 to determine the solution. 

 
Step 6: Maximal flow in the network is F = f1 + f2 +   
……+f5= 12+10+8+5+5= 40 units. The flow in the 
different arc is computed by subtracting the last  
residuals ( in iteration 6 from the initial  

capacities ).,( jiij CC as the following table shows.  
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Arc ),( jiij CC - (  Flow 
Amount 

Direction 

(1,2) (15,0) – (0,15) =(15,-15) 15 1→2 

(1,3) (20,0) – (0,20) = (20,-20) 20 1→3 

(1,4) (5,0) – (0,5) = (5,-5) 5 1→4 

(2,3) (10,0) – (5,5) = (5,- 5) 5 2→3 

(2,6) (10,0) – (0,10) = (10,-10) 10 2→6 

(3,6) (12,0) – (0,12) = (12,-12) 12 3→6 

(3,5) (15,0) –(2,13) = (13,-13) 13 3→5 

(4,5) (20,0) – (15,5) = (5,-5) 5 4→5 

(5,6) (18,0)-(0,18)=(18,-18) 18 5→6 

 

III. Bounded – Variable Simplex Algorithm: 

In LP models, variables may have explicit positive upper 
and lower bounds. For example, in production facilities, 
lower and upper bound can represent the minimum 
maximum demands for certain products. Bounded variable 
also arise prominently in the course of solving integer 
programming problems by the branch and bound algorithm. 

The bounded algorithm is efficient computationally because 
it accounts for the bounds implicitly. We consider the lower 
bounds first because it is simpler. Given X ≥ L, we can use 
the substitution 

X = L + X' ,  X' ≥ 0. 

Throughout and solve the problem in terms of X' (whose 
lower bound now equals zero). The original X is determined 
by back substitution, which is legitimate because it 
guarantees that X = L + X' will remain nonnegative for all 
X' ≥ 0. 

Next, consider the upper bounding constraints, X≤ U. The 
idea of direct substitution (i.e, X = U - X'', X'' ≥ 0) is not 
correct because back substitution, X= U - X', does not 
ensure that X will remain nonnegative. A different 
procedure is thus needed. 

Define the upper bounded LP model as 

Maximize z= {CX | (A,I)X = b ,0 ≤ X ≤ U} 

The bounded algorithm uses only the constraints (A,I)X = b 
, X ≥ 0 , while accounting for X≤ U implicitly by modifying 
the simplex feasibility condition. 

Let XB = B-1b be a current basic feasible solution of (A,I)X 
= b, X ≥ 0 and suppose that, according to the optimality 
condition, Pj is the entering vector. Then given that all the 
nonbasic variables are zero, the constraints equation of the 
ith basic variable can be written as (XB)i = (B-1b)i – (B-1Pj)i 

xj. 

When the entering variable xj increases above zero level, 
(XB)i will increase or decrease depending on whether (B-1Pj)i 
is negative or positive, respectively. Thus in determining the 

value of the entering variable xj, three conditions must be 
satisfied: 

1.  The basic variable (XB)i remains nonnegative – that is 
(XB)i ≥ 0. 

2. The basic variable (XB)i does not exceed its upper bound - 
that is (XB)i ≤ (UB)i , where UB comprises the ordered 
elements of U corresponding to XB . 

3. The entering variable xj cannot assume a value larger than 
its upper bound – that is xj ≤ uj ,where uj is the jth element of 
U .The first condition (XB)i ≥ 0 requires that 

(B-1b)i – (B-1Pj)i xj ≥ 0. It is satisfied if xj ≤Έ 1  =min{(B-

1b)i / (B
-1Pj)i | (B

-1Pj)i > 0} .This condition is the same as the 
feasibility condition of the regular singular method. Next, 
the condition (XB)i ≤ (UB)i specifies that (B-1b)i – (B-1Pj)i xj 

≤ (UB)i . It is satisfied if 

xj ≤ 2  = min{[(B-1b)i - (UB)i ] / (B
-1Pj)i | (B

-1Pj)i < 0}. 

Combining the three restrictions, xj enters the solution at 
the level that satisfies all three conditions – that is, 

xj = min { 1 , 2 , uj }. The change of basis for the next 

iteration depends on whether xj enters the solution at level 

1 , 2  or uj. Assuming that (XB)r is the leaving variable, 

then we have the following rules : 

1.  xj = 1 : (XB)r leaves the basic solution (becomes non 

basic) at level zero. The new iteration is generated using the 
normal simplex method with xj and (XB)r as the entering and 
the leaving variables, respectively. 

2.  xj = 2 : (XB)r becomes nonbasic at its upper bound. The 

new iteration is generated in the case of xj = 1 , with one 

modification that accounts for the fact that (XB)r will be 

nonbasic at upper bound. Because the values of 1 , 2  

require all nonbasic variables to be at zero level. Convert the 
new nonbasic (XB)r at upper bound to a nonbasic variable at 
zero level. This is achieved by using the substitution (XB)r = 
(UB)r - (X'B)r , where (X'B)r ≥ 0. It is immaterial whether the 
substitution is made before or after the new basis is 
computed. 

3. xj= uj: The basic vector XB remains unchanged because xj 
= uj stops short of forcing any of the current basic variables 
to reach its lower (=0) or upper bound. This means that xj 
will remain non basic but at upper bound. Following the 
argument just presented, the new iteration is generated by 
using the substitution xj= uj - x'j. 

A tie among 1 , 2 and uj may be broken arbitrarily. 

However, it is preferable, where possible, to implement the 
rule for xj = uj because it entails less computation. 

The substitution xj = uj - x'j will change the original cj, Pj and 
b to c'j = - cj , P'j = Pj and b to b' = b – ujPj . This means that 
if the revised simplex method is used, all the computations 
(e.g., B-1,XB and zj – cj ), should be based on the updated 
values of C, A and b at each iteration. 
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IV.  LP Formulation of Maximal Flow Model: 
If v denotes the amount of material sent from nodes s to 

node t and ijx  denotes the flow from node i  to node j over 

arc ji   the formulation is: 

Maximize v, 
subject to: 

).,,2,1;,,2,1(0

otherwise,0

),sink(if

),source(if

njniux

tiv

siv

xx

ijij

k
ki

j
ij

 













  

As usual, the summations are taken only over the arcs in the 

network. Also, the upper bound iju  for the flow on arc 

ji   is taken to be   if arc ji   has unlimited 

capacity. The interpretation is that v units are supplied at s 
and consumed at t. Let us introduce a fictitious arc st   

with unlimited capacity; that is, tsu . Now tsx  

represents the variable v , since tsx  simply returns the v  

units of flow from node t back to node s, and no formal 
external supply of material occurs. With the introduction of 
the arc st  , the problem assumes the following special 
form of the general network problem: 

Maximize tsx , 

subject to: 
 

).,,2,1(0 nixx
k

ki
j

ij   

Thus if  xij as the amount of flow in arc (i,j) with capacity 
Cij. The objective is to determine xij for all i and j that will 
maximize the flow between start nodes s and terminate node 
t subjective to flow restriction (input flow = outflow flow) at 
all but nodes s and t. 
Now we are going to obtain the maximum flow in the 
network given in Figure 1 using Bounded Variable Simplex 
method. 
The following table summarizes the associated LP with two 
different , but equivalent, objective functions depending on 
whether maximize the output from start node 1 (= z1) or the 
input to terminal node 6 (= z2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Writing this as an Linear Programming Problem (LPP)  

             Maximize z = x12+x13+x14 

                s/t      x12-x23 - x26= 0 

                     x13+x23-x35-x36 = 0 

                     x14-x45 = 0 

                       x35 +x45-x56 = 0 

 0 ≤ x12 ≤15, 0 ≤ x13 ≤20 , 0 ≤ x14 ≤ 5, 0 ≤ x23 ≤10 , 0 ≤ x26 ≤ 
10, 0 ≤ x35 ≤15 , 0 ≤ x36 ≤ 12 , 0 ≤ x45 ≤ 20 , 0 ≤ x56 ≤ 18 

If we try to solve this LPP by simplex method, we can write 
the bounded variables as constraints by inserting slack 
variables. Then we obtain a large set of constraints. 

Using Bounded Variable Algorithm this problem can be 
solved easily. The initial table is: 

Table 0 

Iteration 1: 

We have B= B-1=I and XB =( x12, x13, x14 ,x56)
T = 

B-1b=(0,0,0,0)T. Here x45 is the entering variable, we get 

 B-1P45 =(0,0,-1, -1)T  which yields 1 ; 

2  = min {- , - , (0 – 5)/(-1) ,(0- 18)/(-1) , - ,0 }= 5 , 

corresponding to x14. Next, given the upper bound on the 
entering variable x45 ≤ 20 , it follows that 

 
Table 1.1 

x45 = min {  ,5,20} = 5 (= 2  ) 

Because x14 becomes nonbasic at its upper  

bound ,we apply the substitution x14=5 - x'14 to obtain 

    cj 

 
Basic 

1 1 1 0 0 0 0 0 0  

x1

2 

x13 x14 x23 x26 x35 x36 x45 x56 Soluti
on 

1 x12 1 0 0 -1 -1 0 0 0 0 0 

1 x13 0 1 0 1 0 -1 -1 0 0 0 

1 x14 0 0 1 0 0 0 0 -1 0 0 

0 x56 0 0 0 0 0 -1 0 -1 1 0 

Z 0 0 0 0 -1 -1 -1 -1 0 0 

       cj 

 
Basic 

1 1 -1 0 0 0 0 0 0  

x12 x1

3 

x'1
4 

x23 x26 x35 x36 x45 x56 Sol
utio
n 

1 x12 1 0 0 -1 -1 0 0 0 0 0 

1 x13 0 1 0 1 0 -1 -1 0 0 0 

-1 x'14 0 0 -1 0 0 0 0 -1 0 -5 

0 x56 0 0 0 0 0 -1 0 -1 1 0 

23 

 x12 x13 x14 x23 x26 x35 x36 x45 x56 

Max z1 
= 

1 1 1       

Max z2=     1  1  1 

Node 2 1   -1 -1     =
0 

Node 3  1  1  -1 -1   =
0 

Node 4   1     -1  =
0 

Node 5      1  1 -1 =
0 

Capacity 15 20 5 10 10 15 12 20 18  
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Next, the entering variable x45 becomes basic and the 
leaving variable x'14 becomes nonbasic at zero level, 
which yields: 

Table 1.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The flow in this iteration is the minimum of the values of 
the variable that have changed their values in this 
iteration. For, x14 =5, x45 = 5, x56 = 5, min{5,5,5} = 5. 
 So flow f1 = 5 in the route 1 →4→5→6. 

 

Iteration 2: 

Here x26 is the entering variable, we get B-1P26 =(-1,0, 

0,0)T  which yields 1 , 2  = min {(0-15)/(-1), -, - , 

- }= 15 , corresponding to x12. Next, given the upper 
bound on the entering variable x26 ≤ 10 , it follows that     
x26 = min {  ,15, 10} =10 = u26. 

Because x26 enters at its upper bound, XB remains 
unchanged and x26 becomes nonbasic at its upper bound. 
We use the substitution x26 = 10 - x'26 to obtain Table 2. 

Table 2 

x12 =10, x45 = 5, x56 = 5,  x26 =10.From the last table 
1.2 of the iteration 1and from the table 2 we see that 
the values of  x45 and x56 remained unchanged. the 

value of x12 and x26 changed. Thus min{10,10} = 10. 
So flow f2 =10 in the rout 1→2→ 6 

 

 
 

Iteration 3: 

Here x35 is the entering variable, we get B-1P35 =(0, -1,0 ,-

1)T  which yields 1 ; 2  = min {- ,(0 - 20)/(-1) , - 

,(5 – 18)/(-1) }= 13 , corresponding to x56.  Next, given 
the upper bound on the entering variable x35 ≤ 15, it 

follows that   x35 = min {  ,13,15} =13 (= 2  ) 

Because x56 becomes nonbasic at its upper bound, we 
apply the substitution x56=18 - x'56 to obtain the following 
table: 

Table 3.1 

Next, the entering variable x35 becomes basic and the 
leaving variable x'56 becomes nonbasic at zero level, 
which yields: 

Table 3.2 

x13 =13, x35 =13, x56 = 18, min{13,13,18} = 13. So 
flow f3 = 13 in the route 1→3→5→6. 

      cj 

 
Basic 

1 1 -1 0 0 0 0 0 0  

x1

2 

x13 x'1
4 

x23 x'2
6 

x35 x36 x45 x56 So
lut
io
n 

1 x12 1 0 0 -1 1 0 0 0 0 10 

1 x13 0 1 0 1 0 -1 -1 0 0 0 

0 x45 0 0 1 0 0 0 0 1 0 5 

0 x56 0 0 1 0 0 -1 0 0 1 5 
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Iteration 4: 
Here x36 is the entering variable, we get  B-1P36 =(0, -1,0 
,0)T

  which yields  

 1 , 2  = min {- ,(13 - 20)/(-1) , - ,0 }= 7 , 

corresponding to x13 
 Next, given the upper bound on the entering variable x36 
≤ 12 , it follows that 

    x36 = min {  ,7,12} =7 (= 2  ) 

Because x13 becomes nonbasic at its upper bound, we 
apply the substitution x13=10 - x'13 and obtain Table 4.1. 

Table 4.1 

Next, the entering variable x36 becomes basic and the leaving 
variable x'13 becomes nonbasic at zero level, which yields: 

 

Table 4.2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x13 =20, x36 =7, min{20,7} = 7 So flow f4 = 7 in the route 
1→3→6 

 
Iteration 5: 
Here x23 is the entering variable, we get  

 
Table 5.1 

 
 
 
 
 
 
 
 
 
 

B-1P23 =(-1, -1,0 ,0)T  which yields 1 ; 2  = min {(10 

– 20)/(-1) ,(7 - 12)/(-1) ,- ,- }= 5 , corresponding to x36.  
Next, given the upper bound on the entering variable x23 ≤ 
10 , it follows that 

    x23 = min {  ,5,10} = 5 (= 2  ) 

Because x36 becomes nonbasic at its upper bound, we apply 
the substitution x36=15 - x'36 to obtain Table 5.1. 

Next, the entering variable x36 becomes basic and the leaving 
variable x'13 becomes nonbasic at zero level, which yields 

Table 5.2 
 

x12 =15, x23 = 5, x36 = 12, min{15,5,12} = 5. So flow f5 = 5 
in the route 1→2 → 3→ 6 
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The last table is feasible and optimal. 
The optimal values are obtained by back substitution.  

x'13 = 0 gives x13 = 20 – x'13 = 20 - 0 = 20 ;  
x'14 = 0 gives x14 = 5 – x'14 = 5 - 0 = 5 ;  
x'26 = 0 gives x26 = 10 – x'26 = 10 - 0 = 10 ;  
x'36 = 0 gives x36 = 12 – x'36 = 12 - 0 = 12 ;  
x'56 = 0 gives x56 = 18 – x'56 = 18 - 0 = 18 ;  
The optimal solution is: 

x12=15 , x13=20 , x14=5 , x23=5 , x26= 10, x35=13 , x36= 12, 
x45= 5, x56 = 18. 

So, the associated maximum flow is z = x12 + x13 + x14= 15 + 
20 + 5 = 40. 

Remark1: In the first iteration since all the non basic 
variables that can enter the basis has relative cost factor -1 
so any variable can be chosen arbitrarily. We choose the 
variable x45 because only one arch x45 is from node 4 and 
node 4 is directly linked with the source node 1 and no other 
node is linked with node 4, so the route 1→ 4 →5 must be 
used for any flow to pass through the node 4. 

Remark 2: The flow in iteration is the value of the variable 
that has been is chosen to enter the basis. Note that in 
iteration 1, x45 is chosen to enter the basis and thus the flow 
in that iteration is f1 = x45=5; in the second iteration x26 has 
chosen which remained nonbasic at its upper bound. So the 
flow in that iteration is f2 = u26 =10.Similarly for other 
iterations the flow can be determined. Now, the route in any 
iteration can be determined from the value of the variables 
that have changed in that iteration. For, in the second 
iteration x12 = 10, x26=10, the values of x13, x45, x56 remained 
unchanged. So the route is the 1→2 → 6. 

Again in the comparing the values of the variables in the 
fifth iteration with their values in previous iteration we see 
that, 

In fourth iteration:  x12 = 10, x36 = 7, x45 = 5, x35 = 13 

In Fifth iteration: x36 = 12 x12 = 15, x23 = 5, x45 = 5, 

x35 = 13. 

Thus x23 entered the basis and the variables whose values 
have changed are x12, x23 and x36. 

Thus the route in fifth iteration is 1→2→3→6 with a flow f5 
= x23 = 5. 

In general to determine a route in any we set the variables 
with changed value in a sequence such that  

xsi , xij, xjk, ….xpt where s denotes the source node and t 
denotes the terminal node.  

V. Conclusion 

Bounded variable simplex method is very useful technique. 
It makes a large system of constraint set a small one. If there 
are upper bounds for the decision variables, Bounded 
variable simplex method takes less time to solve a problem 
then the simplex method. Using Bounded Variable simplex 
method we have solved a maximum flow problem and 
determine a technique to obtain the maximum flow in each 
iteration from the simplex table of that iteration. The route 
thorough which the maximum flow has passed is also 
determined. 

.................. 
 

1. Ford,L.R.,Jr.; Fulkerson, D.R.,"Maximal Flow through a 
Network",Canadian Journal of Mathematics (1956),pp.399-
404. 

2. Ford, L.R., Jr.; Fulkerson, D.R., Flows in Networks, 
Princeton University Press (1962). 

3. G. B. Dantzig. Linear programming and extensions. 
Princeton University Press, Princeton, NJ, 1963. 

4. Hamdy A. Taha ,Operation Research- An Introduction, 7th 
Edition. 

5. Kambo N.S., Introduction to Operation Research. 

6. Ralph P. Grimaldi Discrete and Combinatorial Mathematics- 
An Applied Introduction,  4th Edition. 

7. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: 
Theory, Algorithms, and  Applications. Prentice Hall, 
Englewood Cliffs, NJ, 1993. 

8. 8. Schrijver, Alexander, "On the history of the transportation 
and maximum flow problems", Mathematical Progra-
mming 91(2002) 437-445. 

9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, 
and Clifford Stein (2001). "26. Maximum            
Flow". Introduction to Algorithms, Second Edition.             
MIT Press and McGraw-Hill. pp. 643–668. ISBN 0-262-
03293-7.

1 3 

2 

4 

5 

6  
 

 

 Fig: 2.5 

 

26 

26 

22 



Application of Bounded Variable Simplex Algorithm in solving Maximal Flow Model                                                         

 

 


