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Abstract 

A general construction method of simultaneous confounding in np  ( p  is prime) factorial experiment is proposed. The concept of matrix 
method in the construction of factorial experiment with a single factorial effect confounded is used to develop the method. The procedure 
may be extended for the construction of simultaneous confounding of factorial experiment with three or more factorial effects confounded.  

I. Introduction 

The researchers working with factorial experiments 
experience difficulty especially when the number of 
factors as well as the number of levels of each factor is 
large. It becomes more difficult if we have no required 
number of homogeneous plots in practice. In such 
situations, we are bound to use a limited number of 
homogeneous plots to analyze the factorial effects. As a 
result, some factorial effects or interactions will be mixed 
up with block effect, i.e. confounded. Since there is no 
way to avoid this, the higher order interaction effects are 
usually considered to be confounded. 

Bose and Kishan (1940), Bose (1947) described the 
construction of np  factorial designs using finite 
geometries. The treatments are represented by n -tuples 

),,( 1 naa   where ia  are elements of )( pGF . The method 
is available only when p  is prime or prime power. A 
system of simultaneous confounding in n2  factorial 
experiment has been described, where an intrablock 
subgroup is constructed with the common elements taken 
from the factorial effects of two incomplete blocks, each 
confounded with a single factorial effect (Kempthorne, 
1947, 1952). Das (1964) described an equivalent method 
of Bose in which some of the treatment factors are 
designated as basic factors and the others as added 
factors. Levels of added factors are derived by 
combination of the levels of the basic factors over )( pGF . 
White and Hultquist (1965) extended the field method to 
design with number of levels of treatment factors. John 
and Dean (1975) described the construction of a particular 
class of single replicate block designs, which they call 
generalized cyclic designs. The essential feature of the 
method is that the n -tuples giving the treatments of a 
particular block constitute an Abelian group, the 
intrablock subgroup. Patterson (1976) described a general 
computer algorithm, called DSIGN, in which levels of 
treatment factors are derived by linear combinations of 
levels of plot and block factors. The method provides 

finite-field, generalized cyclic and other designs. Mallick, S. 
A. (1973 & 1975) developed two systems of designing 
factorial effects with simultaneous confounding of two effects, 
one for n3  and the other for n4  - factorial experiments. In 
these systems of simultaneous confounding, the combination 
of levels was based on some manipulating manner. Jalil, et. al. 
(1990) developed a matrix method of designing a single 
factorial effect confounded in a nP  - factorial experiment, 
where the level combinations are obtained by matrix 
operations of the levels. Construction method of simultaneous 
confounding has been developed independently for n3  and n5  
factorial experiments (Jalil and Mallick, 2010). The present 
work is a general method of construction for simultaneous 
confounding in a np - ( p  is prime) factorial experiment. 

II. Notation and Definition 

The formulae given below have been used in determining the 
number of incomplete blocks or intrablocks ( b ) and the 
number of homogeneous plots in each incomplete block or 
intrablock ( k ) for a single or simultaneously confounded 
factorial experiment (symmetrical). 

Let b  be the number of incomplete blocks or intrablocks in a 
confounded experiment; and k  be the number of plots in each 
incomplete block or intrablock. Then, 

 rn

n

p

pb


  and r

n

p

pk  ; where r  is the number of factorial 

effects to be confounded. 

For a single factorial effect confounding in np  factorial 
experiment, the number of incomplete blocks is computed as, 

p
p
pb n

n


1  and the number of combinations of levels in each 

incomplete block is given by, 1 n
n

p
p

p
k . 

For a simultaneous confounding (two factorial effects) in 
np factorial experiment, the number of intrablock subgroups is 

computed as, 2
2 p

p
pb n

n



 and the number of level 
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combinations in each intrablock subgroup is given by, 
2

2
 n

n
p

p

pk . 

The general construction matrix with its intrablock 
subgroups of simultaneous confounding in a np  factorial 
experiment can be represented as, 

 





























22

2)1(22

1)1(11

ppp

ppp

ppp

BBB

BBB
BBB











; and   

in particular, the construction matrices for n3  and n5  
factorial experiments are given respectively by, 
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III. Construction Method of Simultaneous Confound-
ing in np  Factorial Experiments 

In the construction of np  ( p  is prime) factorial 
experiment with a single factorial effect confounded, we 
can write the level combinations by the matrix method 
described below (Jalil, et. al., 1990). 

],,,,[ 1210  pMMMMM  ;                  (1) 

where incomplete blocks )1(,,2,1,0;  puMu   is given 
by: 

npu
p

nu napVpVpVM 


 1]},{,},{},{[ 11
2

0
1  , with  

])1(,,0,0[}{ )1()1()1(
11

ininin ppp
ii

i IpIIppV     , each is 

a column vector of dimension 1np . 

 jj pp }{ times repetitions of the elements of sVi '  in 
ascending ordered level;  

);1(,,2,1,0  pu  );1(,,3,2,1  ni    

);1(,,2,1,0  pj   with the restriction that 1 ji ; 

mI : sum vector of dimension m ; and 

],,,[ 21  upuuu aaaa   is called the adjustment vector. 

From the equation (1), 0M  is called the key incomplete block 
of a single factorial effect confounded in a np  factorial 
experiment. For a plan of  simultaneous confounding of two 
factorial effects in a np - factorial experiment, we are to 
perform the following steps. 

Step 1. Find the independent key incomplete blocks for the 
factorial effects to be confounded simultaneously using 
Equation 1. Let these key incomplete blocks be denoted by, 

0M , which represents the level combinations of the key 
incomplete block for the first confounded factorial effect and 

0M   represents the level combinations of the key incomplete 
block for the second confounded factorial effect. 

Step 2. Find the common elements of level combinations (row 
vectors) of these two key incomplete blocks and form a 
matrix, can be denoted by 1B . 1B  is called the key intrablock 
subgroup of level combinations of two factorial effects 
confounded simultaneously. It can be seen that the key 
intrablock subgroup contains the combination of the lowest 
levels for all the factors. 

Step 3. To find all other intrablock subgroups of the 
construction matrix we will follow the computations 
procedures described below. 

The intrablock subgroups pBBB ,,, 32  , below the key block 1B  
are obtained by adding the vectors pcc ,,2,1;)00(    with 
each of the elements (row vectors) of the key intrablock 
subgroup 1B  as described below.  

2B  is obtained by an addition of the vector )010(  with each 
of the vector elements of 1B ; 

3B  is obtained by an addition of the vector )020(  with each 
of the vector elements of 1B ; 

  

pB  is obtained by an addition of the vector )00( p  with each 
of the vector elements of 1B . 

pBBBB ,,,, 321   are the intrablock subgroups placed in the first 
column of the construction matrix. 

After having the intrablock subgroups in the first column we 
will get the intrablock subgroups ppp BBB 221 ,,,   of the 
second column, which can be computed as shown below. 

1pB  is obtained by an addition of the vector )100(  with 
each of the vector elements of 1B ; 

2pB  is obtained by an addition of the vector )100(  with 
each of the vector elements of 2B ; 
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3pB  is obtained by an addition of the vector )100(  
with each of the vector elements of 3B ; 

  

pB2  is obtained by an addition of the vector )100(  with 
each of the vector elements of pB . 

The intrablock subgroups ppp BBB 32212 ,,,   placed in 
the third column can be computed as shown below. 

12 pB  is obtained by an addition of the vector )200(  
with each of the vector elements of 1B ; 

22 pB  is obtained by an addition of the vector )200(  
with each of the vector elements of 2B ; 

32 pB  is obtained by an addition of the vector )200(  
with each of the vector elements of 3B ; 

  

pB3  is obtained by an addition of the vector )200(  with 
each of the vector elements of pB . 

  

Proceeding in this way, we will get the intrablock 
subgroups 2,,, 2)1(1)1( ppppp BBB   placed in the last 

column of the construction matrix, which can be obtained 
as: 

1)1(  ppB  is obtained by an addition of the vector 
 )1(00 p  with each of the vector elements of 

1)2(  ppB ; 

2)1(  ppB  is obtained by an addition of the vector 
 )1(00 p  with each of the vector elements of 

1)2(  ppB ; 

  

2pB  is obtained by an addition of the vector  )1(00 p  

with each of the vector elements of ppB )1(  ; 

Thus, in the construction matrix, we get 2p  intrablock 
subgroups in p  columns. The method is illustrated with 
two examples described in the section below. 

IV. Illustrations 

Example 1. Suppose we like to construct the layout of a 
43  - factorial experiment where the factorial effects 

ABCD  and 2DABC  are confounded simultaneously. 

The plan is given by matrix, 

1227210 ][  MMMM ; 

2,1,0];}3{}3{}3{[ 2
3

1
2

0
1  uaVVVM uu ; with 

1279991 ]210[1}1{  IIIV ; 1273332 ]210[3}3{  IIIV  and 

1271113 ]210[9}9{  IIIV . 

The adjustment vector, ][ 2721  uuuu aaaa   could be obtained 
by solving the symbolic equation corresponding to the 
factorial effect to be confounded. 

Step 1. Find the matrices 0M  and 0M  , which  are the key 
incomplete blocks confounded with ABCD  and 2CDAB  
respectively in a 43 - factorial experiment. 
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Step 2. Selecting the common vector elements from 0M  and 
0M  , we will get the key intrablock subgroup 1B , which is 

given by 
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Step 3. Add the vector )0100(  to each of the vector elements 
of the key intrablock subgroup, we get, 
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To obtain the third intrablock subgroup 3B , add the vector 
)0200(  to each of the vector elements of the key 

intrablock subgroup. Thus,   
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The intrablock subgroups 65,4 , BBB  of second column and 

987 ,, BBB of the third (last) column can be computed as 
shown below. 

4B  is obtained by adding the vector )1000(  to each of the 
row vectors of 1B ; 

5B  is obtained by adding the vector )1000(  to each of the 
row vectors of 2B ; 

6B  is obtained by adding the vector )1000(  to each of the 
row vectors of 3B ; and 

7B  is obtained by adding the vector )2000(  to each of 
the vectors of 1B ; 

8B  is obtained by adding the vector )2000(  to each of 
the vectors of 2B ; 

9B  is obtained by adding the vector )2000(  to each of 
the vectors of 3B ; 

Thus, we have the complete layout of nine intrablock 
subgroups as shown below. 
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It is easy to verify that, 

)(.)(.)( 987654321 BBBVsBBBVsBBB  ; confounds the 
1st effect, ABCD ; (column comparison) 

)(.)(.)( 963852741 BBBVsBBBVsBBB  ; confounds the 
2nd effect, 2DABC ; (row comparison) 

)(.)(.)( 843762951 BBBVsBBBVsBBB  ; confounds the 
1st generalized effect, ABCDABCABCD  2  (comparing I-
totals); and 

 )(.)(.)( 753942861 BBBVsBBBVsBBB  ; confounds the 2nd 
generalized effect, DDABCDABC  22 )(  (comparing J-totals). 

Example 2. Suppose we are to construct a 35 - factorial 
experiment where the factorial effects ABC  and 2ABC  are 
confounded simultaneously. 

Solution. First, we find the two incomplete blocks 0M  and /
0M  

corresponding confounded effects ABC  and 2ABC . 

The key incomplete block 0M  confounded with ABC  is given 
by, 

35
1

2
0

10 1]},5{},5{[  nuaVVM , with 

]43210[5}5{ 55555
00

1  IIIIIV ; ]43210[5}5{ 11111
1

2  IIIIIV  and 
the adjustment vector ua  can be obtained by solving the 
symbolic equation 0321  xxx  mod 5 , taking first two 
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values of 1x  and 2x  from the vectors 1V  and 2V  
respectively for ABC . 

Similarly, the key incomplete block /
0M  confounded with 

2ABC  is given by, 

35
1

2
0

1
/
0 1]},5{},5{[  nuaVVM , with  

]43210[5}5{ 55555
00

1  IIIIIV ; ]43210[5}5{ 11111
1

2  IIIIIV  
and the adjustment vector ua  can be obtained by solving 
the symbolic equation 02 321  xxx mod 5 , taking first 
two values of 1x  and 2x  from the vectors 1V  and 2V  
respectively for 2ABC . 
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Step 1. 

Select the common elements (vectors) of 0M  and 0M   to 
find the key intrablock subgroup 1B , as shown below. 
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Step 2. 

We get the second intrablock subgroup 2B  by an addition of 
the vector )010(  to each of the vectors of the key intrablock 

subgroup; 2B  is placed just below (column side) the key block 1B . 

Similarly, we get the third, fourth and fifth intrablocks 43 , BB  
and 5B  by addition the vectors )030(),020(  and )040( to each 
of the vectors of the key intrablock subgroups respectively, 
shown below. 

Step 3. 

After getting the intrablock subgroups, ,1B 5432 ,, BandBBB  we 
get the intrablock subgroups 109876 ,,, BandBBBB  by an 
addition of the vector )100(  to each of the vector elements 
(row vectors) of  54321 ,,, BandBBBB  respectively. 

Similarly, an addition of the vector )200(  to each of the 
vector elements of  54321 ,,, BandBBBB  will produce the 
intrablock subgroups 14131211 ,,, BBBB  and 15B . 

An addition of the vector )300(  to each of the vector elements 
of  54321 ,,, BandBBBB  will produce the intrablock subgroups 

19181716 ,,, BBBB  and 20B ; and 

An addition of the vector )400(  to each of the vector elements 
of  54321 ,,, BandBBBB  will produce the intrablock subgroups 

24232221 ,,, BBBB  and 25B , which completes the plan, shown 
below. 
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V. Conclusion 

In this article, a general construction method has been 
developed for simultaneous confounding in np  ( p  is 
prime) factorial experiment. The construction of 
simultaneous confounding in np  factorial experiment 
becomes easier and rewarding. The method is restricted to 

np  factorial experiment when p  is prime and it can be 
extended for a simultaneous confounding of three or more 
factorial effects. 
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